1
|
Korf HW. Photoneuroendocrine, circadian and seasonal systems: from photoneuroendocrinology to circadian biology and medicine. Cell Tissue Res 2024:10.1007/s00441-024-03913-7. [PMID: 39264444 DOI: 10.1007/s00441-024-03913-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 07/30/2024] [Indexed: 09/13/2024]
Abstract
This contribution highlights the scientific development of two intertwined disciplines, photoneuroendocrinology and circadian biology. Photoneuroendocrinology has focused on nonvisual photoreceptors that translate light stimuli into neuroendocrine signals and serve rhythm entrainment. Nonvisual photoreceptors first described in the pineal complex and brain of nonmammalian species are luminance detectors. In the pineal, they control the formation of melatonin, the highly conserved hormone of darkness which is synthesized night by night. Pinealocytes endowed with both photoreceptive and neuroendocrine capacities function as "photoneuroendocrine cells." In adult mammals, nonvisual photoreceptors controlling pineal melatonin biosynthesis and pupillary reflexes are absent from the pineal and brain and occur only in the inner layer of the retina. Encephalic photoreceptors regulate seasonal rhythms, such as the reproductive cycle. They are concentrated in circumventricular organs, the lateral septal organ and the paraventricular organ, and represent cerebrospinal fluid contacting neurons. Nonvisual photoreceptors employ different photopigments such as melanopsin, pinopsin, parapinopsin, neuropsin, and vertebrate ancient opsin. After identification of clock genes and molecular clockwork, circadian biology became cutting-edge research with a focus on rhythm generation. Molecular clockworks tick in every nucleated cell and, as shown in mammals, they drive the expression of more than 3000 genes and are of overall importance for regulation of cell proliferation and metabolism. The mammalian circadian system is hierarchically organized; the central rhythm generator is located in the suprachiasmatic nuclei which entrain peripheral circadian oscillators via multiple neuronal and neuroendocrine pathways. Disrupted molecular clockworks may cause various diseases, and investigations of this interplay will establish a new discipline: circadian medicine.
Collapse
Affiliation(s)
- Horst-Werner Korf
- Institute Anatomy I, Medical Faculty, Heinrich Heine University, Duesseldorf, Federal Republic of Germany.
| |
Collapse
|
2
|
Smith KT, Bhullar BAS, Köhler G, Habersetzer J. The Only Known Jawed Vertebrate with Four Eyes and the Bauplan of the Pineal Complex. Curr Biol 2018; 28:1101-1107.e2. [PMID: 29614279 DOI: 10.1016/j.cub.2018.02.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/22/2017] [Accepted: 02/13/2018] [Indexed: 11/29/2022]
Abstract
The pineal and parapineal organs are dorsal outpocketings of the vertebrate diencephalon that play key roles in orientation and in circadian and annual cycles. Lampreys are four eyed in that both the pineal and parapineal form eyelike photosensory structures, but the pineal is the dominant or sole median photosensory structure in most lower vertebrate clades. The pineal complex has been thought to evolve in a single direction by losing photosensory and augmenting secretory function in the transitions from three-eyed lower vertebrates to two-eyed mammals and archosaurs [1-3]. Yet the widely accepted elaboration of the parapineal instead of the pineal as the primary median photosensory organ [4] in Lepidosauria (lizards, snakes, and tuataras) hints at a more complex evolutionary history. Here we present evidence that a fourth eye re-evolved from the pineal organ at least once within vertebrates, specifically in an extinct monitor lizard, Saniwa ensidens, in which pineal and parapineal eyes were present simultaneously. The tandem midline location of these structures confirms in a striking fashion the proposed homology of the parietal eye with the parapineal organ and refutes the classical model of pineal bilaterality. It furthermore raises questions about the evolution and functional interpretation of the median photosensory organ in other tetrapod clades.
Collapse
Affiliation(s)
- Krister T Smith
- Department of Messel Research and Mammalogy, Senckenberg Research Institute, Senckenberganlage 25, 60325 Frankfurt am Main, Germany; Department of Geology and Geophysics and Peabody Museum of Natural History, Yale University, 210 Whitney Avenue, New Haven, CT 06511, USA.
| | - Bhart-Anjan S Bhullar
- Department of Geology and Geophysics and Peabody Museum of Natural History, Yale University, 210 Whitney Avenue, New Haven, CT 06511, USA
| | - Gunther Köhler
- Section of Herpetology, Senckenberg Research Institute, Senckenberganlage 25, 60325 Frankfurt am Main, Germany
| | - Jörg Habersetzer
- Department of Messel Research and Mammalogy, Senckenberg Research Institute, Senckenberganlage 25, 60325 Frankfurt am Main, Germany
| |
Collapse
|
3
|
Kappers JA. The Pineal Organ: An Introduction. CIBA FOUNDATION SYMPOSIUM - THE PINEAL GLAND 2008. [DOI: 10.1002/9780470715376.ch2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
4
|
|
5
|
Ekström P, Meissl H. Evolution of photosensory pineal organs in new light: the fate of neuroendocrine photoreceptors. Philos Trans R Soc Lond B Biol Sci 2004; 358:1679-700. [PMID: 14561326 PMCID: PMC1693265 DOI: 10.1098/rstb.2003.1303] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Pineal evolution is envisaged as a gradual transformation of pinealocytes (a gradual regression of pinealocyte sensory capacity within a particular cell line), the so-called sensory cell line of the pineal organ. In most non-mammals the pineal organ is a directly photosensory organ, while the pineal organ of mammals (epiphysis cerebri) is a non-sensory neuroendocrine organ under photoperiod control. The phylogenetic transformation of the pineal organ is reflected in the morphology and physiology of the main parenchymal cell type, the pinealocyte. In anamniotes, pinealocytes with retinal cone photoreceptor-like characteristics predominate, whereas in sauropsids so-called rudimentary photoreceptors predominate. These have well-developed secretory characteristics, and have been interpreted as intermediaries between the anamniote pineal photoreceptors and the mammalian non-sensory pinealocytes. We have re-examined the original studies on which the gradual transformation hypothesis of pineal evolution is based, and found that the evidence for this model of pineal evolution is ambiguous. In the light of recent advances in the understanding of neural development mechanisms, we propose a new hypothesis of pineal evolution, in which the old notion 'gradual regression within the sensory cell line' should be replaced with 'changes in fate restriction within the neural lineage of the pineal field'.
Collapse
Affiliation(s)
- Peter Ekström
- Institute of Cell and Organism Biology, Zoology Building, Lund University, Helgonavägen 3, S-223 62 Lund, Sweden.
| | | |
Collapse
|
6
|
Vigh-Teichmann I, Vigh B. Immunocytochemistry and calcium cytochemistry of the mammalian pineal organ: A comparison with retina and submammalian pineal organs. Microsc Res Tech 1992; 21:227-41. [PMID: 1351408 DOI: 10.1002/jemt.1070210306] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Morphologically the mammalian pineal organ is a part of the diencephalon. It represents a neural tissue histologically ("pineal nervous tissue") and is dissimilar to endocrine glands. Submammalian pinealocytes resemble the photoreceptor cells of the retina, and some of their cytologic characteristics are preserved in the mammalian pinealocytes together with compounds demonstrable by cyto- and immunocytochemistry and participating in photochemical transduction. In our opinion, the main trend of today's literature on pineal functions--only considering the organ as a common endocrine gland--deviates from this structural and histochemical basis. In mammals, similar to the lower vertebrates, the pinealocytes have a sensory cilium developed to a different extent. The axonic processes of pinealocytes form ribbon-containing synapses on secondary pineal neurons, and/or neurohormonal terminals on the basal lamina of the surface of the pineal nervous tissue facing the perivascular spaces. Ribbon-containing axo-dendritic synapses were found in the rat, cat, guinea pig, ferret, and hedgehog. In the cat, we found GABA-immunoreactive interneurons, while the secondary nerve cells, whose axons enter the habenular commissure, were GABA-immunonegative. GABA-immunogold-labeled axons run between pinealocytes and form axo-dendritic synapses on intrapineal neurons. There is a similarity between the light and electron microscopic localization of Ca ions in the mammalian and submammalian pineal organs and retina of various vertebrates. Calcium pyroantimonate deposits--showing the presence of Ca ions--were found in the outer segments of the pineal and retinal photoreceptors of the frog. In the rat and human pineal organ, calcium accumulated on the plasmalemma of pinealocytes and intercellularly among pinealocytes. The formation of pineal concrements in mammals may be connected to the high need for Ca exchange of the pinealocytes for their supposed receptor and effector functions.
Collapse
Affiliation(s)
- I Vigh-Teichmann
- Neuroendocrine Section, Hungarian Academy of Sciences, Semmelweis University Medical School, Budapest
| | | |
Collapse
|
7
|
|
8
|
Yeager VL, Taylor JJ, Chang PL. Light microscopy of the pineal organ of two primitive lizards, Platyurus platyurus and Hemidactylus frenatus. Anat Rec (Hoboken) 1983; 206:283-8. [PMID: 6614510 DOI: 10.1002/ar.1092060306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
9
|
Leonhardt VH. Ependym und Circumventriculäre Organe. HANDBUCH DER MIKROSKOPISCHEN ANATOMIE DES MENSCHEN 1980. [DOI: 10.1007/978-3-642-81358-0_3] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
10
|
|
11
|
Pévet P. Secretory processes in the mammalian pinealocyte under natural and experimental conditions. PROGRESS IN BRAIN RESEARCH 1979; 52:149-94. [PMID: 398531 DOI: 10.1016/s0079-6123(08)62920-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
12
|
Gundy GC, Wurst GZ. Parietal eye-pineal morphology in lizards and its physiological implications. Anat Rec (Hoboken) 1976; 185:419-31. [PMID: 970660 DOI: 10.1002/ar.1091850404] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Pineal complexes in 85 species of lizards examined comprised seven morphological types. Members of the same family do not necessarily have the same pineal complex type. "Regressive" parietal eyes were not common except in certain arboreal lizards, primarily from the family Chameleontidae. The parietal eye is often retained in burrowing lizards, presumably because these animals are occasionally exposed to light and the parietal eye is a more suitable photoreceptor for a burrower than are lateral eyes. The pineal of certain lizards possesses a finger-like projection that extends toward the parietal eye. This extension, along with pineal wall convolutions, results in more photoreceptor cells oriented for maximal absorption of light. It is rare to find convolutions and an extension in the same pineal. Cartilage deposits and blood sinuses may modify the intensity and wavelength of light reaching the pineal. These observations suggest that the intracranial pineal of lizards is a more important photoreceptor than was previously realized, a situation that may be a factor in the occasional "failure" of parietalectomy experiments.
Collapse
|
13
|
Reuter M. Ultrastructure of the Epithelium and the Sensory Receptors in the Body Wall, the Proboscis and the Pharynx of Gyratrix hermaphroditus (Turbellaria, Rhabdocoela). ZOOL SCR 1975. [DOI: 10.1111/j.1463-6409.1975.tb00730.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Retinal and extraretinal photoreceptors mediate entrainment of the circadian locomotor rhythm in lizards. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 1973. [DOI: 10.1007/bf00696895] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
15
|
Collin JP, Meiniel A. M�tabolisme des indolamines dans l'organe pin�al de Lacerta (Reptiles, Lacertiliens). Cell Tissue Res 1973. [DOI: 10.1007/bf00306715] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
|
17
|
Meiniel A, Collin JP, Hartwig HG. Pin�ale et troisi�me oeil de Lacerta vivipara (J.), au cours de la vie embryonnaire et postnatale. Cell Tissue Res 1973. [DOI: 10.1007/bf00306688] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Oksche A, Kirschstein H, Kobayashi H, Farner DS. Electron microscopic and experimental studies of the pineal organ in the white-crowned sparrow, Zonotrichia leucophrys gambelii. ZEITSCHRIFT FUR ZELLFORSCHUNG UND MIKROSKOPISCHE ANATOMIE (VIENNA, AUSTRIA : 1948) 1972; 124:247-74. [PMID: 4335080 DOI: 10.1007/bf00335683] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
19
|
Meiniel A. [Cytophysiological study of the parapineal organ of Lamperta laneri]. JOURNAL OF NEURO-VISCERAL RELATIONS 1971; 32:157-99. [PMID: 4329007 DOI: 10.1007/bf02239129] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
20
|
|
21
|
Bergmann G. [Electron microscopy studies on the pineal body of Pterophyllum scalare Cuv. et Val. (Cichlidae, teleostei)]. ZEITSCHRIFT FUR ZELLFORSCHUNG UND MIKROSKOPISCHE ANATOMIE (VIENNA, AUSTRIA : 1948) 1971; 119:257-88. [PMID: 5569847 DOI: 10.1007/bf00324525] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
22
|
|
23
|
Ueck M. Weitere Untersuchungen zur Feinstruktur und Innervation des Pinealorgans von Passer domesticus L. Cell Tissue Res 1970. [DOI: 10.1007/bf00335477] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
|
25
|
Collin JM. [Ganglion cells and the pineal body of Lampetra planeri]. JOURNAL OF NEURO-VISCERAL RELATIONS 1969; 31:308-33. [PMID: 5364100 DOI: 10.1007/bf02323409] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
26
|
Hughes AF, Egar M, Turner T. Degeneration of nerve fibres within the embryonic spinal cord. Nature 1969; 221:579-81. [PMID: 5789317 DOI: 10.1038/221579a0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
27
|
|
28
|
Vivien-Roels B. Etude structurale et ultrastructurale de l'�piphyse d'un Reptile: Pseudemys scripta elegans. Cell Tissue Res 1969. [DOI: 10.1007/bf00319183] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Wartenberg H, Baumgarten HG. Untersuchungen zur fluorescenz- und elektronenmikroskopischen Darstellung von 5-Hydroxytryptamin (5-HT) im Pineal-Organ von Lacerta viridis und L. muralis. ACTA ACUST UNITED AC 1969. [DOI: 10.1007/bf00521279] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
30
|
Petit A. [Ultrastructure, innervation and function of the epiphysis of the slowworm (Anguis fragilis L.)]. ZEITSCHRIFT FUR ZELLFORSCHUNG UND MIKROSKOPISCHE ANATOMIE (VIENNA, AUSTRIA : 1948) 1969; 96:437-65. [PMID: 4894606 DOI: 10.1007/bf00335218] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
31
|
|
32
|
Wartenberg H, Baumgarten HG. �ber die elektronenmikroskopische Identifizierung von noradrenergen Nervenfasern durch 5-Hydroxydopamin und 5-Hydroxydopa im Pinealorgan der Eidechse (Lacerta muralis). Cell Tissue Res 1969. [DOI: 10.1007/bf00339360] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
33
|
Rüdeberg C. Light and electron microscopic studies on the pineal organ of the dogfish, Scyliorhinus canicula L. ZEITSCHRIFT FUR ZELLFORSCHUNG UND MIKROSKOPISCHE ANATOMIE (VIENNA, AUSTRIA : 1948) 1969; 96:548-81. [PMID: 4191149 DOI: 10.1007/bf00973334] [Citation(s) in RCA: 45] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
34
|
Oksche A, Kirschstein H. Elektronenmikroskopische Untersuchungen am Pinealorgan von Passer domesticus. Cell Tissue Res 1969. [DOI: 10.1007/bf00335502] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
35
|
Oksche A, Morita Y, Vaupel-von Harnack M. Zur Feinstruktur und Funktion des Pinealorgans der Taube (Columba livia). Cell Tissue Res 1969. [DOI: 10.1007/bf00336413] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
36
|
Petit A. Ultrastructure de la r�tine de l'?il pari�tal d'un Lacertilien, Anguis fragilis. Cell Tissue Res 1968. [DOI: 10.1007/bf00339404] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
37
|
Ultrastruktur des pinealen Sinnesapparates bei einigen Pipidae und Discoglossidae. Cell Tissue Res 1968. [DOI: 10.1007/bf00455602] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
38
|
Rüdeberg C. Structure of the parapineal organ of the adult rainbow trout, Salmo gairdneri Richardson. ZEITSCHRIFT FUR ZELLFORSCHUNG UND MIKROSKOPISCHE ANATOMIE (VIENNA, AUSTRIA : 1948) 1968; 93:282-304. [PMID: 4905352 DOI: 10.1007/bf00336695] [Citation(s) in RCA: 39] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
39
|
|
40
|
Leonhardt H, Prien H. Eine weitere Art intraventrikul�rer kolbenf�rmiger Axonendigungen aus dem IV. Ventrikel des Kaninchengehirns. Cell Tissue Res 1968. [DOI: 10.1007/bf00455596] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|