1
|
Loss of mitochondrial ATP synthase subunit beta (Atp2) alters mitochondrial and chloroplastic function and morphology in Chlamydomonas. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1533-9. [PMID: 20416275 DOI: 10.1016/j.bbabio.2010.04.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 04/12/2010] [Accepted: 04/14/2010] [Indexed: 01/22/2023]
Abstract
Mitochondrial F1FO ATP synthase (Complex V) catalyses ATP synthesis from ADP and inorganic phosphate using the proton-motive force generated by the substrate-driven electron transfer chain. In this work, we investigated the impact of the loss of activity of the mitochondrial enzyme in a photosynthetic organism. In this purpose, we inactivated by RNA interference the expression of the ATP2 gene, coding for the catalytic subunit beta, in the green alga Chlamydomonas reinhardtii. We demonstrate that in the absence of beta subunit, complex V is not assembled, respiratory rate is decreased by half and ATP synthesis coupled to the respiratory activity is fully impaired. Lack of ATP synthase also affects the morphology of mitochondria which are deprived of cristae. We also show that mutants are obligate phototrophs and that rearrangements of the photosynthetic apparatus occur in the chloroplast as a response to ATP synthase deficiency in mitochondria. Altogether, our results contribute to the understanding of the yet poorly studied bioenergetic interactions between organelles in photosynthetic organisms.
Collapse
|
2
|
Yang JH, Zhang MF, Yu JQ. Relationship between cytoplasmic male sterility and SPL-like gene expression in stem mustard. PHYSIOLOGIA PLANTARUM 2008; 133:426-434. [PMID: 18331407 DOI: 10.1111/j.1399-3054.2008.01064.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
We studied how mitochondria-nuclear interactions may give rise to cytoplasmic male sterility (CMS) in stem mustard exhibiting abnormal microsporogenesis. In this system, expression of SPL-like, the counterpart of the Arabidopsis nuclear gene SPOROCYTELESS, is specifically lost in buds of CMS plants. When mitochondrial-specific inhibitors were applied to wild-type fertile stem mustard plants, expression of SPL-like was repressed to some extent. As a consequence, the shape and vigor of pollen grains were severely affected, whereas the fertility of pistils remained unaltered. Thereby, we suggest that a probable pathway responsible for CMS in stem mustard involves mitochondrial retrograde regulation, with SPL-like as a target nuclear gene for a mitochondrial signal.
Collapse
Affiliation(s)
- Jing-Hua Yang
- Laboratory of Genetic Resources & Functional Improvement for Horticultural Plants, Department of Horticulture, Zhejiang University, Hangzhou 310029, China
| | | | | |
Collapse
|
3
|
Yang JH, Zhang MF, Yu JQ. Mitochondrial nad2 gene is co-transcripted with CMS-associated orfB gene in cytoplasmic male-sterile stem mustard (Brassica juncea). Mol Biol Rep 2007; 36:345-51. [PMID: 18046626 DOI: 10.1007/s11033-007-9185-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2007] [Accepted: 11/14/2007] [Indexed: 10/22/2022]
Abstract
The transcriptional patterns of mitochondrial respiratory related genes were investigated in cytoplasmic male-sterile and fertile maintainer lines of stem mustard, Brassica juncea. There were numerous differences in nad2 (subunit 2 of NADH dehydrogenase) between stem mustard CMS and its maintainer line. One novel open reading frame, hereafter named orfB gene, was located at the downstream of mitochondrial nad2 gene in the CMS. The novel orfB gene had high similarity with YMF19 family protein, orfB in Raphanus sativus, Helianthus annuus, Nicotiana tabacum and Beta vulgaris, orfB-CMS in Daucus carota, atp8 gene in Arabidopsis thaliana, 5' flanking of orf224 in B. napus (nap CMS) and 5' flanking of orf220 gene in CMS Brassica juncea. Three copies probed by specific fragment (amplified by primers of nad2F and nad2R from CMS) were found in the CMS line following Southern blotting digested with HindIII, but only a single copy in its maintainer line. Meanwhile, two transcripts were shown in the CMS line following Northern blotting while only one transcript was detected in the maintainer line, which were probed by specific fragment (amplified by primers of nad2F and nad2R from CMS). Meanwhile, the expression of nad2 gene was reduced in CMS bud compared to that in its maintainer line. We thus suggested that nad2 gene may be co-transcripted with CMS-associated orfB gene in the CMS. In addition, the specific fragment that was amplified by primers of nad2F and nad2R just spanned partial sequences of nad2 gene and orfB gene. Such alterations in the nad2 gene would impact the activity of NADH dehydrogenase, and subsequently signaling, inducing the expression of nuclear genes involved in male sterility in this type of cytoplasmic male sterility.
Collapse
Affiliation(s)
- Jing-Hua Yang
- Laboratory of Genetic Resources & Functional Improvement for Horticultural Plants, Department of Horticulture, Zhejiang University, Hangzhou 310029, P.R. China
| | | | | |
Collapse
|
4
|
Yang JH, Huai Y, Zhang MF. Mitochondrial atpA gene is altered in a new orf220-type cytoplasmic male-sterile line of stem mustard (Brassica juncea). Mol Biol Rep 2007; 36:273-80. [PMID: 18026850 DOI: 10.1007/s11033-007-9176-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2007] [Accepted: 10/30/2007] [Indexed: 11/26/2022]
Abstract
The purpose of this research is to identify the probable mitochondrial factor associated with cytoplasmic male sterility (cms) by comparative analysis of cms and its isogenic maintainer lines in stem mustards. Dramatic variations in the morphology of floral organs were observed in cms stem mustard. Mitochondrial atpA gene was shown to be altered in cms compared with that in its maintainer line, of which mitochondrial atpA gene from its maintainer line was sequenced to encode 507 amino acids. It was indicative of high homology with mitochondrial atpA genes from other species, even as high as 94% in similarity with Oryza sativa in terms of amino acid constituents. However, only 429 amino acids were deduced in cms showing 83% similarity with atpA gene from its maintainer line. Two copies were observed in its maintainer line, but only one was found in cms. Such numerous differences of mitochondrial atpA gene between cms and its maintainer lines may not be the results of evolutionary divergence but the rearrangements of mitochondria. Expression of mitochondrial atpA gene was shown to be down-regulated in cms by using Northern blot. Consequently, mitochondrial ATP synthesis was severely decreased more than one fold in cms stem mustard indicating deficiency in mitochondrial ATP synthesis in this type of cms. Therefore, we deduced that mitochondrial atpA gene altered in cms could be associated with male-sterility in this type of cms.
Collapse
Affiliation(s)
- Jing-Hua Yang
- Laboratory of Genetic Resources & Functional Improvement for Horticultural Plants, Department of Horticulture, Zhejiang University, Hangzhou 310029, P.R. China
| | | | | |
Collapse
|
5
|
Formanová N, Li XQ, Ferrie AMR, Depauw M, Keller WA, Landry B, Brown GG. Towards positional cloning in Brassica napus: generation and analysis of doubled haploid B. rapa possessing the B. napus pol CMS and Rfp nuclear restorer gene. PLANT MOLECULAR BIOLOGY 2006; 61:269-81. [PMID: 16786306 DOI: 10.1007/s11103-006-0008-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2005] [Accepted: 01/06/2006] [Indexed: 05/10/2023]
Abstract
The Polima (pol) system of cytoplasmic male sterility (CMS) and its fertility restorer gene Rfp are used in hybrid rapeseed production in Brassica napus. To facilitate map-based cloning of the Rfp gene, we have successfully transferred the pol cytoplasm and Rfp from the amphidiploid B. napus to the diploid species B. rapa and generated a doubled haploid pol cytoplasm B. rapa population that segregates for the Rfp gene. This was achieved through interspecific crosses, in vitro rescue of hybrid embryos, backcrosses, and microspore culture. Male fertility conditioned by Rfp was shown to co-segregate in this population with Rfp-specific mitochondrial transcript modifications and with DNA markers previously shown to be linked to Rfp in B. napus. The selfed-progeny of one doubled haploid plant were confirmed to be characteristic B. rapa diploids by cytogenetic analysis. Clones recovered from a genomic library derived from this plant line using the RFLP probe cRF1 fell into several distinct physical contigs, one of which contained Rfp-linked polymorphic restriction fragments detected by this probe. This indicates that chromosomal DNA segments anchored in the Rfp region can be recovered from this library and that the library may therefore prove to be a useful resource for the eventual isolation of the Rfp gene.
Collapse
Affiliation(s)
- Natasa Formanová
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
6
|
Kim DH, Kim BD. The organization of mitochondrial atp6 gene region in male fertile and CMS lines of pepper (Capsicum annuum L.). Curr Genet 2005; 49:59-67. [PMID: 16328502 DOI: 10.1007/s00294-005-0032-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2005] [Revised: 09/09/2005] [Accepted: 09/20/2005] [Indexed: 10/25/2022]
Abstract
The mitochondrial atp6 gene in male fertile (N) and CMS (S) pepper has previously been compared and was found to be present in two copies (Kim et al. in J Kor Soc Hort Sci 42:121-127 2001). In the current study, these atp6 copies were amplified by an inverse PCR technique, and the coding region as well as the 5' and 3' flanking regions were sequenced. The atp6 copies in CMS pepper were detected as one intact gene and one pseudogene, truncated at the 3' coding region. When the atp6 genes in pepper were compared to other plant species, pepper, potato, and petunia all possessed a sequence of 12 identical amino acids at the 3' extended region, which was considered a hallmark of the Solanaceae family. Northern blot analysis showed differences in mRNA band patterns between CMS and restorer lines, indicating that atp6 gene is one of the candidates for CMS in pepper.
Collapse
Affiliation(s)
- Dong Hwan Kim
- Department of Plant Science, College of Agriculture and Life Sciences, and Center for Plant Molecular Genetics & Breeding Research, Seoul National University, Seoul 151-921, Korea
| | | |
Collapse
|
7
|
Kempken F, Pring D. Plant Breeding: Male Sterility in Higher Plants - Fundamentals and Applications. ACTA ACUST UNITED AC 1999. [DOI: 10.1007/978-3-642-59940-8_6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
8
|
|
9
|
Li XQ, Jean M, Landry BS, Brown GG. Restorer genes for different forms of Brassica cytoplasmic male sterility map to a single nuclear locus that modifies transcripts of several mitochondrial genes. Proc Natl Acad Sci U S A 1998; 95:10032-7. [PMID: 9707595 PMCID: PMC21456 DOI: 10.1073/pnas.95.17.10032] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The oilseed rape plant, Brassica napus, possesses two endogenous male sterile cytoplasms, nap and pol. Previous studies have shown that nuclear restoration of pol cytoplasmic male sterility (CMS) is conditioned by a gene, Rfp, that is also involved in modifying transcripts of the pol CMS-associated orf224/atp6 mtDNA region. We now find that the nap nuclear restorer gene Rfn apparently is identical to Mmt, a gene that conditions the modification of transcripts from several different mtDNA regions, including one that is associated with nap CMS and contains orf222, a chimeric gene related to orf224. Mmt, in turn, is found to be allelic to Rfp, suggesting that restorer genes for the two cytoplasms represent different alleles or haplotypes of a single nuclear locus. This view is supported by restriction fragment length polymorphism mapping studies that indicate that Rfn and Rfp map to the same chromosomal position. Thus, in contrast to CMS in other species, different forms of Brassica CMS are restored by alleles of a single nuclear locus, and the restoration properties of these alleles reflect their involvement in the modification of transcripts of corresponding CMS-associated mtDNA regions. A survey of 51 varieties from 8 Brassica and Sinapis species failed to find evidence of Rfn(Mmt) in other than fertility-restored, nap cytoplasm B. napus. This suggests that Rfn(Mmt) arose in Brassica with nap cytoplasm and that the necessity for fertility restoration may have provided the selective pressure for its origin and maintenance.
Collapse
Affiliation(s)
- X Q Li
- Department of Biology, McGill University, Montreal, Quebec H3A 1B1, Canada
| | | | | | | |
Collapse
|
10
|
Landgren M, Zetterstrand M, Sundberg E, Glimelius K. Alloplasmic male-sterile Brassica lines containing B. tournefortii mitochondria express an ORF 3' of the atp6 gene and a 32 kDa protein. off. PLANT MOLECULAR BIOLOGY 1996; 32:879-90. [PMID: 8980539 DOI: 10.1007/bf00020485] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Analyses of mitochondrial transcription and in organello translation were performed with the Brassica tournefortii cytoplasm. This cytoplasm causes alloplasmic male sterility when combined with the nuclear genomes of B. napus and B. juncea. Mitochondrial RNA and protein banding patterns were compared between the fertile wild species B. tournefortii, an alloplasmic male-sterile B. juncea line, an alloplasmic male-sterile B. napus line and an alloplasmic B. napus line with restored fertility. The analyses were carried out to identify differences in gene expression and to investigate whether alterations in gene expression accompanied male sterility. A difference in transcription patterns between the fertile B. tournefortii and the alloplasmic lines was found for the atp6 gene. The atp6 region was investigated further, since a similar alteration in atp6 transcription has been observed in two other Brassica cytoplasms which are associated with cytoplasmic male sterility (CMS). The additional longer atp6 transcript detected in the alloplasmic lines in the present study was found to contain an open reading frame (ORF) located downstream of the atp6 gene. DNA sequencing revealed that the ORF, orf263, could encode a protein with a predicted molecular weight of about 29 kDa. In organello analysis detected two proteins of 29 and 32 kDa respectively, which were found only in the alloplasmic lines. Furthermore, the 32 kDa protein accompanied male sterility since it was absent in alloplasmic plants restored to fertility. The protein analysis might indicate that orf263 is translated and causes CMS.
Collapse
Affiliation(s)
- M Landgren
- Department of Plant Breeding Research, Uppsala Genetic Center, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | | | | |
Collapse
|
11
|
Handa H, Bonnard G, Grienenberger JM. The rapeseed mitochondrial gene encoding a homologue of the bacterial protein Ccl1 is divided into two independently transcribed reading frames. MOLECULAR & GENERAL GENETICS : MGG 1996; 252:292-302. [PMID: 8842149 DOI: 10.1007/bf02173775] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In the rapeseed mitochondrial genome we identified sequences that have a high similarity to those of a bacterial gene involved in the biogenesis of cytochromes c designated ccl1. The structure of this gene is quite unusual. In rapeseed mitochondria, the ccl1-homologous (orf577) sequence is divided into two parts, which are at least 45 kb apart. These two parts are transcribed separately and their transcripts are edited similarly to the homologous transcripts of wheat and Oenothera. However it was impossible to identify a mature transcript covering the whole coding region, a result that excludes a trans-splicing event. No other copy of this gene was found in either the nuclear genome or the mitochondrial genome. The protein product of orf577 is present in rapeseed mitochondria. These results raise the possibility that this divided gene might be functional and active in rapeseed mitochondria through a novel mechanism of gene expression.
Collapse
Affiliation(s)
- H Handa
- Department of Cell Biology, National Institute of Agrobiological Resources, Ibaraki, Japan
| | | | | |
Collapse
|
12
|
Handa H, Gualberto JM, Grienenberger JM. Characterization of the mitochondrial orfB gene and its derivative, orf224, a chimeric open reading frame specific to one mitochondrial genome of the "Polima" male-sterile cytoplasm in rapeseed (Brassica napus L.). Curr Genet 1995; 28:546-52. [PMID: 8593685 DOI: 10.1007/bf00518167] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
orf224 is a novel reading frame present upstream of the atp6 gene in the mitochondria of "Polima" cms cytoplasm of rapeseed. In order to determine the origin of orf224, the sequences homologous to orf224 were isolated and characterized. Sequence analysis indicated that orf224 originated by recombination events involving the 5'-flanking region and the amino-terminal segment of the coding region of orf158 (well-known as orfB in other plants), part of exon 1 of the ribosomal protein S3 (rps3) gene, and an unidentified sequence. Transcripts of the orf158 gene were found to be edited at three positions, one of which induces an amino-acid change, while orf224 transcripts have only one RNA editing site within the region homologous to the rps3 gene. This editing site is also present in the proper rps3 transcripts. This result indicates that editing of orf224 occurred because of the sequence homology to rps3. Polyclonal antibodies prepared against a rapeseed ORF158 fusion protein specifically recognize a 18-kDa protein in the membrane fractions of mitochondria from both normal and cms rapeseed.
Collapse
Affiliation(s)
- H Handa
- Department of Cell Biology, National Institute of Agrobiological Resources, Ibaraki, Japan
| | | | | |
Collapse
|
13
|
Akagi H, Nakamura A, Sawada R, Oka M, Fujimura T. Genetic diagnosis of cytoplasmic male sterile cybrid plants of rice. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1995; 90:948-951. [PMID: 24173048 DOI: 10.1007/bf00222907] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/1994] [Accepted: 01/03/1995] [Indexed: 06/02/2023]
Abstract
Twelve Japanese rice cultivars were converted to CMS by asymmetric protoplast fusion with MTC-5A, the cytoplasm of which was derived from an indica rice, Chinsurah Boro II. With the exception of the cybrids that had a nucleus from Hoshiyutaka, most of these cybrid plants were sterile. The unique sequence downstream from the mitochondrial atp6 of MTC-5A was specifically amplified in the sterile cybrid plants by PCR. All progenies of the cybrid plants carrying this unique sequence were sterile. On the other hand, in some of the sterile cybrid plants in which the unique sequence was not amplified by PCR, fertility was recovered in their progenies. Somaclonal mutation may have caused sterility in these cybrids. Only the cybrid plants that had the unique sequence detected by PCR were CMS. Thus, the CMS plants can be selected rapidly and easily by PCR, at an early stage of plant regeneration. Soon after transplanting the regenerated plants to a green house, fertile cybrids and sterile cybrids produced by somaclonal mutation can be removed. These findings also show that the unique region downstream from atp6 is tightly linked with the CMS phenotype.
Collapse
Affiliation(s)
- H Akagi
- Plant Biotechnology Laboratory, Life Science Institute, Mitsui Toatsu Chemicals Inc., Togo 1144, 297, Mobara, Japan
| | | | | | | | | |
Collapse
|
14
|
Hahn V, Friedt W. Molecular analysis of the cms-inducing MAX1 cytoplasm in sunflower. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1994; 89:379-85. [PMID: 24177857 DOI: 10.1007/bf00225170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/1994] [Accepted: 02/11/1994] [Indexed: 05/23/2023]
Abstract
DNA from different male sterility-inducing sunflower cytoplasms was investigated in order to determine whether the cytoplasmic male sterility-inducing insertion of the PET1 mitochondrial DNA (mtDNA) is present in other cytoplasms. In one of these cytoplasms (MAX1) the mtDNA shows 93% sequence homology to the orfH522 of the PET1 mtDNA, which is probably responsible for cytoplasmic male sterility (cms) in the latter cytoplasm. In contrast to the situation in the PET1 mitochondrial genome, no transcription of the orfH522-related sequence could be detected in lines with the MAX1 cytoplasm. The organization of the MAX1 mtDNA and the mtDNA of a fertile line is shown to be widely different. In the study described here, homology to the mtDNA insertion was also detected in a fertile Helianthus maximiliani population, whereas DNA of four other H. maximiliani populations showed no hybridization signals.
Collapse
Affiliation(s)
- V Hahn
- Institute of Agronomy and Plant Breeding I, Justus-Liebig-University, Ludwigstr. 23, D-35390, Giessen, Germany
| | | |
Collapse
|
15
|
Stahl R, Sun S, L'Homme Y, Ketela T, Brown GG. RNA editing of transcripts of a chimeric mitochondrial gene associated with cytoplasmic male-sterility in Brassica. Nucleic Acids Res 1994; 22:2109-13. [PMID: 8029019 PMCID: PMC308128 DOI: 10.1093/nar/22.11.2109] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The orf224 gene is a chimeric open reading frame associated with the Polima or pol cytoplasmic male sterility of Brassica napus. The first 58 codons and 5' upstream region of orf224 are derived from a conventional mitochondrial gene, orfB, while the origin of the remaining portion of the gene is unknown. Transcripts of the orf224 gene were found to be edited at a single site in the region of the gene that does not correspond to a known sequence. Oligonucleotides corresponding to the edited and unedited forms were shown to hybridize specifically to respective in vitro orf224 transcripts. Analysis of floral mtRNA by this method indicated that virtually all orf224 transcripts of both sterile and fertile, nuclear-restored pol cytoplasm plants are edited. Our results indicate that transcripts of novel, CMS-associated genes may be edited, but that, at least in this case, the degree of editing does not appear to be directly related to the male-sterile phenotype.
Collapse
Affiliation(s)
- R Stahl
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
16
|
Grelon M, Budar F, Bonhomme S, Pelletier G. Ogura cytoplasmic male-sterility (CMS)-associated orf138 is translated into a mitochondrial membrane polypeptide in male-sterile Brassica cybrids. MOLECULAR & GENERAL GENETICS : MGG 1994; 243:540-7. [PMID: 8208245 DOI: 10.1007/bf00284202] [Citation(s) in RCA: 115] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Transcription of a putative mitochondrial gene (orf138) has previously been correlated with Ogura cytoplasmic male-sterility (CMS) in rapeseed cybrids. In this paper, studies performed on a Brassica cybrid with a different organization of the orf138 locus confirm this association. We also show that mitochondria isolated from male-sterile rapeseed plants synthesize a polypeptide of 19 kDa, which is absent in fertile revertants. Antibodies against a glutathione S-transferase-ORF138 fusion protein were raised to establish that this 19 kDa polypeptide is the product of orf138. The anti-ORF138 serum was used to demonstrate that the orf138 translation product occurs only in sterile cybrids and co-purifies with the mitochondrial membrane fraction.
Collapse
Affiliation(s)
- M Grelon
- Laboratoire de Biologie cellulaire, INRA centre de Versailles, France
| | | | | | | |
Collapse
|
17
|
Akagi H, Sakamoto M, Shinjyo C, Shimada H, Fujimura T. A unique sequence located downstream from the rice mitochondrial atp6 may cause male sterility. Curr Genet 1994; 25:52-8. [PMID: 7915966 DOI: 10.1007/bf00712968] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Asymmetric cell-fusion of the japonica cultivar of Oryza sativa (rice) with cytoplasmic-male-sterile (CMS) plants bearing cytoplasm derived from Chinsurah Boro II, resulted in two classes of cytoplasmic hybrids (cybrids), fertile and CMS. Southern-blot analysis of the mitochondrial DNA (mtDNA) indicates recombination events around a number of genes; however, the appearance of the CMS character is tightly correlated to reorganization around the atp6 gene, suggesting recombination downstream from the atp6 gene is involved in CMS. The nucleotide sequence downstream from atp6 contains a pseudogene which was probably created by recombination of the mitochondrial genome. Sense and antisense transcripts of the downstream region of atp6 were found in CMS- and restored CMS (fertile)-lines, but not in the normal (fertile) line. In the CMS line, several antisense transcripts of the atp6 gene were also found. However, in the restored line which contains a nuclear-encoded gene, Rf-1, the levels of these transcripts were lower than in the CMS line. These results suggest abnormal transcripts of the atp6 gene produced in the antisense direction may be involved in CMS, and that products of the nuclear-encoded restorer gene may reduce abnormal transcription in this region of the mitochondrial genome.
Collapse
Affiliation(s)
- H Akagi
- Plant Biotechnology Laboratory, Mitsui Toatsu Chemicals, Inc., Mobara, Japan
| | | | | | | | | |
Collapse
|
18
|
Singh M, Brown GG. Characterization of expression of a mitochondrial gene region associated with the Brassica "Polima" CMS: developmental influences. Curr Genet 1993; 24:316-22. [PMID: 8252642 DOI: 10.1007/bf00336783] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The mitochondrial genome of the Polima (pol) male-sterile cytoplasm of Brassica napus contains a chimeric 224-codon open reading frame (orf224) that is located upstream of, and co-transcribed with, the atp6 gene. The N-terminal coding region of orf224 is derived from a conventional mitochondrial gene, orfB, while the origin of the remainder of the sequence is unknown. We show that an apparently functional copy of orfB is present in the pol mitochondrial genome, indicating that the pol CMS is not caused by the absence of an intact, expressed orfB gene. The 5' termini of orf224/atp6 transcripts present in both sterile and fertility-restored (Rf) pol cytoplasm plants are shown to map to sequences resembling mitochondrial transcription-initiation sites, whereas the 5' termini of two transcripts specific to restored lines map to sequences which resemble neither one another nor mitochondrial promoter motifs. It is suggested that the complex orf224/atp6 transcript pattern of Rf plants is generated by a combination of multiple transcription initiation and processing events and that the nuclear restorer gene acts to specifically alter orf224/atp6 transcripts by affecting RNA processing. Northern analyses demonstrate that the effect of the restorer gene on orf224/atp6 transcripts is not tissue or developmental-stage specific. However, the expression of the atp6 region is developmentally regulated in pol plants, resulting in decreased levels of monocistronic atp6 transcripts in floral tissue relative to seedlings. It is suggested that this developmental regulation may be related to the absence of overt phenotypic effects of the CMS mutation in vegetative tissues.
Collapse
Affiliation(s)
- M Singh
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
19
|
Krishnasamy S, Makaroff CA. Characterization of the radish mitochondrial orfB locus: possible relationship with male sterility in Ogura radish. Curr Genet 1993; 24:156-63. [PMID: 8358822 DOI: 10.1007/bf00324680] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The orfB locus of the normal (fertile) and Ogura (male-sterile) radish mitochondrial genomes has been characterized in order to determine if this region, which has previously been correlated with cytoplasmic male sterility (CMS) in Brassica napus cybrids (Bonhomme et al. 1991; Temple et al. 1992), could also be involved in radish CMS. In normal radish, orfB is expressed as a 600-nucleotide (nt) transcript. In Ogura radish, orfB is present as the second gene of a 1200-nt transcript that also contains a 138-codon open reading frame (orf138). Sequences showing similarity to orf138 are present in normal radish, but are not expressed.
Collapse
Affiliation(s)
- S Krishnasamy
- Department of Chemistry, Miami University, Oxford, OH 45056
| | | |
Collapse
|
20
|
L'Homme Y, Brown GG. Organizational differences between cytoplasmic male sterile and male fertile Brassica mitochondrial genomes are confined to a single transposed locus. Nucleic Acids Res 1993; 21:1903-9. [PMID: 8388101 PMCID: PMC309431 DOI: 10.1093/nar/21.8.1903] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Comparison of the physical maps of male fertile (cam) and male sterile (pol) mitochondrial genomes of Brassica napus indicates that structural differences between the two mtDNAs are confined to a region immediately upstream of the atp6 gene. Relative to cam mtDNA, pol mtDNA possesses a 4.5 kb segment at this locus that includes a chimeric gene that is cotranscribed with atp6 and lacks an approximately 1kb region located upstream of the cam atp6 gene. The 4.5 kb pol segment is present and similarly organized in the mitochondrial genome of the common nap B.napus cytoplasm; however, the nap and pol DNA regions flanking this segment are different and the nap sequences are not expressed. The 4.5 kb CMS-associated pol segment has thus apparently undergone transposition during the evolution of the nap and pol cytoplasms and has been lost in the cam genome subsequent to the pol-cam divergence. This 4.5 kb segment comprises the single DNA region that is expressed differently in fertile, pol CMS and fertility restored pol cytoplasm plants. The finding that this locus is part of the single mtDNA region organized differently in the fertile and male sterile mitochondrial genomes provides strong support for the view that it specifies the pol CMS trait.
Collapse
Affiliation(s)
- Y L'Homme
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
21
|
Handa H. RNA editing of rapeseed mitochondrial atp9 transcripts: RNA editing changes four amino acids, but termination codon is already encoded by genomic sequence. IDENGAKU ZASSHI 1993; 68:47-54. [PMID: 8318255 DOI: 10.1266/jjg.68.47] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The gene encoding subunit 9 of Fo-ATPase of rapeseed mitochondria has been isolated. The complete genomic DNA sequence and cDNA sequence corresponding to the atp9 gene transcript have been determined by a method involving cDNA synthesis, using specific oligonucleotides as primers, followed by PCR amplification, cloning and sequencing of the amplification products. In comparison of cDNA sequences to genomic one, four modifications, C-to-U conversions, have been found. When compared with RNA editing patterns of atp9 transcripts among plant mitochondria, that of rapeseed atp9 transcript is more simple; there are only four editing sites on the coding region, and its termination codon is already encoded by genomic sequence.
Collapse
Affiliation(s)
- H Handa
- Department of Cell Biology, National Institute of Agrobiological Resources, Ibaraki, Japan
| |
Collapse
|
22
|
HANDA H. RNA editing of rapeseed mitochondrial atp9 transcripts: RNA editing changes four amino acids, but termination codon is already encoded by genomic sequence. Genes Genet Syst 1993. [DOI: 10.1266/ggs.68.47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
23
|
D'Ambrosio L, Siculella L, de Tuglie A, de Leo F, Sunseri F, Gallerani R. Characterization of the 8 KBP Region of the mtDNAs of Several Cytoplasm Male-Sterile Sunflower Lines Coding for atpA and orf522 Genes. BIOTECHNOL BIOTEC EQ 1993. [DOI: 10.1080/13102818.1993.10818704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
24
|
Bonhomme S, Budar F, Lancelin D, Small I, Defrance MC, Pelletier G. Sequence and transcript analysis of the Nco2.5 Ogura-specific fragment correlated with cytoplasmic male sterility in Brassica cybrids. MOLECULAR & GENERAL GENETICS : MGG 1992; 235:340-8. [PMID: 1281515 DOI: 10.1007/bf00279379] [Citation(s) in RCA: 147] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Sequence analysis of the Ogura-specific mitochondrial DNA (mtDNA) fragment isolated previously from Brassica cybrids carrying Ogura cytoplasmic male sterility (cms) revealed a tRNA(fMet) sequence, a putative 138 amino acid open reading frame (orf138), and a 158 amino acid ORF (orf158) previously observed in mitochondrial genomes from several other plant species. Transcription mapping showed that both ORFs are present on a 1.4 kb cms-specific transcript. The orf158 sequence is also transcribed in fertile plants on a different mRNA, and thus is unlikely to be related to cms. On the other hand, fertile revertant plants lack transcripts of the orf138 sequence, whose possible role in the mechanism of Ogura cms is discussed.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Brassica/genetics
- Brassica/physiology
- Cloning, Molecular
- DNA, Mitochondrial/genetics
- DNA, Mitochondrial/isolation & purification
- Deoxyribonucleases, Type II Site-Specific
- Fertility/genetics
- Genotype
- Molecular Sequence Data
- Open Reading Frames
- RNA/genetics
- RNA/isolation & purification
- RNA, Messenger/genetics
- RNA, Transfer, Amino Acyl/genetics
- RNA, Transfer, Met
- Restriction Mapping
- Sequence Homology, Amino Acid
- Transcription, Genetic
Collapse
Affiliation(s)
- S Bonhomme
- Laboratorie de Biologie Cellulaire, INRA Centre de Versailles, France
| | | | | | | | | | | |
Collapse
|
25
|
Handa H, Nakajima K. RNA editing of atp6 transcripts from male-sterile and normal cytoplasms of rapeseed (Brassica napus L.). FEBS Lett 1992; 310:111-4. [PMID: 1397257 DOI: 10.1016/0014-5793(92)81308-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The complete cDNA sequence corresponding to the rapeseed atp6 gene transcript (coding for subunit 6 of F0-ATPase) has been determined by a method involving cDNA synthesis, using specific oligonucleotides as primers, followed by PCR amplification, cloning and sequencing of the amplification products. Only one modification, a C-to-U conversion, has been found when compared to the genomic mitochondrial DNA sequence. Comparison of the extent and frequency of RNA editing of the pol cytoplasmic male sterile (cms) atp6 transcript with those of normal atp6 transcript indicates that there is no variation between the editing status of the atp6 transcripts from pol cms and normal cytoplasms.
Collapse
Affiliation(s)
- H Handa
- Department of Cell Biology, National Institute of Agrobiological Resources, Tsukuba Science City, Japan
| | | |
Collapse
|