1
|
Steck MK, Zambre AM, Snell-Rood EC. Plasticity in resource choice: a time-limited butterfly prioritizes apparency over quality. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
2
|
Ilić M, Chen PJ, Pirih P, Meglič A, Prevc J, Yago M, Belušič G, Arikawa K. Simple and complex, sexually dimorphic retinal mosaic of fritillary butterflies. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210276. [PMID: 36058236 PMCID: PMC9441240 DOI: 10.1098/rstb.2021.0276] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/30/2022] [Indexed: 01/23/2023] Open
Abstract
Butterflies have variable sets of spectral photoreceptors that underlie colour vision. The photoreceptor organization may be optimized for the detection of body coloration. Fritillaries (Argynnini) are nymphalid butterflies exhibiting varying degrees of sexual dimorphism in wing coloration. In two sister species, the females have orange (Argynnis paphia) and dark wings (Argynnis sagana), respectively, while the males of both species have orange wings with large patches of pheromone-producing androconia. In spite of the differences in female coloration, the eyes of both species exhibit an identical sexual dimorphism. The female eyeshine is uniform yellow, while the males have a complex retinal mosaic with yellow and red-reflecting ommatidia. We found the basic set of ultraviolet-, blue- and green-peaking photoreceptors in both sexes. Males additionally have three more photoreceptor classes, peaking in green, yellow and red, respectively. The latter is the basal R9, indirectly measured through hyperpolarizations in the green-peaking R1-2. In many nymphalid tribes, including the closely related Heliconiini, the retinal mosaic is complex in both sexes. We hypothesize that the simple mosaic of female Argynnini is a secondary reduction, possibly driven by the use of olfaction for intraspecific recognition, whereas vision remains the primary sense for the task in the males. This article is part of the theme issue 'Understanding colour vision: molecular, physiological, neuronal and behavioural studies in arthropods'.
Collapse
Affiliation(s)
- Marko Ilić
- Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
- Laboratory of Neuroethology, Sokendai - The Graduate University for Advanced Studies, 240-0193 Hayama, Japan
| | - Pei-Ju Chen
- Institute of Cellular and Organismic Biology, Academia Sinica, 11529 Taipei, Taiwan
- Laboratory of Neuroethology, Sokendai - The Graduate University for Advanced Studies, 240-0193 Hayama, Japan
| | - Primož Pirih
- Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Andrej Meglič
- Eye Hospital, University Medical Centre, Grablovičeva 46, 1000 Ljubljana, Slovenia
| | - Jošt Prevc
- Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Masaya Yago
- The University Museum, The University of Tokyo, Hongo, 113-0033 Tokyo, Japan
| | - Gregor Belušič
- Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Kentaro Arikawa
- Laboratory of Neuroethology, Sokendai - The Graduate University for Advanced Studies, 240-0193 Hayama, Japan
| |
Collapse
|
3
|
Pirih P, Ilić M, Meglič A, Belušič G. Opponent processing in the retinal mosaic of nymphalid butterflies. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210275. [PMID: 36058238 PMCID: PMC9441239 DOI: 10.1098/rstb.2021.0275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/21/2022] [Indexed: 11/29/2022] Open
Abstract
The eyes of nymphalid butterflies, investigated with incident illumination, show colourful facet reflection patterns-the eye shine-which is uniform or heterogeneous, dependent on the species. Facet colours suggest that the ommatidia contain different sets of photoreceptors and screening pigments, but how the colours and the cell characteristics are associated has not been clearly established. Here, we analyse the retinae of two nymphalids, Apatura ilia, which has a uniform eyeshine, and Charaxes jasius, a species with a heterogeneous eye shine, using single-cell recordings, spectroscopy and optical pupillometry. Apatura has UV-, blue- and green-sensitive photoreceptors, allocated into three ommatidial types. The UV- and blue-sensitive cells are long visual fibres (LVFs), receiving opponent input from the green-sensitive short visual fibres (SVFs). Charaxes has an expanded set of photoreceptors, allocated into three additional, red-reflecting ommatidial types. All red ommatidia contain green-sensitive LVFs, receiving opponent input from red receptors. In both species, the SVFs do not receive any opponent input. The simple retina of Apatura with three ommatidial types and two colour-opponent channels can support trichromatic vision. Charaxes has six ommatidial types and three colour-opponent channels. Its expanded receptor set can support tetrachromatic vision. This article is part of the theme issue 'Understanding colour vision: molecular, physiological, neuronal and behavioural studies in arthropods'.
Collapse
Affiliation(s)
- Primož Pirih
- Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Marko Ilić
- Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Andrej Meglič
- Eye Hospital, University Medical Centre, Grablovičeva 46, 1000 Ljubljana, Slovenia
| | - Gregor Belušič
- Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| |
Collapse
|
4
|
Connectome of the lamina reveals the circuit for early color processing in the visual pathway of a butterfly. Curr Biol 2022; 32:2291-2299.e3. [DOI: 10.1016/j.cub.2022.03.066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/28/2022] [Accepted: 03/25/2022] [Indexed: 01/06/2023]
|
5
|
Meglič A, Ilić M, Quero C, Arikawa K, Belušič G. Two chiral types of randomly rotated ommatidia are distributed across the retina of the flathead oak borer Coraebus undatus (Coleoptera: Buprestidae). J Exp Biol 2020; 223:jeb225920. [PMID: 32532862 DOI: 10.1242/jeb.225920] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/03/2020] [Indexed: 11/20/2022]
Abstract
Jewel beetles are colorful insects, which use vision to recognize their conspecifics and can be lured with colored traps. We investigated the retina and coloration of one member of this family, the flathead oak borer Coraebus undatus using microscopy, spectrometry, polarimetry, electroretinography and intracellular recordings of photoreceptor cell responses. The compound eyes are built of a highly unusual mosaic of mirror-symmetric or chiral ommatidia that are randomly rotated along the body axes. Each ommatidium has eight photoreceptors, two of them having rhabdomeres in tiers. The eyes contain six spectral classes of photoreceptors, peaking in the UV, blue, green and red. Most photoreceptors have moderate polarization sensitivity with randomly distributed angular maxima. The beetles have the necessary retinal substrate for complex color vision, required to recognize conspecifics and suitable for a targeted design of color traps. However, the jewel beetle array of freely rotated ommatidia is very different from the ordered mosaic in insects that have object-directed polarization vision. We propose that ommatidial rotation enables the cancelling out of polarization signals, thus allowing stable color vision, similar to the rhabdomeric twist in the eyes of flies and honeybees.
Collapse
Affiliation(s)
- Andrej Meglič
- Eye Hospital, University Medical Centre, Grablovičeva 46, 1000 Ljubljana, Slovenia
| | - Marko Ilić
- Laboratory of Neuroethology, Sokendai - The Graduate University for Advanced Studies, Hayama 240-0193, Japan
| | - Carmen Quero
- Department of Biological Chemistry and Molecular Modelling, IQAC (CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Kentaro Arikawa
- Laboratory of Neuroethology, Sokendai - The Graduate University for Advanced Studies, Hayama 240-0193, Japan
| | - Gregor Belušič
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| |
Collapse
|
6
|
Blake AJ, Hahn GS, Grey H, Kwok SA, McIntosh D, Gries G. Polarized light sensitivity in Pieris rapae is dependent on both color and intensity. J Exp Biol 2020; 223:jeb220350. [PMID: 32461306 DOI: 10.1242/jeb.220350] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 05/18/2020] [Indexed: 08/26/2023]
Abstract
There is an ever increasing number of arthropod taxa shown to have polarization sensitivity throughout their compound eyes. However, the downstream processing of polarized reflections from objects is not well understood. The small white butterfly, Pieris rapae, has been demonstrated to exploit foliar polarized reflections, specifically the degree of linear polarization (DoLP), to recognize host plants. The well-described visual system of P. rapae includes several photoreceptor types (red, green, blue) that are sensitive to polarized light. Yet, the roles and interaction among photoreceptors underlying the behavioral responses of P. rapae to stimuli with different DoLP remain unknown. To investigate potential neurological mechanisms, we designed several two-choice behavioral bioassays, displaying plant images on paired LCD monitors, which allowed for independent control of polarization, color and intensity. When we presented choices between stimuli that differed in either color or DoLP, both decreasing and increasing the intensity of the more attractive stimulus reduced the strength of preference. This result suggests that differences in color and DoLP are perceived in a similar manner. When we offered a DoLP choice between plant images manipulated to minimize the response of blue, red, or blue and red photoreceptors, P. rapae shifted its preference for DoLP, suggesting a role for all of these photoreceptors. Modeling of P. rapae photoreceptor responses to test stimuli suggests that differential DoLP is not perceived solely as a color difference. Our combined results suggest that Prapae females process and interpret polarization reflections in a way different from that described for other polarization-sensitive taxa.
Collapse
Affiliation(s)
- Adam J Blake
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Gina S Hahn
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Hayley Grey
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Shelby A Kwok
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Deby McIntosh
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Gerhard Gries
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| |
Collapse
|
7
|
Mishra M, Rathore V, Sahu S, Sahoo H. The contribution of nanostructures towards the wing patterning of yellow Catopsilia pomona. How it differs from the lime? Microscopy (Oxf) 2019; 68:289-300. [PMID: 30839060 DOI: 10.1093/jmicro/dfz012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 02/06/2019] [Indexed: 11/12/2022] Open
Abstract
Polyphenism, an adaptation to survive throughout the year, is shown by many butterflies including Catopsilia pomona. With the variation of seasons, different morphs were found. Among all the morphs, lime exists throughout the year whereas the yellow one is available only in the winter season. The current study deciphers the colouration mechanism of yellow morph using various microscopic and spectroscopic techniques. The scanning electron microscopy analysis reveals various types of scales on the dorsal as well as the ventral side. The shape of the cover scale varies from region to region. The fine structural arrangement of the scale like window, ridge, microrib, crossrib and pigments vary throughout the wing. The pigment present in the wing is pterin as evidenced from the shape and its isolation technique. Absorption spectroscopy further confirms the presence of various types of pterin within the wing. Scanning electron microscopy discloses the dense amount of pigments within the wing. The fine structural arrangement of the wing of yellow C. pomona is compared with the yellow region of the lime C. pomona. All together, the current study describes the fine structural arrangement of the wing of yellow C. pomona and the various types of pterin which contribute towards the wing colouration. The advantage of yellow morph over lime is also discussed in this paper.
Collapse
Affiliation(s)
- Monalisa Mishra
- Neural Developmental Biology Lab, Department of Life Science, National Institute of Rourkela, Rourkela, Odisha, India
| | - Varsha Rathore
- Neural Developmental Biology Lab, Department of Life Science, National Institute of Rourkela, Rourkela, Odisha, India
| | - Swetapadma Sahu
- Neural Developmental Biology Lab, Department of Life Science, National Institute of Rourkela, Rourkela, Odisha, India
| | - Harekrushna Sahoo
- Biophysical Chemistry Lab, Department of Chemistry, National Institute of Rourkela, Rourkela, Odisha, India
| |
Collapse
|
8
|
Blake AJ, Pirih P, Qiu X, Arikawa K, Gries G. Compound eyes of the small white butterfly Pieris rapae have three distinct classes of red photoreceptors. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2019; 205:553-565. [PMID: 31123814 DOI: 10.1007/s00359-019-01330-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/25/2019] [Accepted: 03/18/2019] [Indexed: 10/26/2022]
Abstract
The two subspecies of the small white butterfly, the European Pieris rapae rapae and the Asian P. r. crucivora, differ in wing colouration. Under ultraviolet light, the wings of both male and female P. r. rapae appear dark, whereas the wings of male P. r. crucivora are dark and those of females are bright. It has been hypothesized that these sexually dimorphic wing reflections in P. r. crucivora may have induced the evolution of a fluorescing-screening pigment in the violet-opsin-expressing photoreceptors of males, thus facilitating greater wavelength discrimination near 400 nm. Comparing the compound eyes of the two subspecies using genetic, microscopical, spectrographic, and histological methods revealed no differences that would meaningfully affect photoreceptor sensitivity, suggesting that the fluorescing-screening pigment did not evolve in response to sexually dimorphic wing reflections. Our investigation further revealed that (i) the peri-rhabdomal reddish-screening pigments differ among the three ommatidial types; (ii) each of the ommatidial types exhibits a unique class of red photoreceptor with a distinct spectral peak; and (iii) the blue, green, and red photoreceptors of P. rapae exhibit a polarization sensitivity > 2, with red photoreceptors allowing for a two-channel opponency form of polarization sensitivity.
Collapse
Affiliation(s)
- Adam J Blake
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, V5A1S6, Canada.
| | - Primož Pirih
- Laboratory of Neuroethology, Sokendai-Hayama (The Graduate University for Advanced Studies), Hayama, 240-0193, Japan.,Computational Physics, Zernike Institute for Advanced Materials, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Xudong Qiu
- Graduate School of Integrated Science, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, 236-0027, Japan.,Department of Cancer Systems Imaging, The University of Texas M.D. Anderson Cancer Center, Houston, TX, 77054, USA
| | - Kentaro Arikawa
- Laboratory of Neuroethology, Sokendai-Hayama (The Graduate University for Advanced Studies), Hayama, 240-0193, Japan
| | - Gerhard Gries
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, V5A1S6, Canada
| |
Collapse
|
9
|
Steck MK, Snell-Rood EC. Specialization and accuracy of host-searching butterflies in complex and simple environments. Behav Ecol 2018. [DOI: 10.1093/beheco/ary001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Meredith K Steck
- Department of Ecology, Evolution and Behavior, University of Minnesota, Ecology Building, Upper Buford Circle, Saint Paul, MN, USA
| | - Emilie C Snell-Rood
- Department of Ecology, Evolution and Behavior, University of Minnesota, Ecology Building, Upper Buford Circle, Saint Paul, MN, USA
| |
Collapse
|
10
|
Photoreceptor projections and receptive fields in the dorsal rim area and main retina of the locust eye. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2015; 201:427-40. [PMID: 25715758 DOI: 10.1007/s00359-015-0990-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 02/10/2015] [Accepted: 02/12/2015] [Indexed: 10/24/2022]
Abstract
In many insect species, photoreceptors of a small dorsal rim area of the eye are specialized for sensitivity to the oscillation plane of polarized skylight and, thus, serve a role in sky compass orientation. To further understand peripheral mechanisms of polarized-light processing in the optic lobe, we have studied the projections of photoreceptors and their receptive fields in the main eye and dorsal rim area of the desert locust, a model system for polarization vision analysis. In both eye regions, one photoreceptor per ommatidium, R7, has a long visual fiber projecting through the lamina to the medulla. Axonal fibers from R7 receptors of the dorsal rim area have short side branches throughout the depth of the dorsal lamina and maintain retinotopic projections to the dorsal medulla following the first optic chiasma. Receptive fields of dorsal rim photoreceptors are considerably larger (average acceptance angle 33°) than those of the main eye (average acceptance angle 2.04°) and, taken together, cover almost the entire sky. The data challenge previous reports of two long visual fibers per ommatidium in the main eye of the locust and provide data for future analysis of peripheral networks underlying polarization opponency in the locust brain.
Collapse
|
11
|
Color and polarization vision in foraging Papilio. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2014; 200:513-26. [PMID: 24722674 DOI: 10.1007/s00359-014-0903-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 03/18/2014] [Accepted: 03/19/2014] [Indexed: 10/25/2022]
Abstract
This paper gives an overview of behavioral studies on the color and polarization vision of the Japanese yellow swallowtail butterfly, Papilio xuthus. We focus on indoor experiments on foraging individuals. Butterflies trained to visit a disk of certain color correctly select that color among various other colors and/or shades of gray. Correct selection persists under colored illumination, but is systematically shifted by background colors, indicating color constancy and simultaneous color contrast. While their eyes contain six classes of spectral receptors, their wavelength discrimination performance indicates that their color vision is tetrachromatic. P. xuthus innately prefers brighter targets, but can be trained to select dimmer ones under certain conditions. Butterflies trained to a dark red stimulus select an orange disk presented on a bright gray background over one on dark gray. The former probably appears darker to them, indicating brightness contrast. P. xuthus has a strong innate preference for vertically polarized light, but the selection of polarized light changes depending on the intensity of simultaneously presented unpolarized light. Discrimination of polarization also depends on background intensity. Similarities between brightness and polarization vision suggest that P. xuthus perceive polarization angle as brightness, such that vertical polarization appears brighter than horizontal polarization.
Collapse
|
12
|
Physiological basis of phototaxis to near-infrared light in Nephotettix cincticeps. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2014; 200:527-36. [DOI: 10.1007/s00359-014-0892-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 02/13/2014] [Accepted: 02/14/2014] [Indexed: 10/25/2022]
|
13
|
Friedrich M, Wood EJ, Wu M. Developmental evolution of the insect retina: insights from standardized numbering of homologous photoreceptors. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2011; 316:484-99. [DOI: 10.1002/jez.b.21424] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 05/26/2011] [Indexed: 11/09/2022]
|
14
|
Stavenga DG, Arikawa K. Photoreceptor spectral sensitivities of the Small White butterfly Pieris rapae crucivora interpreted with optical modeling. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2011; 197:373-85. [PMID: 21229251 PMCID: PMC3061408 DOI: 10.1007/s00359-010-0622-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 12/23/2010] [Accepted: 12/25/2010] [Indexed: 12/01/2022]
Abstract
The compound eye of the Small White butterfly, Pieris rapae crucivora, has four classes of visual pigments, with peak absorption in the ultraviolet, violet, blue and green, but electrophysiological recordings yielded eight photoreceptors classes: an ultraviolet, violet, blue, double-peaked blue, green, blue-suppressed-green, pale-red and deep-red class. These photoreceptor classes were identified in three types of ommatidia, distinguishable by the different eye shine spectra and fluorescence; the latter only being present in the eyes of males. We present here two slightly different optical models that incorporate the various visual pigments, the light-filtering actions of the fluorescent, pale-red and deep-red screening pigment, located inside or adjacent to the rhabdom, and the reflectance spectrum of the tapetum that abuts the rhabdom proximally. The models serve to explain the photoreceptor spectral sensitivities as well as the eye shine.
Collapse
Affiliation(s)
- Doekele G Stavenga
- Department of Neurobiophysics, University of Groningen, 9747 AG Groningen, The Netherlands.
| | | |
Collapse
|
15
|
Morehouse N, Rutowski R. In the Eyes of the Beholders: Female Choice and Avian Predation Risk Associated with an Exaggerated Male Butterfly Color. Am Nat 2010; 176:768-84. [DOI: 10.1086/657043] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
16
|
Snell‐Rood E, Papaj D. Patterns of Phenotypic Plasticity in Common and Rare Environments: A Study of Host Use and Color Learning in the Cabbage White ButterflyPieris rapae. Am Nat 2009; 173:615-31. [DOI: 10.1086/597609] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
17
|
Meyer-Rochow VB, Mishra M. Structure and putative function of dark- and light-adapted as well as UV-exposed eyes of the food store pest Psyllipsocus ramburi Sélys-longchamps (Insecta: Psocoptera: Psyllipsocidae). JOURNAL OF INSECT PHYSIOLOGY 2007; 53:157-69. [PMID: 17196612 DOI: 10.1016/j.jinsphys.2006.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2006] [Revised: 11/13/2006] [Accepted: 11/15/2006] [Indexed: 05/13/2023]
Abstract
The psocopteran Psyllipsocus ramburi Sélys-Longchamps can render food stuffs unpalatable and may serve as an intermediate host for cestodes. Its two circular compound eyes consist of about 26 facets, capped by strongly convexly curved corneae of 10-18 microm in diameter. Corneal nipples or interommatidial hairs are not developed. Beneath each corneal lens a cluster of four cone cells, enveloped by two primary pigment cells, separates an ommatidial group of eight retinula cells from the inner corneal surface. Membrane specializations of the retinula cells, known as the microvilli, measure 60 nm in diameter, and collectively make up the rhabdom, which is columnar in shape and has a distal diameter of 4 or 5 microm, depending on whether it is day- or night-adapted. Cone cell lengths measure 4.5 microm during the day and 8.5 microm at night and retinula cell screening pigments closely approach the edge of the rhabdom during the day. A 1-h exposure to UV-A (lambda(max)=351 nm) of ca. 1200 lx causes an almost total destruction of the photoreceptive membranes of the rhabdom and bleached all retinula cell screening pigments, but not the pigment grains of the primary pigment cells. Calculations, based on the anatomical data, suggest that the eyes are adapted to function under dim light levels, but cannot produce sharp images since their best possible acceptance angles are 22 degrees and 28 degrees in light- and dark-adapted states, respectively. Destruction of vision, likely affecting biorhythm and reproduction, by exposing the insects to UV-A may offer an alternative to the use of chemicals in controlling these insects.
Collapse
Affiliation(s)
- Victor Benno Meyer-Rochow
- International University Bremen, Faculty of Engineering and Sciences, D-28725 Bremen, P.O. Box 750561, Germany.
| | | |
Collapse
|
18
|
Kollmeier T, Röben F, Schenck W, Möller R. Spectral contrasts for landmark navigation. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2007; 24:1-10. [PMID: 17164837 DOI: 10.1364/josaa.24.000001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Visual robot navigation in outdoor environments would benefit from an illumination-independent representation of images. We explore how such a representation, comprising a black skyline of objects in front of a white sky, can be obtained from dual-channel spectral contrast measures. Light from sky and natural objects under different conditions of illumination was analyzed by five spectral channels: ultraviolet, blue, green, red, and near infrared. Linear discriminant analysis was applied to determine the optimal linear separation between sky and object points. A statistical comparison shows that contrasts with large differences in the wavelength of the two channels, specifically ultraviolet-infrared, blue-infrared, and ultraviolet-red, yield the best separation. Within a single channel, the best separation was obtained for ultraviolet light. The gain in separation quality when all five channels were included is relatively small.
Collapse
Affiliation(s)
- Thomas Kollmeier
- Computer Engineering Group, Faculty of Technology, Bielefeld University, Bielefeld, Germany. www.ti-uni-bielefeld.de
| | | | | | | |
Collapse
|
19
|
Rutowski RL, Macedonia JM, Morehouse N, Taylor-Taft L. Pterin pigments amplify iridescent ultraviolet signal in males of the orange sulphur butterfly, Colias eurytheme. Proc Biol Sci 2006; 272:2329-35. [PMID: 16191648 PMCID: PMC1560183 DOI: 10.1098/rspb.2005.3216] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Animal colouration is typically the product of nanostructures that reflect or scatter light and pigments that absorb it. The interplay between these colour-producing mechanisms may influence the efficacy and potential information content of colour signals, but this notion has received little empirical attention. Wing scales in the male orange sulphur butterfly (Colias eurytheme) possess ridges with lamellae that produce a brilliant iridescent ultraviolet (UV) reflectance via thin-film interference. Curiously, these same scales contain pterin pigments that strongly absorb wavelengths below 550 nm. Given that male UV reflectance functions as a sexual signal in C. eurytheme, it is paradoxical that pigments in the wing scales are highly UV absorbing. We present spectrophotometric analyses of the wings before and after pterin removal that show that pterins both depress the amplitude of UV iridescence and suppress a diffuse UV reflectance that emanates from the scales. This latter effect enhances the directionality and spectral purity of the iridescence, and increases the signal's chromaticity and potential signal content. Our findings also suggest that pterins amplify the contrast between iridescent UV reflectance and scale background colour as a male's wings move during flight.
Collapse
Affiliation(s)
- R L Rutowski
- Arizona State University, School of Life Sciences, Tempe, AZ 85287-4501, USA.
| | | | | | | |
Collapse
|
20
|
Merry JW, Morehouse NI, Yturralde K, Rutowski RL. The eyes of a patrolling butterfly: visual field and eye structure in the Orange Sulphur, Colias eurytheme (Lepidoptera, Pieridae). JOURNAL OF INSECT PHYSIOLOGY 2006; 52:240-8. [PMID: 16360167 DOI: 10.1016/j.jinsphys.2005.11.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2004] [Revised: 11/07/2005] [Accepted: 11/09/2005] [Indexed: 05/05/2023]
Abstract
Sensory information plays a critical role in determining an animal's behavior on both proximate and evolutionary timescales. Butterflies, like many other insects, use vision extensively over their lifetimes, and yet relatively little work has been published to date on their visual capabilities. We describe the visual system of a pierid butterfly, Colias eurytheme, with the ultimate goal of better understanding its role in shaping the behavior of this animal. We made several measurements: visual field dimensions, eye surface area, interommatidial angle (Deltaphi), facet diameter (D), and eye parameter (p). C. eurytheme had a large visual field and considerable regional variation in visual acuity, as inferred by Deltaphi and D. When compared to females, males had larger eye surface areas, smaller Deltaphi, and larger D in all regions except ventrally. Both sexes had proportionally large eye surface areas compared to other butterflies. Minimum p in males was small, indicating that some regions of their eyes may operate close to the diffraction limit. Finally, we found that both eye surface area and D scaled positively, but with negative allometry to body size. We discuss the relevance of these visual characteristics to the biology and behavior of C. eurytheme.
Collapse
Affiliation(s)
- Justin W Merry
- School of Life Sciences, Arizona State University, P.O. Box 874601, Tempe, AZ 85287-4601, USA.
| | | | | | | |
Collapse
|
21
|
Takemura SY, Kinoshita M, Arikawa K. Photoreceptor projection reveals heterogeneity of lamina cartridges in the visual system of the Japanese yellow swallowtail butterfly, Papilio xuthus. J Comp Neurol 2005; 483:341-50. [PMID: 15682398 DOI: 10.1002/cne.20446] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The compound eye of the butterfly Papilio xuthus is composed of three types of spectrally heterogeneous ommatidia. The ommatidia, which contain nine photoreceptor cells, R1-9, bear four (type I), three (type II), or two (type III) classes of spectral receptors in fixed combinations. The photoreceptors send their axons to the lamina, the first optic ganglion, where the R1-9 axons originating from a single ommatidium, together with some second-order neurons, form a neuronal bundle, called a lamina cartridge. We investigated the axonal structure of photoreceptors in the lamina to determine whether the cartridge structure is different between the three ommatidial types. We first characterized a photoreceptor by measuring its spectral sensitivity and then injected Lucifer Yellow. We subsequently identified the type of ommatidium of the injected photoreceptor via histological sections. We further observed the axonal structure of the photoreceptor in the lamina by laser confocal microscopy. We found that the number and length of axon collaterals markedly differ between the spectral receptors. Those having the most extensive axon collaterals, which extend into six or more surrounding cartridges, are violet receptors (R1 and R2 of type II ommatidia). UV receptors (R1 or R2 of type I ommatidia) also send collaterals into two to four neighboring cartridges. Blue receptors (R1 or R2 of type I ommatidia, R1 and R2 of type III ommatidia) have short collaterals restricted to their own cartridges. We thus conclude that the neuronal circuit of the lamina cartridge differs between the three types of ommatidia.
Collapse
Affiliation(s)
- Shin-Ya Takemura
- Graduate School of Integrated Science, Yokohama City University, Yokohama 236-0027, Japan
| | | | | |
Collapse
|
22
|
Wakakuwa M, Stavenga DG, Kurasawa M, Arikawa K. A unique visual pigment expressed in green, red and deep-red receptors in the eye of the small white butterfly, Pieris rapae crucivora. ACTA ACUST UNITED AC 2004; 207:2803-10. [PMID: 15235009 DOI: 10.1242/jeb.01078] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The full primary structure of a long-wavelength absorbing visual pigment of the small white butterfly, Pieris rapae crucivora, was determined by molecular cloning. In situ hybridization of the opsin mRNA of the novel visual pigment (PrL) demonstrated that it is expressed in the two distal photoreceptor cells (R3 and R4) as well as in the proximal photoreceptors (R5-8) in all three types of ommatidia of the Pieris eye. The main, long-wavelength band of the spectral sensitivities of the R3 and R4 photoreceptors is well described by the absorption spectrum of a visual pigment with absorption maximum at 563 nm; i.e. PrL is a visual pigment R563. The spectral sensitivities of R5-8 photoreceptors in ommatidial type I and III peak at 620 nm and those in type II ommatidia peak at 640 nm. The large shifts of the spectral sensitivities of the R5-8 photoreceptors with respect to the absorption spectrum of their visual pigment can be explained with the spectral filtering by pale-red (PR) and deep-red (DR) screening pigments that are concentrated in clusters of granules near the rhabdom boundary. The peak absorbance of the two spectral filters appears to be approximately 1 (PR) and 2 (DR).
Collapse
Affiliation(s)
- Motohiro Wakakuwa
- Graduate School of Integrated Science, Yokohama City University, Yokohama 236-0027, Japan
| | | | | | | |
Collapse
|
23
|
Qiu X, Arikawa K. Polymorphism of red receptors: sensitivity spectra of proximal photoreceptors in the small white butterfly Pieris rapae crucivora. J Exp Biol 2003; 206:2787-93. [PMID: 12847124 DOI: 10.1242/jeb.00493] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The compound eye of the small white butterfly Pieris rapae crucivora contains three anatomically distinct types of ommatidia. They differ in pigmentation around the rhabdom, colour of tapetal reflection and violet light-induced autofluorescence, indicating physiological differences between them. We recently reported that the ommatidia are in fact spectrally heterogeneous: in the distal part of the tiered retina they contain different sets of the spectral receptors R1-4. This study examines whether the ommatidia in the proximal retinal tier also show the spectral heterogeneity for the receptors R5-8. We recorded the sensitivity spectra of the proximal photoreceptors, and subsequently injected the dye Alexafluor 568 into proximal photoreceptors, to localize the cell and identify the ommatidial type to which it belonged. We analysed 13 successfully labeled proximal photoreceptors, and found that the sensitivity spectrum of the proximal photoreceptors in types I and III ommatidia peaks at 620 nm, whereas that of type II ommatidia peaks at 640 nm. The difference in the sensitivity spectra can be explained by the anatomical characteristics of each ommatidial type. This is the first demonstration of red receptor polymorphism in insects. The polymorphic red receptor system most probably enhances contrast sensitivity and/or color discrimination in the long wavelength spectral region.
Collapse
Affiliation(s)
- Xudong Qiu
- Graduate School of Integrated Science, Yokohama City University, Yokohama, Japan
| | | |
Collapse
|
24
|
Qiu X, Arikawa K. The photoreceptor localization confirms the spectral heterogeneity of ommatidia in the male small white butterfly, Pieris rapae crucivora. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2003; 189:81-8. [PMID: 12607036 DOI: 10.1007/s00359-002-0380-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2002] [Revised: 11/18/2002] [Accepted: 11/18/2002] [Indexed: 11/28/2022]
Abstract
The compound eye of Pieris rapae crucivora contains ventrally three types of histologically distinct ommatidia. An ommatidium contains nine photoreceptors, four of which (R1-4) construct the distal tier of the rhabdom. We determined the sensitivity spectra of the R1-4 distal photoreceptors in each type of ommatidia by intracellular electrophysiology and identified UV, blue, double-peaked blue, green, and a green receptor with depressed sensitivity in the violet. We localized these receptors in each type of ommatidia by injecting dye after the recording. In type I ommatidia the R1 and R2 cells are UV and blue receptors. When R1 is UV sensitive, R2 is always blue sensitive, or vice versa. R3 and R4 in type I are both green receptors. In type II, R1 and R2 are both double-peaked blue receptors and R3 and R4 are both green receptors with depressed sensitivity in the violet. In type III, R1 and R2 are both UV, and R3 and R4 are green receptors. The double-peaked blue, and green receptors with depressed sensitivity in the violet in type II ommatidia have depressed sensitivity at 420 nm, which is probably due to the filtering effect of a fluorescing material present in the type II ommatidia. Spectral heterogeneity of ommatidia seems to be a common design of insect compound eyes.
Collapse
Affiliation(s)
- X Qiu
- Graduate School of Integrated Science, Yokohama City University, Japan
| | | |
Collapse
|
25
|
Vanhoutte KJA, Eggen BJL, Janssen JJM, Stavenga DG. Opsin cDNA sequences of a UV and green rhodopsin of the satyrine butterfly Bicyclus anynana. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2002; 32:1383-1390. [PMID: 12539740 DOI: 10.1016/s0965-1748(02)00058-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The cDNAs of an ultraviolet (UV) and long-wavelength (LW) (green) absorbing rhodopsin of the bush brown Bicyclus anynana were partially identified. The UV sequence, encoding 377 amino acids, is 76-79% identical to the UV sequences of the papilionids Papilio glaucus and Papilio xuthus and the moth Manduca sexta. A dendrogram derived from aligning the amino acid sequences reveals an equidistant position of Bicyclus between Papilio and Manduca. The sequence of the green opsin cDNA fragment, which encodes 242 amino acids, represents six of the seven transmembrane regions. At the amino acid level, this fragment is more than 80% identical to the corresponding LW opsin sequences of Dryas, Heliconius, Papilio (rhodopsin 2) and Manduca. Whereas three LW absorbing rhodopsins were identified in the papilionid butterflies, only one green opsin was found in B. anynana.
Collapse
Affiliation(s)
- K J A Vanhoutte
- Department of Neurobiophysics, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| | | | | | | |
Collapse
|
26
|
Abstract
SUMMARYThe eye shine of butterflies from a large number of ommatidia was observed with a modified epi-illumination apparatus equipped with an objective lens of large numerical aperture. A few representative cases are presented: the satyrine Bicyclus anynana, the heliconian Heliconius melpomene, the small white Pieris rapae and the small copper Lycaena phlaeas. The colour of the eye shine is determined mainly by the reflectance spectrum of the tapetal mirror and the transmittance spectrum of the photoreceptor screening pigments, if present near the light-guiding rhabdom. Reflectance spectra measured from individual ommatidia show that tapetum and screening pigments are co-expressed in fixed combinations, thus determining different ommatidial classes. The classes are distributed in an irregular pattern that can be rapidly assessed with the novel epi-illumination apparatus. Many butterfly species appear to have red-reflecting ommatidia,which is interpreted to indicate the presence of red-sensitive photoreceptors.
Collapse
Affiliation(s)
- Doekele G Stavenga
- Department of Neurobiophysics, University of Groningen, NL-9747 AG Groningen, the Netherlands.
| |
Collapse
|
27
|
Abstract
SUMMARYButterflies of the genus Papilio have polarisation-sensitive photoreceptors in all regions of the eye, and different spectral types of receptor are sensitive to different e-vector orientations. We have studied the consequences of this eye design for colour vision in behavioural tests and find that Papilio spp. see false colours due to the polarisation of light. They discriminate between vertically and horizontally polarised light of the same colour in the contexts of oviposition and feeding. The discrimination depends on the spectral composition of the stimuli. In the blue and probably in the green range, discrimination does not depend on intensity. However, colour discrimination is influenced by polarisation. Thus, colour and polarisation processing are not separated in the visual system of Papilio spp. From these results, we propose hypotheses about which photoreceptors contribute to colour vision in Papilio spp. and what adaptational value such a system might have for the butterflies. Finally, we give examples for other eyes that have a similar structure.
Collapse
Affiliation(s)
- A Kelber
- Department of Zoology, Lund University, Helgonavägen 3, S-22362 Lund, Sweden.
| | | | | |
Collapse
|
28
|
Shimohigashi M, Tominaga Y. Synaptic organization in the lamina of the superposition eye of a skipper butterfly, Parnara guttata. J Comp Neurol 1999; 408:107-24. [PMID: 10331583 DOI: 10.1002/(sici)1096-9861(19990524)408:1<107::aid-cne8>3.0.co;2-#] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The first optic neuropil of the compound eye, the lamina, of the skipper butterfly Parnara guttata, was examined by light microscopy after Golgi-impregnation and by electron microscopy (EM) to clarify the cellular and synaptic organization. In the lamina, five different types of lamina neurons (L neurons) were characterized by using Golgi-impregnation. By EM, each cartridge was found to contain all nine receptor axons from an ommatidium, five L neurons, and a few putative centrifugal elements. Axons from photoreceptors (retinula cells) R2, R3, R4, R6, R7, and R8 terminate as short visual fibers (svfs) in the lamina cartridge. Those from R1, R5, and R9 penetrate the lamina and terminate in the medulla as long visual fibers (lvfs). In the cartridges, the synaptic contacts were formed from svfs onto L neurons, from the lvfs of R1 and/or R5 to the lvf of R9 and L neurons, and from the lvf of R9 to L neurons. The putative centrifugal fibers also make synapses to svfs and L neurons. At the most distal level of the cartridge, one of the centrifugal fibers containing dense-core vesicles makes presynaptic contacts to the putative long collaterals of the L neuron. A novel characteristic feature of this lamina is that svfs of R3 and R7 and the lvfs of R1 or R5 have long collaterals extending into neighboring cartridges. Presynaptic contacts were confirmed in such long collaterals from the svf. These results imply that receptor axons provide direct intercartridge connections as well as providing indirect connections to neighboring cartridges by way of their input upon L neurons.
Collapse
Affiliation(s)
- M Shimohigashi
- Division of Biology, Faculty of Science, Fukuoka University, Japan.
| | | |
Collapse
|
29
|
Arikawa K, Ozaki K, Tsuda T, Kitamoto J, Mishina Y. Two visual pigment opsins, one expressed in the dorsal region and another in the dorsal and ventral regions, of the compound eye of a dragonfly, Sympetrum frequens. INVERTEBRATE NEUROSCIENCE : IN 1997; 1:33-9. [PMID: 9372131 DOI: 10.1007/bf02331830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This paper describes the primary structure of two visual pigment opsins (DfRh1 and DfRh2) in the regionalized compound eye of a dragonfly, Sympetrum frequens. The amino acid sequences were deduced from the nucleotide sequences of cDNAs isolated from a cDNA library of the dragonfly retina. The two opsins both consist of 379 amino acids with 81.3% identity. Analysis of hydropathy indicated that the sequences have seven transmembrane domains like those of previously described opsins. Expression analysis using RT-PCR revealed that DfRh1 was present only in the dorsal region whereas DfRh2 was detected in both the dorsal and the ventral regions of the eye.
Collapse
Affiliation(s)
- K Arikawa
- Department of Biology, Yokohama City University, Japan
| | | | | | | | | |
Collapse
|