1
|
Gaikwad AB, Kaila T, Maurya A, Kumari R, Rangan P, Wankhede DP, Bhat KV. The chloroplast genome of black pepper ( Piper nigrum L.) and its comparative analysis with related Piper species. FRONTIERS IN PLANT SCIENCE 2023; 13:1095781. [PMID: 36714762 PMCID: PMC9878596 DOI: 10.3389/fpls.2022.1095781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/15/2022] [Indexed: 06/18/2023]
Abstract
Piper nigrum, also known as black pepper, is an economically and ecologically important crop of the genus Piper. It has been titled as the king of spices due to its wide consumption throughout the world. In the present investigation, the chloroplast genome of P. nigrum has been assembled from a whole genome sequence by integrating the short and long reads generated through Illumina and PacBio platforms, respectively. The chloroplast genome was observed to be 161,522 bp in size, having a quadripartite structure with a large single copy (LSC) region of 89,153 bp and a small single copy (SSC) region of 18,255 bp separated by a copy of inverted repeats (IRs), each 27,057 bp in length. Taking into consideration all the duplicated genes, a total of 131 genes were observed, which included 81 protein-coding genes, 37 tRNAs, 4 rRNAs, and 1 pseudogene. Individually, the LSC region consisted of 83 genes, the SSC region had 13 genes, and 18 genes were present in each IR region. Additionally, 216 SSRs were detected and 11 of these were validated through amplification in 12 species of Piper. The features of the chloroplast genome have been compared with those of the genus Piper. Our results provide useful insights into evolutionary and molecular studies of black pepper which will contribute to its further genetic improvement and breeding.
Collapse
Affiliation(s)
- Ambika Baldev Gaikwad
- Division of Genomic Resources, Indian Council of Agricultural Research (ICAR)-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Tanvi Kaila
- Indian Council of Agricultural Research (ICAR)-National Institute for Plant Biotechnology, New Delhi, India
| | - Avantika Maurya
- Division of Genomic Resources, Indian Council of Agricultural Research (ICAR)-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Ratna Kumari
- Division of Genomic Resources, Indian Council of Agricultural Research (ICAR)-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Parimalan Rangan
- Division of Genomic Resources, Indian Council of Agricultural Research (ICAR)-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Dhammaprakash Pandhari Wankhede
- Division of Genomic Resources, Indian Council of Agricultural Research (ICAR)-National Bureau of Plant Genetic Resources, New Delhi, India
| | - K. V. Bhat
- Division of Genomic Resources, Indian Council of Agricultural Research (ICAR)-National Bureau of Plant Genetic Resources, New Delhi, India
| |
Collapse
|
2
|
Jiao Y, Feng G, Huang L, Nie G, Li Z, Peng Y, Li D, Xiong Y, Hu Z, Zhang X. Complete Chloroplast Genomes of 14 Subspecies of D. glomerata: Phylogenetic and Comparative Genomic Analyses. Genes (Basel) 2022; 13:genes13091621. [PMID: 36140789 PMCID: PMC9498378 DOI: 10.3390/genes13091621] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/06/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Orchardgrass (Dactylis glomerata L.) is a species in the Gramineae family that is highly important economically and valued for its role in ecology. However, the phylogeny and taxonomy of D. glomerata are still controversial based on current morphological and molecular evidence. The study of chloroplast (cp) genomes has developed into a powerful tool to develop molecular markers for related species and reveal the relationships between plant evolution and phylogenetics. In this study, we conducted comparative genomic analyses and phylogenetic inferences on 14 cp genomes of D. glomerata originating from the Mediterranean and Eurasia. The genome size ranged from 134,375 bp to 134,993 bp and exhibited synteny of gene organization and order. A total of 129–131 genes were identified, including 85–87 protein coding genes, 38 tRNA genes and 8 rRNA genes. The cp sequences were highly conserved, and key sequence variations were detected at the junctions of inverted repeats (IRs)/small single–copy (SSC) regions. Moreover, nine highly variable regions were identified among the subspecies based on a sequence divergence analysis. A total of 285 RNA editing sites were detected that were relevant to 52 genes, where rpoB exhibited the most abundant RNA editing sites. The phylogenetic analysis revealed that all Dactylis subspecies clustered into a monophyletic group and most branches provided a high support bootstrap. The main divergence time of D. glomerata was dated to the Miocene era, and this could have been due to changes in the climate. These findings will provide useful insights for further studies on phylogeny, the identification of subspecies and the development of hypotheses for the evolutionary history of the genus Dactylis and of the Gramineae family.
Collapse
|
3
|
Abstract
Chloroplasts, the sites of photosynthesis and sources of reducing power, are at the core of the success story that sets apart autotrophic plants from most other living organisms. Along with their fellow organelles (e.g., amylo-, chromo-, etio-, and leucoplasts), they form a group of intracellular biosynthetic machines collectively known as plastids. These plant cell constituents have their own genome (plastome), their own (70S) ribosomes, and complete enzymatic equipment covering the full range from DNA replication via transcription and RNA processive modification to translation. Plastid RNA synthesis (gene transcription) involves the collaborative activity of two distinct types of RNA polymerases that differ in their phylogenetic origin as well as their architecture and mode of function. The existence of multiple plastid RNA polymerases is reflected by distinctive sets of regulatory DNA elements and protein factors. This complexity of the plastid transcription apparatus thus provides ample room for regulatory effects at many levels within and beyond transcription. Research in this field offers insight into the various ways in which plastid genes, both singly and groupwise, can be regulated according to the needs of the entire cell. Furthermore, it opens up strategies that allow to alter these processes in order to optimize the expression of desired gene products.
Collapse
Affiliation(s)
- Jennifer Ortelt
- Department of Biology and Biotechnology, University of Bochum, Bochum, Germany
| | - Gerhard Link
- Department of Biology and Biotechnology, University of Bochum, Bochum, Germany.
| |
Collapse
|
4
|
Wood D, Besnard G, Beerling DJ, Osborne CP, Christin PA. Phylogenomics indicates the "living fossil" Isoetes diversified in the Cenozoic. PLoS One 2020; 15:e0227525. [PMID: 32555586 PMCID: PMC7302493 DOI: 10.1371/journal.pone.0227525] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 05/14/2020] [Indexed: 11/19/2022] Open
Abstract
The fossil record provides an invaluable insight into the temporal origins of extant lineages of organisms. However, establishing the relationships between fossils and extant lineages can be difficult in groups with low rates of morphological change over time. Molecular dating can potentially circumvent this issue by allowing distant fossils to act as calibration points, but rate variation across large evolutionary scales can bias such analyses. In this study, we apply multiple dating methods to genome-wide datasets to infer the origin of extant species of Isoetes, a group of mostly aquatic and semi-aquatic isoetalean lycopsids, which closely resemble fossil forms dating back to the Triassic. Rate variation observed in chloroplast genomes hampers accurate dating, but genome-wide nuclear markers place the origin of extant diversity within this group in the mid-Paleogene, 45-60 million years ago. Our genomic analyses coupled with a careful evaluation of the fossil record indicate that despite resembling forms from the Triassic, extant Isoetes species do not represent the remnants of an ancient and widespread group, but instead have spread around the globe in the relatively recent past.
Collapse
Affiliation(s)
- Daniel Wood
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, United Kingdom
| | - Guillaume Besnard
- CNRS, Université de Toulouse, IRD, UMR 5174, EDB (Laboratoire Évolution & Diversité Biologique), Toulouse, France
| | - David J. Beerling
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, United Kingdom
| | - Colin P. Osborne
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, United Kingdom
| | - Pascal-Antoine Christin
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, United Kingdom
| |
Collapse
|
5
|
Chloroplast Genome Sequence of Clusterbean (Cyamopsis tetragonoloba L.): Genome Structure and Comparative Analysis. Genes (Basel) 2017; 8:genes8090212. [PMID: 28925932 PMCID: PMC5615346 DOI: 10.3390/genes8090212] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/16/2017] [Accepted: 08/21/2017] [Indexed: 12/23/2022] Open
Abstract
Clusterbean (Cyamopsis tetragonoloba L.), also known as guar, belongs to the family Leguminosae, and is an annual herbaceous legume. Guar is the main source of galactomannan for gas mining industries. In the present study, the draft chloroplast genome of clusterbean was generated and compared to some of the previously reported legume chloroplast genomes. The chloroplast genome of clusterbean is 152,530 bp in length, with a quadripartite structure consisting of large single copy (LSC) and small single copy (SSC) of 83,025 bp and 17,879 bp in size, respectively, and a pair of inverted repeats (IRs) of 25,790 bp in size. The chloroplast genome contains 114 unique genes, which includes 78 protein coding genes, 30 tRNAs, 4 rRNAs genes, and 2 pseudogenes. It also harbors a 50 kb inversion, typical of the Leguminosae family. The IR region of the clusterbean chloroplast genome has undergone an expansion, and hence, the whole rps19 gene is included in the IR, as compared to other legume plastid genomes. A total of 220 simple sequence repeats (SSRs) were detected in the clusterbean plastid genome. The analysis of the clusterbean plastid genome will provide useful insights for evolutionary, molecular and genetic engineering studies.
Collapse
|
6
|
Kim SC, Kim JS, Kim JH. Insight into infrageneric circumscription through complete chloroplast genome sequences of two Trillium species. AOB PLANTS 2016; 8:plw015. [PMID: 26933149 PMCID: PMC4823371 DOI: 10.1093/aobpla/plw015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 02/13/2016] [Indexed: 05/29/2023]
Abstract
Genomic events including gene loss, duplication, pseudogenization and rearrangement in plant genomes are valuable sources for exploring and understanding the process of evolution in angiosperms. The family Melanthiaceae is distributed in temperate regions of the Northern Hemisphere and divided into five tribes (Heloniadeae, Chionographideae, Xerophylleae, Melanthieae and Parideae) based on the molecular phylogenetic analyses. At present, complete chloroplast genomes of the Melanthiaceae have been reported from three species. In the previous genomic study of Liliales, atrnI-CAU gene duplication event was reported fromParis verticillata, a member of Parideae. To clarify the significant genomic events of the tribe Parideae, we analysed the complete chloroplast genome sequences of twoTrilliumspecies representing two subgenera:TrilliumandPhyllantherum InTrillium tschonoskii(subgenusTrillium), the circular double-stranded cpDNA sequence of 156 852 bp consists of two inverted repeat (IR) regions of 26 501 bp each, a large single-copy (LSC) region of 83 981 bp and a small single-copy (SSC) region of 19 869 bp. The chloroplast genome sequence ofT. maculatum(subgenusPhyllantherum) is 157 359 bp in length, consisting of two IRs (25 535 bp), one SSC (19 949 bp) and one LSC (86 340 bp), and is longer than that ofT. tschonoskii The results showed that the cpDNAs of Parideae are highly conserved across genome structure, gene order and contents. However, the chloroplast genome ofT. maculatumcontained a 3.4-kb inverted sequence betweenndhCandrbcLin the LSC region, and it was a unique feature for subgeneraPhyllantherum In addition, we found three different types of gene duplication in the intergenic spacer betweenrpl23andycf2containingtrnI-CAU, which were in agreement with the circumscription of subgenera and sections in Parideae excludingT. govanianum These genomic features provide informative molecular markers for identifying the infrageneric taxa ofTrilliumand improve our understanding of the evolution patterns of Parideae in Melanthiaceae.
Collapse
Affiliation(s)
- Sang-Chul Kim
- Department of Life Science, Gachon University, Seongnamdaero 1342, Seongnam-si, Gyeonggi-do 461-701, Korea
| | - Jung Sung Kim
- Department of Life Science, Gachon University, Seongnamdaero 1342, Seongnam-si, Gyeonggi-do 461-701, Korea
| | - Joo-Hwan Kim
- Department of Life Science, Gachon University, Seongnamdaero 1342, Seongnam-si, Gyeonggi-do 461-701, Korea
| |
Collapse
|
7
|
Kaila T, Chaduvla PK, Saxena S, Bahadur K, Gahukar SJ, Chaudhury A, Sharma TR, Singh NK, Gaikwad K. Chloroplast Genome Sequence of Pigeonpea ( Cajanus cajan (L.) Millspaugh) and Cajanus scarabaeoides (L.) Thouars: Genome Organization and Comparison with Other Legumes. FRONTIERS IN PLANT SCIENCE 2016; 7:1847. [PMID: 28018385 PMCID: PMC5145887 DOI: 10.3389/fpls.2016.01847] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 11/23/2016] [Indexed: 05/09/2023]
Abstract
Pigeonpea (Cajanus cajan (L.) Millspaugh), a diploid (2n = 22) legume crop with a genome size of 852 Mbp, serves as an important source of human dietary protein especially in South East Asian and African regions. In this study, the draft chloroplast genomes of Cajanus cajan and Cajanus scarabaeoides (L.) Thouars were generated. Cajanus scarabaeoides is an important species of the Cajanus gene pool and has also been used for developing promising CMS system by different groups. A male sterile genotype harboring the C. scarabaeoides cytoplasm was used for sequencing the plastid genome. The cp genome of C. cajan is 152,242bp long, having a quadripartite structure with LSC of 83,455 bp and SSC of 17,871 bp separated by IRs of 25,398 bp. Similarly, the cp genome of C. scarabaeoides is 152,201bp long, having a quadripartite structure in which IRs of 25,402 bp length separates 83,423 bp of LSC and 17,854 bp of SSC. The pigeonpea cp genome contains 116 unique genes, including 30 tRNA, 4 rRNA, 78 predicted protein coding genes and 5 pseudogenes. A 50 kb inversion was observed in the LSC region of pigeonpea cp genome, consistent with other legumes. Comparison of cp genome with other legumes revealed the contraction of IR boundaries due to the absence of rps19 gene in the IR region. Chloroplast SSRs were mined and a total of 280 and 292 cpSSRs were identified in C. scarabaeoides and C. cajan respectively. RNA editing was observed at 37 sites in both C. scarabaeoides and C. cajan, with maximum occurrence in the ndh genes. The pigeonpea cp genome sequence would be beneficial in providing informative molecular markers which can be utilized for genetic diversity analysis and aid in understanding the plant systematics studies among major grain legumes.
Collapse
Affiliation(s)
- Tanvi Kaila
- ICAR-National Research Centre on Plant BiotechnologyNew Delhi, India
- Department of Bio & Nanotechnology, Guru Jambheshwar University of Science & TechnologyHisar, India
| | - Pavan K. Chaduvla
- ICAR-National Research Centre on Plant BiotechnologyNew Delhi, India
| | - Swati Saxena
- ICAR-National Research Centre on Plant BiotechnologyNew Delhi, India
| | | | - Santosh J. Gahukar
- Biotechnology Department, Biotechnology Centre, Dr. Panjabrao Deshmukh Krishi VidyapeethAkola, India
| | - Ashok Chaudhury
- Department of Bio & Nanotechnology, Guru Jambheshwar University of Science & TechnologyHisar, India
| | - T. R. Sharma
- ICAR-National Research Centre on Plant BiotechnologyNew Delhi, India
| | - N. K. Singh
- ICAR-National Research Centre on Plant BiotechnologyNew Delhi, India
| | - Kishor Gaikwad
- ICAR-National Research Centre on Plant BiotechnologyNew Delhi, India
- *Correspondence: Kishor Gaikwad
| |
Collapse
|
8
|
The First Complete Chloroplast Genome Sequences in Actinidiaceae: Genome Structure and Comparative Analysis. PLoS One 2015; 10:e0129347. [PMID: 26046631 PMCID: PMC4457681 DOI: 10.1371/journal.pone.0129347] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 05/07/2015] [Indexed: 11/27/2022] Open
Abstract
Actinidia chinensis is an important economic plant belonging to the basal lineage of the asterids. Availability of a complete Actinidia chloroplast genome sequence is crucial to understanding phylogenetic relationships among major lineages of angiosperms and facilitates kiwifruit genetic improvement. We report here the complete nucleotide sequences of the chloroplast genomes for Actinidia chinensis and A. chinensis var deliciosa obtained through de novo assembly of Illumina paired-end reads produced by total DNA sequencing. The total genome size ranges from 155,446 to 157,557 bp, with an inverted repeat (IR) of 24,013 to 24,391 bp, a large single copy region (LSC) of 87,984 to 88,337 bp and a small single copy region (SSC) of 20,332 to 20,336 bp. The genome encodes 113 different genes, including 79 unique protein-coding genes, 30 tRNA genes and 4 ribosomal RNA genes, with 16 duplicated in the inverted repeats, and a tRNA gene (trnfM-CAU) duplicated once in the LSC region. Comparisons of IR boundaries among four asterid species showed that IR/LSC borders were extended into the 5’ portion of the psbA gene and IR contraction occurred in Actinidia. The clap gene has been lost from the chloroplast genome in Actinidia, and may have been transferred to the nucleus during chloroplast evolution. Twenty-seven polymorphic simple sequence repeat (SSR) loci were identified in the Actinidia chloroplast genome. Maximum parsimony analyses of a 72-gene, 16 taxa angiosperm dataset strongly support the placement of Actinidiaceae in Ericales within the basal asterids.
Collapse
|
9
|
Abstract
Chloroplasts, the sites of photosynthesis and sources of reducing power, are at the core of the success story that sets apart autotrophic plants from most other living organisms. Along with their fellow organelles (e.g., amylo-, chromo-, etio-, and leucoplasts), they form a group of intracellular biosynthetic machines collectively known as plastids. These plant cell constituents have their own genome (plastome), their own (70S) ribosomes, and complete enzymatic equipment covering the full range from DNA replication via transcription and RNA processive modification to translation. Plastid RNA synthesis (gene transcription) involves the collaborative activity of two distinct types of RNA polymerases that differ in their phylogenetic origin as well as their architecture and mode of function. The existence of multiple plastid RNA polymerases is reflected by distinctive sets of regulatory DNA elements and protein factors. This complexity of the plastid transcription apparatus thus provides ample room for regulatory effects at many levels within and beyond transcription. Research in this field offers insight into the various ways in which plastid genes, both singly and groupwise, can be regulated according to the needs of the entire cell. Furthermore, it opens up strategies that allow to alter these processes in order to optimize the expression of desired gene products.
Collapse
Affiliation(s)
- Jennifer Ortelt
- Plant Cell Physiology and Molecular Biology, University of Bochum, Bochum, Germany
| | | |
Collapse
|
10
|
Drábková L, Kirschner J, Vlcek C, Paces V. TrnL- trnF intergenic spacer and trnL intron define major clades within Luzula and Juncus (Juncaceae): importance of structural mutations. J Mol Evol 2005; 59:1-10. [PMID: 15383902 DOI: 10.1007/s00239-004-2598-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2003] [Accepted: 12/29/2003] [Indexed: 11/25/2022]
Abstract
Seven hundred fifty-two to one thousand ninety-seven base pairs of the trnL intron and trnL- trnF intergenic spacer of the chloroplast DNA of 55 Juncaceae taxa (Juncus, Luzula, Rostkovia, and Oxychloë) was sequenced. Seventeen structural mutations (13 indels marked A to M, 3 parts of the trnF pseudogene, and insertion "o" within a pseudogene) within the chloroplast trnL- trnF region were examined as possible indicators for phylogenetic relationships in Juncaceae. Juncus trifidus (section Steirochloa) was clearly separated from the other taxa by two large (>80 bp) indels. The "Southern Hemisphere clade" was strongly supported by a unique insertion (334 bp) in the trnL intron. The monophyly of Luzula was supported by three small (<10 bp) indels in the trnL-F spacer. They were found in all 22 examined members that represent the taxonomic and geographical diversity of the genus Luzula. A tandemly duplicated tRNA pseudogene was found in the Juncus subgenus Juncus species and is supported by four small unique indels too. The acceptor stem and D-domain-encoding regions are separated by a unique 8-bp insertion. The T-domain and acceptor stem-encoding regions were not found in the pseudogene repeats. Only the Juncus sections Ozophyllum and Iridifolii contain the 5' acceptor stem, D-domain, and anticodon domain of the tRNAF encoding DNA. The structural mutations in the trnL intron and the trnL- trnF intergenic spacer are useful for phylogenetic reconstruction in the Juncaceae.
Collapse
Affiliation(s)
- Lenka Drábková
- Institute of Botany, Department of Taxonomy, Academy of Sciences, Zámek 1, 252 43, Průhonice, Czech Republic.
| | | | | | | |
Collapse
|
11
|
Baum M, Beier H. Wheat cytoplasmic arginine tRNA isoacceptor with a U*CG anticodon is an efficient UGA suppressor in vitro. Nucleic Acids Res 1998; 26:1390-5. [PMID: 9490782 PMCID: PMC147420 DOI: 10.1093/nar/26.6.1390] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Many RNA viruses express part of their genomic information by read-through over internal termination codons. We have recently characterized tobacco cytoplasmic (cyt) and chloroplast (chl) tRNACmCATrp and tRNAGCACys as natural suppressor tRNAs that are able to read the leaky UGA codon in RNA-1 of tobacco rattle virus, albeit with different efficiencies. Here we have identified a third natural UGA suppressor in plants. We have purified and sequenced four cyt tRNAArg isoacceptors with ICG, CCG, U*CG and CCU anticodons from wheat germ. With the exception of tRNAICGArg, these are the first sequences of plant tRNAsArg. In order to study the potential suppressor activity of wheat tRNAsArg we have used in vitro synthesized mRNA transcripts in which different viral read-through regions had been placed. In vitro translation was carried out in a homologous wheat germ extract. We found that tRNAU*CGArg is an efficient UGA suppressor in vitro, whereas the other three tRNAArg isoacceptors exhibit no or very low suppressor activity. Interaction of tRNAU*CGArg with the UGA codon requires a G:U base pair at the third anticodon position. This is the first time that an arginine-accepting tRNA has been characterized as a natural UGA suppressor. A remarkable feature of cyt tRNAU*CGArg is its ability to misread the UGA at the end of the coat protein cistron in RNA-1 of pea enation mosaic virus, which is not accomplished by cyt tRNACmCATrp or cyt tRNAGCACys, due to an unfavourable codon context.
Collapse
MESH Headings
- Anticodon/genetics
- Base Sequence
- Codon, Terminator/genetics
- Cytoplasm/metabolism
- DNA, Plant/genetics
- Molecular Sequence Data
- Mosaic Viruses/genetics
- Mosaic Viruses/metabolism
- Nucleic Acid Conformation
- Pisum sativum/virology
- Plant Viruses/genetics
- Plant Viruses/metabolism
- Plants, Toxic
- Protein Biosynthesis
- RNA Viruses/genetics
- RNA Viruses/metabolism
- RNA, Plant/chemistry
- RNA, Plant/genetics
- RNA, Transfer, Arg/chemistry
- RNA, Transfer, Arg/genetics
- RNA, Viral/genetics
- Suppression, Genetic
- Nicotiana/virology
- Triticum/genetics
- Triticum/metabolism
- Viral Proteins/biosynthesis
- Viral Proteins/genetics
Collapse
Affiliation(s)
- M Baum
- Institut für Biochemie, Bayerische Julius-Maximilians-Universität, Biozentrum, Am Hubland, D-97074 Würzburg, Germany.
| | | |
Collapse
|
12
|
Wakasugi T, Nagai T, Kapoor M, Sugita M, Ito M, Ito S, Tsudzuki J, Nakashima K, Tsudzuki T, Suzuki Y, Hamada A, Ohta T, Inamura A, Yoshinaga K, Sugiura M. Complete nucleotide sequence of the chloroplast genome from the green alga Chlorella vulgaris: the existence of genes possibly involved in chloroplast division. Proc Natl Acad Sci U S A 1997; 94:5967-72. [PMID: 9159184 PMCID: PMC20890 DOI: 10.1073/pnas.94.11.5967] [Citation(s) in RCA: 170] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The complete nucleotide sequence of the chloroplast genome (150,613 bp) from the unicellular green alga Chlorella vulgaris C-27 has been determined. The genome contains no large inverted repeat and has one copy of rRNA gene cluster consisting of 16S, 23S, and 5S rRNA genes. It contains 31 tRNA genes, of which the tRNALeu(GAG) gene has not been found in land plant chloroplast DNAs analyzed so far. Sixty-nine protein genes and eight ORFs conserved with those found in land plant chloroplasts have also been found. The most striking is the existence of two adjacent genes homologous to bacterial genes involved in cell division, minD and minE, which are arranged in the same order in Escherichia coli. This finding suggests that the mechanism of chloroplast division is similar to bacterial division. Other than minD and minE homologues, genes encoding ribosomal proteins L5, L12, L19, and S9 (rpl5, rpl12, rpl19, and rps9); a chlorophyll biosynthesis Mg chelating subunit (chlI); and elongation factor EF-Tu (tufA), which have not been reported from land plant chloroplast DNAs, are present in this genome. However, many of the new chloroplast genes recently found in red and brown algae have not been found in C. vulgaris. Furthermore, this algal species possesses two long ORFs related to ycf1 and ycf2 that are exclusively found in land plants. These observations suggest that C. vulgaris is closer to land plants than to red and brown algae.
Collapse
Affiliation(s)
- T Wakasugi
- Center for Gene Research, Nagoya University, Nagoya 464-01, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Wakasugi T, Tsudzuki J, Ito S, Nakashima K, Tsudzuki T, Sugiura M. Loss of all ndh genes as determined by sequencing the entire chloroplast genome of the black pine Pinus thunbergii. Proc Natl Acad Sci U S A 1994; 91:9794-8. [PMID: 7937893 PMCID: PMC44903 DOI: 10.1073/pnas.91.21.9794] [Citation(s) in RCA: 284] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The complete nucleotide sequence (119,707 bp) of the black pine (Pinus thunbergii) chloroplast genome has been determined. It contains 4 rRNA genes and 32 tRNA genes. To our knowledge, the tRNAPro (GGG) gene has not been found in any other chloroplast genome analyzed. Sixty-one genes encoding proteins and 11 conserved open reading frames are also found. Extensive rearrangements are apparent in the chloroplast genome relative to those of other land plants. The most striking feature is the loss of all 11 functional genes (ndh genes) for subunits of a putative NADH dehydrogenase that are found in the chloroplast genomes of angiosperms and a bryophyte. Four ndh genes were completely lost and the other 7 genes remain as obvious pseudogenes. This unexpected finding raises the possibility that all ndh genes have been transferred to the nucleus or that an NADH dehydrogenase is not essential in black pine chloroplasts.
Collapse
Affiliation(s)
- T Wakasugi
- Center for Gene Research, Nagoya University, Japan
| | | | | | | | | | | |
Collapse
|