1
|
Mukhopadhyay J, Hausner G. Interconnected roles of fungal nuclear- and intron-encoded maturases: at the crossroads of mitochondrial intron splicing. Biochem Cell Biol 2024; 102:351-372. [PMID: 38833723 DOI: 10.1139/bcb-2024-0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024] Open
Abstract
Group I and II introns are large catalytic RNAs (ribozymes) that are frequently encountered in fungal mitochondrial genomes. The discovery of respiratory mutants linked to intron splicing defects demonstrated that for the efficient removal of organellar introns there appears to be a requirement of protein splicing factors. These splicing factors can be intron-encoded proteins with maturase activities that usually promote the splicing of the introns that encode them (cis-acting) and/or nuclear-encoded factors that can promote the splicing of a range of different introns (trans-acting). Compared to plants organellar introns, fungal mitochondrial intron splicing is still poorly explored, especially in terms of the synergy of nuclear factors with intron-encoded maturases that has direct impact on splicing through their association with intron RNA. In addition, nuclear-encoded accessory factors might drive the splicing impetus through translational activation, mitoribosome assembly, and phosphorylation-mediated RNA turnover. This review explores protein-assisted splicing of introns by nuclear and mitochondrial-encoded maturases as a means of mitonuclear interplay that could respond to environmental and developmental factors promoting phenotypic adaptation and potentially speciation. It also highlights key evolutionary events that have led to changes in structure and ATP-dependence to accommodate the dual functionality of nuclear and organellar splicing factors.
Collapse
Affiliation(s)
| | - Georg Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
2
|
Łabędzka-Dmoch K, Rażew M, Gapińska M, Piątkowski J, Kolondra A, Salmonowicz H, Wenda JM, Nowotny M, Golik P. The Pet127 protein is a mitochondrial 5'-to-3' exoribonuclease from the PD-(D/E)XK superfamily involved in RNA maturation and intron degradation in yeasts. RNA (NEW YORK, N.Y.) 2022; 28:711-728. [PMID: 35197365 PMCID: PMC9014873 DOI: 10.1261/rna.079083.121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 01/31/2022] [Indexed: 06/01/2023]
Abstract
Pet127 is a mitochondrial protein found in multiple eukaryotic lineages, but absent from several taxa, including plants and animals. Distant homology suggests that it belongs to the divergent PD-(D/E)XK superfamily which includes various nucleases and related proteins. Earlier yeast genetics experiments suggest that it plays a nonessential role in RNA degradation and 5' end processing. Our phylogenetic analysis suggests that it is a primordial eukaryotic invention that was retained in diverse groups, and independently lost several times in the evolution of other organisms. We demonstrate for the first time that the fungal Pet127 protein in vitro is a processive 5'-to-3' exoribonuclease capable of digesting various substrates in a sequence nonspecific manner. Mutations in conserved residues essential in the PD-(D/E)XK superfamily active site abolish the activity of Pet127. Deletion of the PET127 gene in the pathogenic yeast Candida albicans results in a moderate increase in the steady-state levels of several transcripts and in accumulation of unspliced precursors and intronic sequences of three introns. Mutations in the active site residues result in a phenotype identical to that of the deletant, confirming that the exoribonuclease activity is related to the physiological role of the Pet127 protein. Pet127 activity is, however, not essential for maintaining the mitochondrial respiratory activity in C. albicans.
Collapse
Affiliation(s)
- Karolina Łabędzka-Dmoch
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw 02-106, Poland
| | - Michal Rażew
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, Warsaw 02-109, Poland
| | - Marta Gapińska
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, Warsaw 02-109, Poland
| | - Jakub Piątkowski
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw 02-106, Poland
| | - Adam Kolondra
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw 02-106, Poland
| | - Hanna Salmonowicz
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw 02-106, Poland
- Laboratory of Metabolic Quality Control, IMOL, Polish Academy of Sciences, Warsaw 00-783, Poland
| | - Joanna M Wenda
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw 02-106, Poland
| | - Marcin Nowotny
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, Warsaw 02-109, Poland
| | - Paweł Golik
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw 02-106, Poland
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland
| |
Collapse
|
3
|
Vu TV, Das S, Nguyen CC, Kim J, Kim JY. Single-strand annealing: Molecular mechanisms and potential applications in CRISPR-Cas-based precision genome editing. Biotechnol J 2021; 17:e2100413. [PMID: 34846104 DOI: 10.1002/biot.202100413] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/22/2021] [Accepted: 11/29/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Spontaneous double-stranded DNA breaks (DSBs) frequently occur within the genome of all living organisms and must be well repaired for survival. Recently, more important roles of the DSB repair pathways that were previously thought to be minor pathways, such as single-strand annealing (SSA), have been shown. Nevertheless, the biochemical mechanisms and applications of the SSA pathway in genome editing have not been updated. PURPOSE AND SCOPE Understanding the molecular mechanism of SSA is important to design potential applications in gene editing. This review provides insights into the recent progress of SSA studies and establishes a model for their potential applications in precision genome editing. SUMMARY AND CONCLUSION The SSA mechanism involved in DNA DSB repair appears to be activated by a complex signaling cascade starting with broken end sensing and 5'-3' resection to reveal homologous repeats on the 3' ssDNA overhangs that flank the DSB. Annealing the repeats would help to amend the discontinuous ends and restore the intact genome, resulting in the missing of one repeat and the intervening sequence between the repeats. We proposed a model for CRISPR-Cas-based precision insertion or replacement of DNA fragments to take advantage of the characteristics. The proposed model can add a tool to extend the choice for precision gene editing. Nevertheless, the model needs to be experimentally validated and optimized with SSA-favorable conditions for practical applications.
Collapse
Affiliation(s)
- Tien Van Vu
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea.,National Key Laboratory for Plant Cell Biotechnology, Agricultural Genetics Institute, Bac Tu Liem, Hanoi, Vietnam
| | - Swati Das
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Cam Chau Nguyen
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Jihae Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea.,Division of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
4
|
Mukhopadhyay J, Hausner G. Organellar Introns in Fungi, Algae, and Plants. Cells 2021; 10:cells10082001. [PMID: 34440770 PMCID: PMC8393795 DOI: 10.3390/cells10082001] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/31/2021] [Accepted: 08/05/2021] [Indexed: 12/16/2022] Open
Abstract
Introns are ubiquitous in eukaryotic genomes and have long been considered as ‘junk RNA’ but the huge energy expenditure in their transcription, removal, and degradation indicate that they may have functional significance and can offer evolutionary advantages. In fungi, plants and algae introns make a significant contribution to the size of the organellar genomes. Organellar introns are classified as catalytic self-splicing introns that can be categorized as either Group I or Group II introns. There are some biases, with Group I introns being more frequently encountered in fungal mitochondrial genomes, whereas among plants Group II introns dominate within the mitochondrial and chloroplast genomes. Organellar introns can encode a variety of proteins, such as maturases, homing endonucleases, reverse transcriptases, and, in some cases, ribosomal proteins, along with other novel open reading frames. Although organellar introns are viewed to be ribozymes, they do interact with various intron- or nuclear genome-encoded protein factors that assist in the intron RNA to fold into competent splicing structures, or facilitate the turn-over of intron RNAs to prevent reverse splicing. Organellar introns are also known to be involved in non-canonical splicing, such as backsplicing and trans-splicing which can result in novel splicing products or, in some instances, compensate for the fragmentation of genes by recombination events. In organellar genomes, Group I and II introns may exist in nested intronic arrangements, such as introns within introns, referred to as twintrons, where splicing of the external intron may be dependent on splicing of the internal intron. These nested or complex introns, with two or three-component intron modules, are being explored as platforms for alternative splicing and their possible function as molecular switches for modulating gene expression which could be potentially applied towards heterologous gene expression. This review explores recent findings on organellar Group I and II introns, focusing on splicing and mobility mechanisms aided by associated intron/nuclear encoded proteins and their potential roles in organellar gene expression and cross talk between nuclear and organellar genomes. Potential application for these types of elements in biotechnology are also discussed.
Collapse
MESH Headings
- Evolution, Molecular
- Gene Expression Regulation, Fungal
- Gene Expression Regulation, Plant
- Genome, Fungal
- Genome, Plant
- Introns
- Organelles/genetics
- Organelles/metabolism
- RNA Splicing
- RNA Stability
- RNA, Algal/genetics
- RNA, Algal/metabolism
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Plant/genetics
- RNA, Plant/metabolism
- RNA, Untranslated/genetics
- RNA, Untranslated/metabolism
- Transcription, Genetic
Collapse
|
5
|
Łabędzka-Dmoch K, Kolondra A, Karpińska MA, Dębek S, Grochowska J, Grochowski M, Piątkowski J, Hoang Diu Bui T, Golik P. Pervasive transcription of the mitochondrial genome in Candida albicans is revealed in mutants lacking the mtEXO RNase complex. RNA Biol 2021; 18:303-317. [PMID: 34229573 PMCID: PMC8677008 DOI: 10.1080/15476286.2021.1943929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The mitochondrial genome of the pathogenic yeast Candida albicans displays a typical organization of several (eight) primary transcription units separated by noncoding regions. Presence of genes encoding Complex I subunits and the stability of its mtDNA sequence make it an attractive model to study organellar genome expression using transcriptomic approaches. The main activity responsible for RNA degradation in mitochondria is a two-component complex (mtEXO) consisting of a 3ʹ-5ʹ exoribonuclease, in yeasts encoded by the DSS1 gene, and a conserved Suv3p helicase. In C. albicans, deletion of either DSS1 or SUV3 gene results in multiple defects in mitochondrial genome expression leading to the loss of respiratory competence. Transcriptomic analysis reveals pervasive transcription in mutants lacking the mtEXO activity, with evidence of the entire genome being transcribed, whereas in wild-type strains no RNAs corresponding to a significant fraction of the noncoding genome can be detected. Antisense (‘mirror’) transcripts, absent from normal mitochondria are also prominent in the mutants. The expression of multiple mature transcripts, particularly those translated from bicistronic mRNAs, as well as those that contain introns is affected in the mutants, resulting in a decreased level of proteins and reduced respiratory complex activity. The phenotype is most severe in the case of Complex IV, where a decrease of mature COX1 mRNA level to ~5% results in a complete loss of activity. These results show that RNA degradation by mtEXO is essential for shaping the mitochondrial transcriptome and is required to maintain the functional demarcation between transcription units and non-coding genome segments.
Collapse
Affiliation(s)
- Karolina Łabędzka-Dmoch
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Adam Kolondra
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Magdalena A Karpińska
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Sonia Dębek
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Joanna Grochowska
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland.,Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Maciej Grochowski
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Jakub Piątkowski
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Thi Hoang Diu Bui
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Paweł Golik
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland.,Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
6
|
Shokolenko IN, Alexeyev MF. Mitochondrial transcription in mammalian cells. Front Biosci (Landmark Ed) 2017; 22:835-853. [PMID: 27814650 DOI: 10.2741/4520] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
As a consequence of recent discoveries of intimate involvement of mitochondria with key cellular processes, there has been a resurgence of interest in all aspects of mitochondrial biology, including the intricate mechanisms of mitochondrial DNA maintenance and expression. Despite four decades of research, there remains a lot to be learned about the processes that enable transcription of genetic information from mitochondrial DNA to RNA, as well as their regulation. These processes are vitally important, as evidenced by the lethality of inactivating the central components of mitochondrial transcription machinery. Here, we review the current understanding of mitochondrial transcription and its regulation in mammalian cells. We also discuss key theories in the field and highlight controversial subjects and future directions as we see them.
Collapse
Affiliation(s)
- Inna N Shokolenko
- University of South Alabama, Patt Capps Covey College of Allied Health Professions, Biomedical Sciences Department, 5721 USA Drive N, HAHN 4021, Mobile, AL 36688-0002, USA
| | - Mikhail F Alexeyev
- Department of Physiology and Cell Biology, University of South Alabama, 5851 USA Dr. North, MSB3074, Mobile, AL 36688, USA,
| |
Collapse
|
7
|
Szczesny RJ, Wojcik MA, Borowski LS, Szewczyk MJ, Skrok MM, Golik P, Stepien PP. Yeast and human mitochondrial helicases. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:842-53. [PMID: 23454114 DOI: 10.1016/j.bbagrm.2013.02.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 02/13/2013] [Accepted: 02/14/2013] [Indexed: 11/19/2022]
Abstract
Mitochondria are semiautonomous organelles which contain their own genome. Both maintenance and expression of mitochondrial DNA require activity of RNA and DNA helicases. In Saccharomyces cerevisiae the nuclear genome encodes four DExH/D superfamily members (MSS116, SUV3, MRH4, IRC3) that act as helicases and/or RNA chaperones. Their activity is necessary for mitochondrial RNA splicing, degradation, translation and genome maintenance. In humans the ortholog of SUV3 (hSUV3, SUPV3L1) so far is the best described mitochondrial RNA helicase. The enzyme, together with the matrix-localized pool of PNPase (PNPT1), forms an RNA-degrading complex called the mitochondrial degradosome, which localizes to distinct structures (D-foci). Global regulation of mitochondrially encoded genes can be achieved by changing mitochondrial DNA copy number. This way the proteins involved in its replication, like the Twinkle helicase (c10orf2), can indirectly regulate gene expression. Here, we describe yeast and human mitochondrial helicases that are directly involved in mitochondrial RNA metabolism, and present other helicases that participate in mitochondrial DNA replication and maintenance. This article is part of a Special Issue entitled: The Biology of RNA helicases - Modulation for life.
Collapse
Affiliation(s)
- Roman J Szczesny
- Institute of Genetics and Biotechnology, University of Warsaw, Warsaw, Poland
| | | | | | | | | | | | | |
Collapse
|
8
|
Borowski LS, Dziembowski A, Hejnowicz MS, Stepien PP, Szczesny RJ. Human mitochondrial RNA decay mediated by PNPase-hSuv3 complex takes place in distinct foci. Nucleic Acids Res 2012; 41:1223-40. [PMID: 23221631 PMCID: PMC3553951 DOI: 10.1093/nar/gks1130] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
RNA decay is usually mediated by protein complexes and can occur in specific foci such as P-bodies in the cytoplasm of eukaryotes. In human mitochondria nothing is known about the spatial organization of the RNA decay machinery, and the ribonuclease responsible for RNA degradation has not been identified. We demonstrate that silencing of human polynucleotide phosphorylase (PNPase) causes accumulation of RNA decay intermediates and increases the half-life of mitochondrial transcripts. A combination of fluorescence lifetime imaging microscopy with Förster resonance energy transfer and bimolecular fluorescence complementation (BiFC) experiments prove that PNPase and hSuv3 helicase (Suv3, hSuv3p and SUPV3L1) form the RNA-degrading complex in vivo in human mitochondria. This complex, referred to as the degradosome, is formed only in specific foci (named D-foci), which co-localize with mitochondrial RNA and nucleoids. Notably, interaction between PNPase and hSuv3 is essential for efficient mitochondrial RNA degradation. This provides indirect evidence that degradosome-dependent mitochondrial RNA decay takes place in foci.
Collapse
Affiliation(s)
- Lukasz S Borowski
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland
| | | | | | | | | |
Collapse
|
9
|
Abstract
Mammalian mitochondria contain their own genome that encodes mRNAs for thirteen essential subunits of the complexes performing oxidative phosphorylation as well as the RNA components (two rRNAs and 22 tRNAs) needed for their translation in mitochondria. All RNA species are produced from single polycistronic precursor RNAs, yet the relative concentrations of various RNAs differ significantly. This underscores the essential role of post-transcriptional mechanisms that control the maturation, stability and translation of mitochondrial RNAs. The present review provides a detailed summary on the role of RNA maturation in the regulation of mitochondrial gene expression, focusing mainly on messenger RNA polyadenylation and stability control. Furthermore, the role of mitochondrial ribosomal RNA stability, processing and modifications in the biogenesis of the mitochondrial ribosome is discussed.
Collapse
|
10
|
Szczesny RJ, Borowski LS, Malecki M, Wojcik MA, Stepien PP, Golik P. RNA degradation in yeast and human mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1819:1027-34. [PMID: 22178375 DOI: 10.1016/j.bbagrm.2011.11.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 11/29/2011] [Accepted: 11/30/2011] [Indexed: 01/23/2023]
Abstract
Expression of mitochondrially encoded genes must be finely tuned according to the cell's requirements. Since yeast and human mitochondria have limited possibilities to regulate gene expression by altering the transcription initiation rate, posttranscriptional processes, including RNA degradation, are of great importance. In both organisms mitochondrial RNA degradation seems to be mostly depending on the RNA helicase Suv3. Yeast Suv3 functions in cooperation with Dss1 ribonuclease by forming a two-subunit complex called the mitochondrial degradosome. The human ortholog of Suv3 (hSuv3, hSuv3p, SUPV3L1) is also indispensable for mitochondrial RNA decay but its ribonucleolytic partner has so far escaped identification. In this review we summarize the current knowledge about RNA degradation in human and yeast mitochondria. This article is part of a Special Issue entitled: Mitochondrial Gene Expression.
Collapse
Affiliation(s)
- Roman J Szczesny
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| | | | | | | | | | | |
Collapse
|
11
|
Daoud R, Forget L, Lang BF. Yeast mitochondrial RNase P, RNase Z and the RNA degradosome are part of a stable supercomplex. Nucleic Acids Res 2011; 40:1728-36. [PMID: 22034500 PMCID: PMC3287206 DOI: 10.1093/nar/gkr941] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Initial steps in the synthesis of functional tRNAs require 5'- and 3'-processing of precursor tRNAs (pre-tRNAs), which in yeast mitochondria are achieved by two endonucleases, RNase P and RNase Z. In this study, using a combination of detergent-free Blue Native Gel Electrophoresis, proteomics and in vitro testing of pre-tRNA maturation, we reveal the physical association of these plus other mitochondrial activities in a large, stable complex of 136 proteins. It contains a total of seven proteins involved in RNA processing including RNase P and RNase Z, five out of six subunits of the mitochondrial RNA degradosome, components of the fatty acid synthesis pathway, translation, metabolism and protein folding. At the RNA level, there are the small and large rRNA subunits and RNase P RNA. Surprisingly, this complex is absent in an oar1Δ deletion mutant of the type II fatty acid synthesis pathway, supporting a recently published functional link between pre-tRNA processing and the FAS II pathway--apparently by integration into a large complex as we demonstrate here. Finally, the question of mt-RNase P localization within mitochondria was investigated, by GFP-tracing of a known protein subunit (Rpm2p). We find that about equal fractions of RNase P are soluble versus membrane-attached.
Collapse
Affiliation(s)
- Rachid Daoud
- Robert-Cedergren Centre for Bioinformatics and Genomics, Department of Biochemistry, Université de Montréal, 2900 Edouard-Montpetit, Montreal, Quebec H3T 1J4, Canada
| | | | | |
Collapse
|
12
|
Guo XE, Chen CF, Wang DDH, Modrek AS, Phan VH, Lee WH, Chen PL. Uncoupling the roles of the SUV3 helicase in maintenance of mitochondrial genome stability and RNA degradation. J Biol Chem 2011; 286:38783-38794. [PMID: 21911497 DOI: 10.1074/jbc.m111.257956] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Yeast SUV3 is a nuclear encoded mitochondrial RNA helicase that complexes with an exoribonuclease, DSS1, to function as an RNA degradosome. Inactivation of SUV3 leads to mitochondrial dysfunctions, such as respiratory deficiency; accumulation of aberrant RNA species, including excised group I introns; and loss of mitochondrial DNA (mtDNA). Although intron toxicity has long been speculated to be the major reason for the observed phenotypes, direct evidence to support or refute this theory is lacking. Moreover, it remains unknown whether SUV3 plays a direct role in mtDNA maintenance independently of its degradosome activity. In this paper, we address these questions by employing an inducible knockdown system in Saccharomyces cerevisiae with either normal or intronless mtDNA background. Expressing mutants defective in ATPase (K245A) or RNA binding activities (V272L or ΔCC, which carries an 8-amino acid deletion at the C-terminal conserved region) resulted in not only respiratory deficiencies but also loss of mtDNA under normal mtDNA background. Surprisingly, V272L, but not other mutants, can rescue the said deficiencies under intronless background. These results provide genetic evidence supporting the notion that the functional requirements of SUV3 for degradosome activity and maintenance of mtDNA stability are separable. Furthermore, V272L mutants and wild-type SUV3 associated with an active mtDNA replication origin and facilitated mtDNA replication, whereas K245A and ΔCC failed to support mtDNA replication. These results indicate a direct role of SUV3 in maintaining mitochondrial genome stability that is independent of intron turnover but requires the intact ATPase activity and the CC conserved region.
Collapse
Affiliation(s)
- Xuning Emily Guo
- Department of Biological Chemistry, University of California, Irvine, California 92697
| | - Chi-Fen Chen
- Department of Biological Chemistry, University of California, Irvine, California 92697
| | - Dennis Ding-Hwa Wang
- Department of Biological Chemistry, University of California, Irvine, California 92697
| | | | - Vy Hoai Phan
- Department of Biological Chemistry, University of California, Irvine, California 92697
| | - Wen-Hwa Lee
- Department of Biological Chemistry, University of California, Irvine, California 92697.
| | - Phang-Lang Chen
- Department of Biological Chemistry, University of California, Irvine, California 92697.
| |
Collapse
|
13
|
Borowski LS, Szczesny RJ, Brzezniak LK, Stepien PP. RNA turnover in human mitochondria: more questions than answers? BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1066-70. [PMID: 20117077 DOI: 10.1016/j.bbabio.2010.01.028] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Revised: 01/19/2010] [Accepted: 01/25/2010] [Indexed: 01/16/2023]
Abstract
Protein complexes responsible for RNA degradation play important role in three key aspects of RNA metabolism: they control stability of physiologically functional transcripts, remove the unnecessary RNA processing intermediates and destroy aberrantly formed RNAs. In mitochondria the post-transcriptional events seem to play a major role in regulation of gene expression, therefore RNA turnover is of particular importance. Despite many years of research, the details of this process are still a challenge. This review summarizes emerging landscape of interplay between the Suv3p helicase (SUPV3L1, Suv3), poly(A) polymerase and polynucleotide phosphorylase in controlling RNA degradation in human mitochondria.
Collapse
Affiliation(s)
- Lukasz S Borowski
- Institute of Genetics and Biotechnology, Faculty of Biology, Warsaw University, Pawinskiego 5a, 02-106 Warsaw, Poland
| | | | | | | |
Collapse
|
14
|
Turk EM, Caprara MG. Splicing of yeast aI5beta group I intron requires SUV3 to recycle MRS1 via mitochondrial degradosome-promoted decay of excised intron ribonucleoprotein (RNP). J Biol Chem 2010; 285:8585-94. [PMID: 20064926 DOI: 10.1074/jbc.m109.090761] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Yeast Suv3p is a member of the DEXH/D box family of RNA helicases and is a critical component of the mitochondrial degradosome, which also includes a 3' --> 5' exonuclease, Dss1p. Defects in the degradosome result in accumulation of aberrant transcripts, unprocessed transcripts, and excised group I introns. In addition, defects in SUV3 result in decreased splicing of the aI5beta and bI3 group I introns. Whereas a role for Suv3p in RNA degradation is well established, the function of Suv3p in splicing of group I introns has remained elusive. It has been particularly challenging to determine if Suv3p effects group I intron splicing through RNA degradation as part of the degradosome, or has a direct role in splicing as a chaperone, because nearly all perturbations of SUV3 or DSS1 result in loss of the mitochondrial genome. Here we utilized the suv3-1 allele, which is defective in RNA metabolism and yet maintains a stable mitochondrial genome, to investigate the role of Suv3p in splicing of the aI5beta group I intron. We provide genetic evidence that Mrs1p is a limiting cofactor for aI5beta splicing, and this evidence also suggests that Suv3p activity is required to recycle the excised aI5beta ribonucleoprotein. We also show that Suv3p acts indirectly as a component of the degradosome to promote aI5beta splicing. We present a model whereby defects in Suv3p result in accumulation of stable, excised group I intron ribonucleoproteins, which result in sequestration of Mrs1p, and a concomitant reduction in splicing of aI5beta.
Collapse
Affiliation(s)
- Edward M Turk
- Center for RNA Molecular Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| | | |
Collapse
|
15
|
Lipinski KA, Kaniak-Golik A, Golik P. Maintenance and expression of the S. cerevisiae mitochondrial genome--from genetics to evolution and systems biology. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1086-98. [PMID: 20056105 DOI: 10.1016/j.bbabio.2009.12.019] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2009] [Revised: 12/18/2009] [Accepted: 12/24/2009] [Indexed: 10/20/2022]
Abstract
As a legacy of their endosymbiotic eubacterial origin, mitochondria possess a residual genome, encoding only a few proteins and dependent on a variety of factors encoded by the nuclear genome for its maintenance and expression. As a facultative anaerobe with well understood genetics and molecular biology, Saccharomyces cerevisiae is the model system of choice for studying nucleo-mitochondrial genetic interactions. Maintenance of the mitochondrial genome is controlled by a set of nuclear-coded factors forming intricately interconnected circuits responsible for replication, recombination, repair and transmission to buds. Expression of the yeast mitochondrial genome is regulated mostly at the post-transcriptional level, and involves many general and gene-specific factors regulating splicing, RNA processing and stability and translation. A very interesting aspect of the yeast mitochondrial system is the relationship between genome maintenance and gene expression. Deletions of genes involved in many different aspects of mitochondrial gene expression, notably translation, result in an irreversible loss of functional mtDNA. The mitochondrial genetic system viewed from the systems biology perspective is therefore very fragile and lacks robustness compared to the remaining systems of the cell. This lack of robustness could be a legacy of the reductive evolution of the mitochondrial genome, but explanations involving selective advantages of increased evolvability have also been postulated.
Collapse
Affiliation(s)
- Kamil A Lipinski
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5A, 02-106, Warsaw, Poland
| | | | | |
Collapse
|
16
|
Szczesny RJ, Borowski LS, Brzezniak LK, Dmochowska A, Gewartowski K, Bartnik E, Stepien PP. Human mitochondrial RNA turnover caught in flagranti: involvement of hSuv3p helicase in RNA surveillance. Nucleic Acids Res 2009; 38:279-98. [PMID: 19864255 PMCID: PMC2800237 DOI: 10.1093/nar/gkp903] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The mechanism of human mitochondrial RNA turnover and surveillance is still a matter of debate. We have obtained a cellular model for studying the role of hSuv3p helicase in human mitochondria. Expression of a dominant-negative mutant of the hSUV3 gene which encodes a protein with no ATPase or helicase activity results in perturbations of mtRNA metabolism and enables to study the processing and degradation intermediates which otherwise are difficult to detect because of their short half-lives. The hSuv3p activity was found to be necessary in the regulation of stability of mature, properly formed mRNAs and for removal of the noncoding processing intermediates transcribed from both H and L-strands, including mirror RNAs which represent antisense RNAs transcribed from the opposite DNA strand. Lack of hSuv3p function also resulted in accumulation of aberrant RNA species, molecules with extended poly(A) tails and degradation intermediates truncated predominantly at their 3′-ends. Moreover, we present data indicating that hSuv3p co-purifies with PNPase; this may suggest participation of both proteins in mtRNA metabolism.
Collapse
Affiliation(s)
- Roman J Szczesny
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | | | | | | | | | | | |
Collapse
|
17
|
Assays of the helicase, ATPase, and exoribonuclease activities of the yeast mitochondrial degradosome. Methods Mol Biol 2009; 587:339-58. [PMID: 20225161 DOI: 10.1007/978-1-60327-355-8_24] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The mitochondrial degradosome (mtEXO) is the main enzymatic complex in RNA degradation, processing, and surveillance in Saccharomyces cerevisiae mitochondria. It consists of two nuclear-encoded subunits: the ATP-dependent RNA helicase Suv3p and the 3' to 5' exoribonuclease Dss1p. The two subunits depend on each other for their activity; the complex can therefore be considered as a model system for the cooperation of RNA helicases and exoribonucleases in RNA degradation. All the three activities of the complex (helicase, ATPase, and exoribonuclease) can be studied in vitro using recombinant proteins and protocols presented in this chapter.
Collapse
|
18
|
Khidr L, Wu G, Davila A, Procaccio V, Wallace D, Lee WH. Role of SUV3 helicase in maintaining mitochondrial homeostasis in human cells. J Biol Chem 2008; 283:27064-73. [PMID: 18678873 PMCID: PMC2556002 DOI: 10.1074/jbc.m802991200] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Revised: 07/23/2008] [Indexed: 11/06/2022] Open
Abstract
In yeast mitochondria, RNA degradation takes place through the coordinated activities of ySuv3 helicase and yDss1 exoribonuclease (mtEXO), whereas in bacteria, RNA is degraded via RNaseE, RhlB, PNPase, and enolase. Yeast lacking the Suv3 component of the mtEXO form petits and undergo a toxic accumulation of omega intron RNAs. Mammalian mitochondria resemble their prokaryotic origins by harboring a polyadenylation-dependent RNA degradation mechanism, but whether SUV3 participates in regulating RNA turnover in mammalian mitochondria is unclear. We found that lack of hSUV3 in mammalian cells subsequently yielded an accumulation of shortened polyadenylated mtRNA species and impaired mitochondrial protein synthesis. This suggests that SUV3 may serve in part as a component of an RNA degradosome, resembling its yeast ancestor. Reduction in the expression levels of oxidative phosphorylation components correlated with an increase in reactive oxygen species generation, whereas membrane potential and ATP production were decreased. These cumulative defects led to pleiotropic effects in mitochondria such as decreased mtDNA copy number and a shift in mitochondrial morphology from tubular to granular, which eventually manifests in cellular senescence or cell death. Thus, our results suggest that SUV3 is essential for maintaining proper mitochondrial function, likely through a conserved role in mitochondrial RNA regulation.
Collapse
Affiliation(s)
- Lily Khidr
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, California 92697, USA
| | | | | | | | | | | |
Collapse
|
19
|
Genome-based analysis of Chlamydomonas reinhardtii exoribonucleases and poly(A) polymerases predicts unexpected organellar and exosomal features. Genetics 2008; 179:125-36. [PMID: 18493045 DOI: 10.1534/genetics.107.086223] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Enzymes from several gene families modify RNA molecules at their extremities. These reactions occur in several cellular compartments and affect every class of RNA. To assess the diversity of a subclass of these enzymes, we searched Chlamydomonas for open reading frames (ORFs) potentially encoding exoribonucleases, poly(A) polymerases, and proteins known to associate with and/or regulate them. The ORFs were further analyzed for indications of protein localization to the nucleus, cytosol, mitochondrion, and/or chloroplast. By comparing predicted proteins with homologs in Arabidopsis and yeast, we derived several tentative conclusions regarding RNA 5'- and 3'-end metabolism in Chlamydomonas. First, the alga possesses only one each of the following likely organellar enzymes: polynucleotide phosphorylase, hydrolytic exoribonuclease, poly(A) polymerase, and CCA transferase, a surprisingly small complement. Second, although the core of the nuclear/cytosolic exosome decay complex is well conserved, neither nucleus-specific activators nor the cytosolic exosome activators are present. Finally, our discovery of nine noncanonical poly(A) polymerases, a divergent family retaining the catalytic domains of conventional poly(A) polymerases, leads to the hypothesis that polyadenylation may play an especially important regulatory role throughout the Chlamydomonas cell, stabilizing some transcripts and targeting degradation machinery to others.
Collapse
|
20
|
Hoffmann B, Nickel J, Speer F, Schafer B. The 3′ Ends of Mature Transcripts Are Generated by a Processosome Complex in Fission Yeast Mitochondria. J Mol Biol 2008; 377:1024-37. [DOI: 10.1016/j.jmb.2008.01.038] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2007] [Revised: 12/26/2007] [Accepted: 01/15/2008] [Indexed: 01/26/2023]
|
21
|
In vivo and in vitro approaches for studying the yeast mitochondrial RNA degradosome complex. Methods Enzymol 2008; 447:463-88. [PMID: 19161856 DOI: 10.1016/s0076-6879(08)02222-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The mitochondrial degradosome (mtEXO) of S. cerevisiae is the main exoribonuclease of yeast mitochondria. It is involved in many pathways of mitochondrial RNA metabolism, including RNA degradation, surveillance, and processing, and its activity is essential for mitochondrial gene function. The mitochondrial degradosome is a very simple example of a 3' to 5'-exoribonucleolytic complex. It is composed of only two subunits: Dss1p, which is an RNR (RNase II-like) family exoribonuclease, and Suv3p, which is a DExH/D-box RNA helicase. The two subunits form a tight complex and their activities are highly interdependent, with the RNase activity greatly enhanced in the presence of the helicase subunit, and the helicase activity entirely dependent on the presence of the ribonuclease subunit. In this chapter, we present methods for studying the function of the yeast mitochondrial degradosome in vivo, through the analysis of degradosome-deficient mutant yeast strains, and in vitro, through heterologous expression in E. coli and purification of the degradosome subunits and reconstitution of a functional complex. We provide the protocols for studying ribonuclease, ATPase, and helicase activities and for measuring the RNA binding capacity of the complex and its subunits.
Collapse
|
22
|
Malecki M, Jedrzejczak R, Stepien PP, Golik P. In vitro reconstitution and characterization of the yeast mitochondrial degradosome complex unravels tight functional interdependence. J Mol Biol 2007; 372:23-36. [PMID: 17658549 DOI: 10.1016/j.jmb.2007.06.074] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Revised: 06/13/2007] [Accepted: 06/26/2007] [Indexed: 11/23/2022]
Abstract
The mitochondrial degradosome (mtEXO), the main RNA-degrading complex of yeast mitochondria, is composed of two subunits: an exoribonuclease encoded by the DSS1 gene and an RNA helicase encoded by the SUV3 gene. We expressed both subunits of the yeast mitochondrial degradosome in Escherichia coli, reconstituted the complex in vitro and analyzed the RNase, ATPase and helicase activities of the two subunits separately and in complex. The results reveal a very strong functional interdependence. For every enzymatic activity, we observed significant changes when the relevant protein was present in the complex, compared to the activity measured for the protein alone. The ATPase activity of Suv3p is stimulated by RNA and its background activity in the absence of RNA is reduced greatly when the protein is in the complex with Dss1p. The Suv3 protein alone does not display RNA-unwinding activity and the 3' to 5' directional helicase activity requiring a free 3' single-stranded substrate becomes apparent only when Suv3p is in complex with Dss1p. The Dss1 protein alone does have some basal exoribonuclease activity, which is not ATP-dependent, but in the presence of Suv3p the activity of the entire complex is enhanced greatly and is entirely ATP-dependent, with no residual activity observed in the absence of ATP. Such absolute ATP-dependence is unique among known exoribonuclease complexes. On the basis of these results, we propose a model in which the Suv3p RNA helicase acts as a molecular motor feeding the substrate to the catalytic centre of the RNase subunit.
Collapse
Affiliation(s)
- Michal Malecki
- Department of Genetics and Biotechnology, University of Warsaw, Pawinskiego 5A, 02-106, Warsaw, Poland
| | | | | | | |
Collapse
|
23
|
Sarkar D, Fisher PB. Polynucleotide phosphorylase: an evolutionary conserved gene with an expanding repertoire of functions. Pharmacol Ther 2006; 112:243-63. [PMID: 16733069 DOI: 10.1016/j.pharmthera.2006.04.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Accepted: 04/11/2006] [Indexed: 11/19/2022]
Abstract
RNA metabolism plays a seminal role in regulating diverse physiological processes. Polynucleotide phosphorylase (PNPase) is an evolutionary conserved 3',5' exoribonuclease, which plays a central role in RNA processing in bacteria and plants. Human polynucleotide phosphorylase (hPNPase old-35) was cloned using an inventive strategy designed to identify genes regulating the fundamental physiological processes of differentiation and senescence. Although hPNPase old-35 structurally and biochemically resembles PNPase of other species, targeted overexpression and inhibition studies reveal that hPNPase old-35 has evolved to serve more specialized functions in humans. The present review provides a global perspective on the structure and function of PNPase and then focuses on hPNPase old-35 in the contexts of differentiation and senescence.
Collapse
Affiliation(s)
- Devanand Sarkar
- Department of Pathology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, College of Physicians and Surgeons, New York, NY 10032, USA
| | | |
Collapse
|
24
|
Rogowska AT, Puchta O, Czarnecka AM, Kaniak A, Stepien PP, Golik P. Balance between transcription and RNA degradation is vital for Saccharomyces cerevisiae mitochondria: reduced transcription rescues the phenotype of deficient RNA degradation. Mol Biol Cell 2005; 17:1184-93. [PMID: 16371505 PMCID: PMC1382308 DOI: 10.1091/mbc.e05-08-0796] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The Saccharomyces cerevisiae SUV3 gene encodes the helicase component of the mitochondrial degradosome (mtEXO), the principal 3'-to-5' exoribonuclease of yeast mitochondria responsible for RNA turnover and surveillance. Inactivation of SUV3 (suv3Delta) causes multiple defects related to overaccumulation of aberrant transcripts and precursors, leading to a disruption of mitochondrial gene expression and loss of respiratory function. We isolated spontaneous suppressors that partially restore mitochondrial function in suv3Delta strains devoid of mitochondrial introns and found that they correspond to partial loss-of-function mutations in genes encoding the two subunits of the mitochondrial RNA polymerase (Rpo41p and Mtf1p) that severely reduce the transcription rate in mitochondria. These results show that reducing the transcription rate rescues defects in RNA turnover and demonstrates directly the vital importance of maintaining the balance between RNA synthesis and degradation.
Collapse
Affiliation(s)
- Agata T Rogowska
- Department of Genetics, Warsaw University, 02-106 Warsaw, Poland
| | | | | | | | | | | |
Collapse
|
25
|
Minczuk M, Mroczek S, Pawlak SD, Stepien PP. Human ATP-dependent RNA/DNA helicase hSuv3p interacts with the cofactor of survivin HBXIP. FEBS J 2005; 272:5008-19. [PMID: 16176273 DOI: 10.1111/j.1742-4658.2005.04910.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The human SUV3gene encodes an NTP-dependent DNA/RNA DExH box helicase predominantly localized in mitochondria. Its orthologue in yeast is a component of the mitochondrial degradosome complex involved in the mtRNA decay pathway. In contrast to this, the physiological function of human SUV3 remains to be elucidated. In this report we demonstrate that the hSuv3 protein interacts with HBXIP, previously identified as a cofactor of survivin in suppression of apoptosis and as a protein that binds the HBx protein encoded by the hepatitis B virus. Using deletion analysis we identified the region within the hSuv3 protein, which is responsible for binding to HBXIP. The HBXIP binding domain was found to be important for mitochondrial import and stability of the Suv3 protein in vivo. We discuss the possible involvement of the hSuv3p-HBXIP interaction in the survivin-dependent antiapoptotic pathway.
Collapse
|
26
|
Koc EC, Spremulli LL. RNA-binding proteins of mammalian mitochondria. Mitochondrion 2005; 2:277-91. [PMID: 16120328 DOI: 10.1016/s1567-7249(03)00005-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2002] [Revised: 12/04/2002] [Accepted: 12/16/2002] [Indexed: 11/18/2022]
Abstract
A UV-cross-linking assay was used to identify RNA-binding proteins in mammalian mitochondria. A number of these proteins were detected ranging in molecular mass from 15 to 120 kDa. All of the mRNA-binding activities were localized to the matrix except for two proteins which are primarily associated with the inner membrane. None of the polypeptides is specific for binding mitochondrial mRNAs since all bound mRNAs from other sources with comparable efficiency. Some preference for binding mRNA over tRNA or homoribopolymers was observed with several of the proteins. A protein with characteristic pentatricopeptide repeat motifs found in many RNA binding proteins was identified associated with the small subunit of the mitochondrial ribosome.
Collapse
Affiliation(s)
- Emine Cavdar Koc
- Department of Chemistry, Campus Box 3290, University of North Carolina, Chapel Hill, NC 27599-3290, USA
| | | |
Collapse
|
27
|
Minczuk M, Lilpop J, Boros J, Stepien PP. The 5′ region of the human hSUV3 gene encoding mitochondrial DNA and RNA helicase: Promoter characterization and alternative pre-mRNA splicing. ACTA ACUST UNITED AC 2005; 1729:81-7. [PMID: 15919122 DOI: 10.1016/j.bbaexp.2005.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2005] [Revised: 04/19/2005] [Accepted: 04/20/2005] [Indexed: 10/25/2022]
Abstract
The human nuclear hSUV3 gene encodes ATP-dependent RNA and DNA helicase, which predominantly localizes in the mitochondria. In yeast, the Suv3 helicase is a component of mitochondrial degradosome, a two-subunit complex, which degrades aberrant mtRNAs. In contrast to the well-documented physiological role of the yeast SUV3, the function of its human orthologue remains unknown. In this report, we have analyzed the hSUV3 5' genomic region. Our data suggest that hSUV3 is a housekeeping gene. Deletion analysis and in vitro mutagenesis revealed the presence of an enhancer region and regulatory elements in basal promoter including: (i) direct 10-bp-long repeats, which share significant sequence similarity with the consensus for the NF-kappaB/Rel family transcription factors, (ii) Sp1 general transcription factor binding site, and (iii) NRF-1 transcription factor binding sites, the latter typical for nuclear-encoded mitochondrial genes. Furthermore, we show that the 5' region of the hSUV3 pre-mRNA can be alternatively spliced.
Collapse
Affiliation(s)
- Michal Minczuk
- Department of Genetics, University of Warsaw, Pawinskiego 5A, 02-106 Warsaw, Poland.
| | | | | | | |
Collapse
|
28
|
Penschow JL, Sleve DA, Ryan CM, Read LK. TbDSS-1, an essential Trypanosoma brucei exoribonuclease homolog that has pleiotropic effects on mitochondrial RNA metabolism. EUKARYOTIC CELL 2005; 3:1206-16. [PMID: 15470249 PMCID: PMC522597 DOI: 10.1128/ec.3.5.1206-1216.2004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mitochondrial gene expression in trypanosomes is controlled primarily at the levels of RNA processing and RNA stability. This regulation undoubtedly involves numerous ribonucleases. Here we characterize the Trypanosoma brucei homolog of the yeast DSS-1 mitochondrial exoribonuclease, which we term TbDSS-1. Biochemical fractionation indicates that TbDSS-1 is mitochondrially localized, as predicted by its N-terminal sequence. In contrast to its yeast homolog, TbDSS-1 does not appear to be associated with mitochondrial ribosomes. Targeted downregulation of TbDSS-1 by RNA interference in procyclic-form T. brucei results in a severe growth defect. In addition, TbDSS-1 depletion leads to a decrease in the levels of never edited cytochrome oxidase subunit I (COI) mRNA and both unedited and edited COIII mRNAs, indicating this enzyme functions in the control of mitochondrial RNA abundance. We also observe a considerable reduction in the level of edited apocytochrome b (CYb) mRNA and a corresponding increase in unedited CYb mRNA, suggesting that TbDSS-1 functions, either directly or indirectly, in the control of RNA editing. The abundance of both gCYb[560] and gA6[149] guide RNAs is reduced upon TbDSS-1 depletion, although the reduction in gCYb[560] is much more dramatic. The significant reduction in gCYb levels could potentially account for the observed decrease in CYb RNA editing. Western blot analyses of mitochondrial RNA editing and stability factors indicate that the perturbations of RNA levels observed in TbDSS-1 knock-downs do not result from secondary effects on other mitochondrial proteins. In all, these data demonstrate that TbDSS-1 is an essential protein that plays a role in mitochondrial RNA stability and RNA editing.
Collapse
Affiliation(s)
- Jonelle L Penschow
- Department of Microbiology and Immunology, 138 Farber Hall, SUNY Buffalo School of Medicine, Buffalo, NY 14214, USA
| | | | | | | |
Collapse
|
29
|
Golik P, Zwolinska U, Stepien PP, Lazowska J. The SUV3 gene from Saccharomyces douglasii is a functional equivalent of its Saccharomyces cerevisiae orthologue and is essential for respiratory growth. FEMS Yeast Res 2004; 4:477-85. [PMID: 14734028 DOI: 10.1016/s1567-1356(03)00160-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
In the yeast Saccharomyces cerevisiae the product of the nuclear gene SUV3 has been shown to be involved in a variety of mitochondrial post-transcriptional processes. We have cloned and sequenced the SUV3 gene from Saccharomyces douglasii, a close relative of S. cerevisiae which has important changes in the organization of its mitochondrial genome and concomitant changes in nucleo-mitochondrial interactions. We show that the S. douglasii SUV3 gene shares considerable structural homology (92% amino acid sequence identity) with its S. cerevisiae counterpart and that their nucleotide sequences display evidence of recent divergence. To determine the function of the S. douglasii SUV3 gene we have constructed a strain carrying an inactive SUV3 gene and analyzed the effect of this inactivation on the integrity of the mitochondrial genome and on the stability of mitochondrial transcripts. We have demonstrated that the S. douglasii SUV3 gene, like the S. cerevisiae gene, is essential for respiratory growth and for stability of the intron-containing mitochondrial transcripts, thus the two genes are functionally equivalent. Also the S. douglasii and S. cerevisiae SUV3 genes are completely interchangeable, despite the differences in the structure of the mitochondrial chromosome in the two yeasts.
Collapse
Affiliation(s)
- Pawel Golik
- Centre de Génétique Moléculaire CNRS, 91198 Gif sur Yvette, France
| | | | | | | |
Collapse
|
30
|
Abstract
Members of the DExD/H-box family of RNA helicases are involved in many processes and complexes within the cell. While individual DExD/H helicase family members have been studied extensively, the mechanisms through which helicases affect multiprotein complexes are just beginning to be investigated. Because RNA helicases are both highly conserved and numerous in the cell, study of RNA helicase recruitment and modulation by cofactors is necessary for understanding the mechanisms of helicase action in vivo. This review will focus on cofactor-mediated regulation of helicase target specificity and activity.
Collapse
Affiliation(s)
- Edward Silverman
- Division of Molecular Biology, Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, 1450 E. Duarte Road, Duarte, CA 91010, USA
| | | | | |
Collapse
|
31
|
Piwowarski J, Grzechnik P, Dziembowski A, Dmochowska A, Minczuk M, Stepien PP. Human polynucleotide phosphorylase, hPNPase, is localized in mitochondria. J Mol Biol 2003; 329:853-7. [PMID: 12798676 DOI: 10.1016/s0022-2836(03)00528-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The human gene encoding a polynucleotide phosphorylase (hPNPase) has been recently identified as strongly up-regulated in two processes leading to irreversible arrest of cell division: progeroid senescence and terminal differentiation. Here, we demonstrate that the hPNPase is localized in mitochondria. Our finding suggests the involvement of mitochondrial RNA metabolism in cellular senescence.
Collapse
Affiliation(s)
- Jan Piwowarski
- Department of Genetics, Warsaw University and Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawinskiego 5A, 02-106 Warsaw, Poland
| | | | | | | | | | | |
Collapse
|
32
|
Dziembowski A, Piwowarski J, Hoser R, Minczuk M, Dmochowska A, Siep M, van der Spek H, Grivell L, Stepien PP. The yeast mitochondrial degradosome. Its composition, interplay between RNA helicase and RNase activities and the role in mitochondrial RNA metabolism. J Biol Chem 2003; 278:1603-11. [PMID: 12426313 DOI: 10.1074/jbc.m208287200] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The yeast mitochondrial degradosome (mtEXO) is an NTP-dependent exoribonuclease involved in mitochondrial RNA metabolism. Previous purifications suggested that it was composed of three subunits. Our results suggest that the degradosome is composed of only two large subunits: an RNase and a RNA helicase encoded by nuclear genes DSS1 and SUV3, respectively, and that it co-purifies with mitochondrial ribosomes. We have found that the purified degradosome has RNA helicase activity that precedes and is essential for exoribonuclease activity of this complex. The degradosome RNase activity is necessary for mitochondrial biogenesis but in vitro the degradosome without RNase activity is still able to unwind RNA. In yeast strains lacking degradosome components there is a strong accumulation of mitochondrial mRNA and rRNA precursors not processed at 3'- and 5'-ends. The observed accumulation of precursors is probably the result of lack of degradation rather than direct inhibition of processing. We suggest that the degradosome is a central part of a mitochondrial RNA surveillance system responsible for degradation of aberrant and unprocessed RNAs.
Collapse
Affiliation(s)
- Andrzej Dziembowski
- Department of Genetics, Warsaw University and Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Minczuk M, Piwowarski J, Papworth MA, Awiszus K, Schalinski S, Dziembowski A, Dmochowska A, Bartnik E, Tokatlidis K, Stepien PP, Borowski P. Localisation of the human hSuv3p helicase in the mitochondrial matrix and its preferential unwinding of dsDNA. Nucleic Acids Res 2002; 30:5074-86. [PMID: 12466530 PMCID: PMC137961 DOI: 10.1093/nar/gkf647] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We characterised the human hSuv3p protein belonging to the family of NTPases/helicases. In yeast mitochondria the hSUV3 orthologue is a component of the degradosome complex and participates in mtRNA turnover and processing, while in Caenorhabditis elegans the hSUV3 orthologue is necessary for viability of early embryos. Using immunofluorescence analysis, an in vitro mitochondrial uptake assay and sub-fractionation of human mitochondria we show hSuv3p to be a soluble protein localised in the mitochondrial matrix. We expressed and purified recombinant hSuv3p protein from a bacterial expression system. The purified enzyme was capable of hydrolysing ATP with a K(m) of 41.9 micro M and the activity was only modestly stimulated by polynucleotides. hSuv3p unwound partly hybridised dsRNA and dsDNA structures with a very strong preference for the latter. The presented analysis of the hSuv3p NTPase/helicase suggests that new functions of the protein have been acquired in the course of evolution.
Collapse
Affiliation(s)
- Michal Minczuk
- Department of Genetics, University of Warsaw, Pawinskiego 5A, 02-106 Warsaw, Poland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Minczuk M, Dmochowska A, Palczewska M, Stepien PP. Overexpressed yeast mitochondrial putative RNA helicase Mss116 partially restores proper mtRNA metabolism in strains lacking the Suv3 mtRNA helicase. Yeast 2002; 19:1285-93. [PMID: 12402239 DOI: 10.1002/yea.906] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
RNA helicase, encoded by the Saccharomyces cerevisiae nuclear gene SUV3, is a subunit of the mitochondrial (mt) degradosome: an enzyme complex that takes part in turnover of mtRNAs. Deletion of the SUV3 gene leads to a variety of disturbances in mtRNA metabolism and results in respiratory incompetence of yeast cells. Here we show that the nuclear gene MSS116, which codes for a mitochondrial putative RNA helicase necessary for splicing of several mt introns, can suppress the lack of the SUV3 gene. Overexpression of the Mss116 putative helicase from a multicopy plasmid present in the SUV3-deleted strains partially restores respiratory competence, brings the steady-state levels of COB and ATP6/8 mRNA back almost to normal and lowers the accumulation of 21S rRNA and ATP6/8 RNA precursors to the wild-type levels. To the best of our knowledge, this is the first reported case of a substitution of one RNA helicase by another, belonging to a different class of RNA helicases.
Collapse
Affiliation(s)
- Michal Minczuk
- Department of Genetics, University of Warsaw and Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland
| | | | | | | |
Collapse
|
35
|
Dziembowski A, Stepien PP. Genetic and biochemical approaches for analysis of mitochondrial degradosome from Saccharomyces cerevisiae. Methods Enzymol 2002; 342:367-78. [PMID: 11586909 DOI: 10.1016/s0076-6879(01)42559-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Affiliation(s)
- A Dziembowski
- Department of Genetics, University of Warsaw, and Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | | |
Collapse
|
36
|
Deutscher MP, Li Z. Exoribonucleases and their multiple roles in RNA metabolism. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2001; 66:67-105. [PMID: 11051762 DOI: 10.1016/s0079-6603(00)66027-0] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In recent years there has been a dramatic shift in our thinking about ribonucleases (RNases). Although they were once considered to be nonspecific, degradative enzymes, it is now clear that RNases play a central role in every aspect of cellular RNA metabolism, including decay of mRNA, conversion of RNA precursors to their mature forms, and end-turnover of certain RNAs. Recognition of the importance of this class of enzymes has led to an explosion of work and the establishment of significant new concepts. Thus, we now realize that RNases, both endoribonucleases and exoribonucleases, can be highly specific for particular sequences or structures. It has also become apparent that a single cell can contain a large number of distinct RNases, approaching as many as 20 members, often with overlapping specificities. Some RNases also have been found to be components of supramolecular complexes and to function in concert with other enzymes to carry out their role in RNA metabolism. This review focuses on the exoribonucleases, both prokaryotic and eukaryotic, and details their structure, catalytic properties, and physiological function.
Collapse
Affiliation(s)
- M P Deutscher
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, Florida 33101, USA
| | | |
Collapse
|
37
|
Gagliardi D, Kuhn J, Spadinger U, Brennicke A, Leaver CJ, Binder S. An RNA helicase (AtSUV3) is present in Arabidopsis thaliana mitochondria. FEBS Lett 1999; 458:337-42. [PMID: 10570936 DOI: 10.1016/s0014-5793(99)01168-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The proteins involved in mitochondrial mRNA processing and degradation in higher plants have yet to be identified. As a first step towards this aim, we report here the characterisation of a nuclear-encoded DExH box RNA helicase (AtSUV3) localised in Arabidopsis thaliana mitochondria. The AtSUV3 mRNA is assembled from the 16 exons of a weakly expressed unique gene and the predicted protein has a calculated molecular weight of 63.6 kDa. Subcellular fractionation of transgenic plants expressing AtSUV3/GUS fusion proteins localises this protein in mitochondria. The N-terminal domain of AtSUV3 containing the motifs characteristic of DExH box RNA helicases exhibits a low endogenous ATPase activity in vitro which can be stimulated by the presence of mitochondrial RNA, confirming that AtSUV3 is an RNA helicase.
Collapse
Affiliation(s)
- D Gagliardi
- Department of Plant Sciences, University of Oxford, UK
| | | | | | | | | | | |
Collapse
|
38
|
Chen W, Islas-Osuna MA, Dieckmann CL. Suppressor analysis of mutations in the 5'-untranslated region of COB mRNA identifies components of general pathways for mitochondrial mRNA processing and decay in Saccharomyces cerevisiae. Genetics 1999; 151:1315-25. [PMID: 10101159 PMCID: PMC1460556 DOI: 10.1093/genetics/151.4.1315] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The cytochrome b gene in Saccharomyces cerevisiae, COB, is encoded by the mitochondrial genome. Nuclear-encoded Cbp1 protein is required specifically for COB mRNA stabilization. Cbp1 interacts with a CCG element in a 64-nucleotide sequence in the 5'-untranslated region of COB mRNA. Mutation of any nucleotide in the CCG causes the same phenotype as cbp1 mutations, i.e., destabilization of both COB precursor and mature message. In this study, eleven nuclear suppressors of single-nucleotide mutations in CCG were isolated and characterized. One dominant suppressor is in CBP1, while the other 10 semidominant suppressors define five distinct linkage groups. One group of four mutations is in PET127, which is required for 5' end processing of several mitochondrial mRNAs. Another mutation is linked to DSS1, which is a subunit of mitochondrial 3' --> 5' exoribonuclease. A mutation linked to the SOC1 gene, previously defined by recessive mutations that suppress cbp1 ts alleles and stabilize many mitochondrial mRNAs, was also isolated. We hypothesize that the products of the two uncharacterized genes also affect mitochondrial RNA turnover.
Collapse
Affiliation(s)
- W Chen
- Department of Biochemistry, University of Arizona, Tucson, Arizona 85721, USA
| | | | | |
Collapse
|
39
|
Coburn GA, Mackie GA. Degradation of mRNA in Escherichia coli: an old problem with some new twists. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1999; 62:55-108. [PMID: 9932452 DOI: 10.1016/s0079-6603(08)60505-x] [Citation(s) in RCA: 241] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Metabolic instability is a hallmark property of mRNAs in most if not all organisms and plays an essential role in facilitating rapid responses to regulatory cues. This article provides a critical examination of recent progress in the enzymology of mRNA decay in Escherichia coli, focusing on six major enzymes: RNase III, RNase E, polynucleotide phosphorylase, RNase II, poly(A) polymerase(s), and RNA helicase(s). The first major advance in our thinking about mechanisms of RNA decay has been catalyzed by the possibility that mRNA decay is orchestrated by a multicomponent mRNA-protein complex (the "degradosome"). The ramifications of this discovery are discussed and developed into mRNA decay models that integrate the properties of the ribonucleases and their associated proteins, the role of RNA structure in determining the susceptibility of an RNA to decay, and some of the known kinetic features of mRNA decay. These models propose that mRNA decay is a vectorial process initiated primarily at or near the 5' terminus of susceptible mRNAs and propagated by successive endonucleolytic cleavages catalyzed by RNase E in the degradosome. It seems likely that the degradosome can be tethered to its substrate, either physically or kinetically through a preference for monphosphorylated RNAs, accounting for the usual "all or none" nature of mRNA decay. A second recent advance in our thinking about mRNA decay is the rediscovery of polyadenylated mRNA in bacteria. Models are provided to account for the role of polyadenylation in facilitating the 3' exonucleolytic degradation of structured RNAs. Finally, we have reviewed the documented properties of several well-studied paradigms for mRNA decay in E. coli. We interpret the published data in light of our models and the properties of the degradosome. It seems likely that the study of mRNA decay is about to enter a phase in which research will focus on the structural basis for recognition of cleavage sites, on catalytic mechanisms, and on regulation of mRNA decay.
Collapse
Affiliation(s)
- G A Coburn
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
40
|
Chen CY, Rosamondt J. Candida albicans SSD1 can suppress multiple mutations in Saccharomyces cerevisiae. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 11):2941-2950. [PMID: 9846729 DOI: 10.1099/00221287-144-11-2941] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The SSD1 gene of Saccharomyces encodes a 160 kDa cytoplasmic protein that can suppress mutations in a number of other genes. A functional homologue of SSD1 from the human pathogen Candida albicans was isolated on the basis of its ability to restore viability at the restrictive temperature in a Saccharomyces cerevisiae swi4 ssd1-d strain. The C. albicans gene, designated CaSSD1, encodes a 1262 aa protein which has 47% identity overall to S. cerevisiae SSD1 as well as significant identity to Schizosaccharomyces pombe dis3 and sts5 products. It is shown that CaSSD1 expression is constitutive through the mitotic cell cycle, which is consistent with a role for the protein in cell growth. CaSSD1 rescues the swi4ts defect in an ssd1-d background when expressed from its own promoter on a single-copy plasmid and under the same conditions can rescue mutations in genes encoding protein phosphatase type 2A catalytic subunits. These data suggest that CaSSD1, like its S. cerevisiae homologue, can limit the effect of mutations on a variety of cellular processes.
Collapse
Affiliation(s)
- Chung-Yung Chen
- School of Biological Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - John Rosamondt
- School of Biological Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
41
|
Abstract
RNA helicases represent a large family of proteins that have been detected in almost all biological systems where RNA plays a central role. They are ubiquitously distributed over a wide range of organisms and are involved in nuclear and mitochondrial splicing processes, RNA editing, rRNA processing, translation initiation, nuclear mRNA export, and mRNA degradation. RNA helicases are described as essential factors in cell development and differentiation, and some of them play a role in transcription and replication of viral single-stranded RNA genomes. Comparisons of the conserved sequences reveal a close relationship between them and suggest that these proteins might be derived from a common ancestor. Biochemical studies have revealed a strong dependence of the unwinding activity on ATP hydrolysis. Although RNA helicase activity has only been demonstrated for a few examples yet, it is generally believed that all members of the largest subgroups, the DEAD and DEAH box proteins, exhibit this activity.
Collapse
Affiliation(s)
- A Lüking
- Max-Planck-Institute for Molecular Genetics, Berlin, Germany
| | | | | |
Collapse
|
42
|
de la Cruz J, Kressler D, Tollervey D, Linder P. Dob1p (Mtr4p) is a putative ATP-dependent RNA helicase required for the 3' end formation of 5.8S rRNA in Saccharomyces cerevisiae. EMBO J 1998; 17:1128-40. [PMID: 9463390 PMCID: PMC1170461 DOI: 10.1093/emboj/17.4.1128] [Citation(s) in RCA: 258] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The temperature-sensitive mutation, dob1-1, was identified in a screen for dependence on overexpression of the yeast translation initiation factor eIF4B (Tif3p). Dob1p is an essential putative ATP-dependent RNA helicase. Polysome analyses revealed an under accumulation of 60S ribosomal subunits in the dob1-1 mutant. Pulse-chase labelling of pre-rRNA showed that this was due to a defect in the synthesis of the 5.8S and 25S rRNAs. Northern and primer extension analyses in the dob1-1 mutant, or in a strain genetically depleted of Dob1p, revealed a specific inhibition of the 3' processing of the 5.8S rRNA from its 7S precursor. This processing recently has been attributed to the activity of the exosome, a complex of 3'-->5' exonucleases that includes Rrp4p. In vivo depletion of Dob1p also inhibits degradation of the 5' external transcribed spacer region of the pre-rRNA. A similar phenotype was observed in rrp4 mutant strains and, moreover, the dob1-1 and rrp4-1 mutations show a strong synergistic growth inhibition. We propose that Dob1p functions as a cofactor for the exosome complex that unwinds secondary structures in the pre-rRNA that otherwise block the progression of the 3'-->5' exonucleases.
Collapse
Affiliation(s)
- J de la Cruz
- Département de Biochimie Médicale, Centre Médical Universitaire, Université de Genève, Switzerland.
| | | | | | | |
Collapse
|
43
|
Mitchell P, Petfalski E, Shevchenko A, Mann M, Tollervey D. The exosome: a conserved eukaryotic RNA processing complex containing multiple 3'-->5' exoribonucleases. Cell 1997; 91:457-66. [PMID: 9390555 DOI: 10.1016/s0092-8674(00)80432-8] [Citation(s) in RCA: 738] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We identified a complex in S. cerevisiae, the "exosome," consisting of the five essential proteins Rrp4p, Rrp41p, Rrp42p, Rrp43p, and Rrp44p (Dis3p). Remarkably, four of these proteins are homologous to characterized bacterial 3'-->5' exoribonucleases; Rrp44p is homologous to RNase II, while Rrp41p, Rrp42p, and Rrp43p are related to RNase PH. Recombinant Rrp4p, Rrp44p, and Rrp41p are 3'-->5' exoribonucleases in vitro that have distributive, processive, and phosphorolytic activities, respectively. All components of the exosome are required for 3' processing of the 5.8S rRNA. Human Rrp4p is found in a comparably sized complex, and expression of the hRRP4 gene in yeast complements the rrp4-1 mutation. We conclude that the exosome constitutes a highly conserved eukaryotic RNA processing complex.
Collapse
Affiliation(s)
- P Mitchell
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
44
|
Abstract
The SSD1 gene has been isolated as a single copy suppressor of many mutants, such as sit4, slk1/bck1, pde2, and rpc31, in the yeast Saccharomyces cerevisiae. Ssd1p has domains showing weak but significant homology with RNase II-related proteins, Cyt4p, Dss1p, VacB, and RNase II, which are involved in the modification of RNA. We found that Ssd1p had the ability to bind RNA, preferably poly(rA), as well as single-stranded DNA. Interestingly, the most conserved domain among the RNase II-related proteins was not necessary for interaction with RNA. Indirect immunofluorescence staining with anti-Ssd1p antibody revealed that Ssd1p was detected mainly in the cytoplasm. Furthermore, sucrose gradient sedimentation analysis demonstrated that Ssd1p was not cofractionated with polyribosomes, suggesting that Ssd1p is not particularly bound to a translationally active subpopulation of mRNA in the cytoplasm.
Collapse
Affiliation(s)
- Y Uesono
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113, Japan
| | | | | |
Collapse
|
45
|
Wiesenberger G, Fox TD. Pet127p, a membrane-associated protein involved in stability and processing of Saccharomyces cerevisiae mitochondrial RNAs. Mol Cell Biol 1997; 17:2816-24. [PMID: 9111353 PMCID: PMC232133 DOI: 10.1128/mcb.17.5.2816] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Nuclear mutations that inactivate the Saccharomyces cerevisiae gene PET127 dramatically increased the levels of mutant COX3 and COX2 mitochondrial mRNAs that were destabilized by mutations in their 5' untranslated leaders. The stabilizing effect of pet127 delta mutations occurred both in the presence and in the absence of translation. In addition, pet127 delta mutations had pleiotropic effects on the stability and 5' end processing of some wild-type mRNAs and the 15S rRNA but produced only a leaky nonrespiratory phenotype at 37 degrees C. Overexpression of PET127 completely blocked respiratory growth and caused cells to lose wild-type mitochondrial DNA, suggesting that too much Pet127p prevents mitochondrial gene expression. Epitope-tagged Pet127p was specifically located in mitochondria and associated with membranes. These findings suggest that Pet127p plays a role in RNA surveillance and/or RNA processing and that these functions may be membrane bound in yeast mitochondria.
Collapse
Affiliation(s)
- G Wiesenberger
- Section of Genetics and Development, Cornell University, Ithaca, New York 14853-2703, USA
| | | |
Collapse
|
46
|
Affiliation(s)
- J S Anderson
- Department of Molecular and Cellular Biology, Tucson 85721, USA
| | | |
Collapse
|
47
|
Margossian SP, Li H, Zassenhaus HP, Butow RA. The DExH box protein Suv3p is a component of a yeast mitochondrial 3'-to-5' exoribonuclease that suppresses group I intron toxicity. Cell 1996; 84:199-209. [PMID: 8565066 DOI: 10.1016/s0092-8674(00)80975-7] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The yeast mitochondrial protein Suv3p is a putative NTP-dependent RNA helicase. Here we report that in cells lacking Suv3p, there is an approximately 50-fold increase in the excised form of the group I intron omega of the mitochondrial 31S rRNA gene. Surprisingly, little mature 21S rRNA accumulates in those cells; instead, unligated 21S rRNA exons appear. Intron overaccumulation could lead to spliced exon reopening via a reaction known to be catalyzed by group I introns in vitro. We also show that Suv3p is a functional component of a novel mitochondrial NTP-dependent 3'-to-5' exoribonuclease activity that can degrade group I intron RNAs. These findings account for group I intron overaccumulation in cells lacking Suv3p and define a novel function for putative RNA helicases in direct RNA degradation.
Collapse
Affiliation(s)
- S P Margossian
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas 75235, USA
| | | | | | | |
Collapse
|