1
|
Zhang X, Ding Z, Lou H, Han R, Ma C, Yang S. A Systematic Review and Developmental Perspective on Origin of CMS Genes in Crops. Int J Mol Sci 2024; 25:8372. [PMID: 39125940 PMCID: PMC11312923 DOI: 10.3390/ijms25158372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Cytoplasmic male sterility (CMS) arises from the incompatibility between the nucleus and cytoplasm as typical representatives of the chimeric structures in the mitochondrial genome (mitogenome), which has been extensively applied for hybrid seed production in various crops. The frequent occurrence of chimeric mitochondrial genes leading to CMS is consistent with the mitochondrial DNA (mtDNA) evolution. The sequence conservation resulting from faithfully maternal inheritance and the chimeric structure caused by frequent sequence recombination have been defined as two major features of the mitogenome. However, when and how these chimeric mitochondrial genes appear in the context of the highly conserved reproduction of mitochondria is an enigma. This review, therefore, presents the critical view of the research on CMS in plants to elucidate the mechanisms of this phenomenon. Generally, distant hybridization is the main mechanism to generate an original CMS source in natural populations and in breeding. Mitochondria and mitogenomes show pleomorphic and dynamic changes at key stages of the life cycle. The promitochondria in dry seeds develop into fully functioning mitochondria during seed imbibition, followed by massive mitochondria or mitogenome fusion and fission in the germination stage along with changes in the mtDNA structure and quantity. The mitogenome stability is controlled by nuclear loci, such as the nuclear gene Msh1. Its suppression leads to the rearrangement of mtDNA and the production of heritable CMS genes. An abundant recombination of mtDNA is also often found in distant hybrids and somatic/cybrid hybrids. Since mtDNA recombination is ubiquitous in distant hybridization, we put forward a hypothesis that the original CMS genes originated from mtDNA recombination during the germination of the hybrid seeds produced from distant hybridizations to solve the nucleo-cytoplasmic incompatibility resulting from the allogenic nuclear genome during seed germination.
Collapse
Affiliation(s)
- Xuemei Zhang
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China;
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (Z.D.); (H.L.)
| | - Zhengpin Ding
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (Z.D.); (H.L.)
| | - Hongbo Lou
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (Z.D.); (H.L.)
| | - Rui Han
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China;
| | - Cunqiang Ma
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China;
| | - Shengchao Yang
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China;
| |
Collapse
|
2
|
Yamagishi H, Jikuya M, Okushiro K, Hashimoto A, Fukunaga A, Takenaka M, Terachi T. A single nucleotide substitution in the coding region of Ogura male sterile gene, orf138, determines effectiveness of a fertility restorer gene, Rfo, in radish. Mol Genet Genomics 2021; 296:705-717. [PMID: 33772345 PMCID: PMC8144145 DOI: 10.1007/s00438-021-01777-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/15/2021] [Indexed: 11/04/2022]
Abstract
Cytoplasmic male sterility (CMS) observed in many plants leads defect in the production of functional pollen, while the expression of CMS is suppressed by a fertility restorer gene in the nuclear genome. Ogura CMS of radish is induced by a mitochondrial orf138, and a fertility restorer gene, Rfo, encodes a P-type PPR protein, ORF687, acting at the translational level. But, the exact function of ORF687 is still unclear. We found a Japanese variety showing male sterility even in the presence of Rfo. We examined the pollen fertility, Rfo expression, and orf138 mRNA in progenies of this variety. The progeny with Type H orf138 and Rfo showed male sterility when their orf138 mRNA was unprocessed within the coding region. By contrast, all progeny with Type A orf138 were fertile though orf138 mRNA remained unprocessed in the coding region, demonstrating that ORF687 functions on Type A but not on Type H. In silico analysis suggested a specific binding site of ORF687 in the coding region, not the 5′ untranslated region estimated previously, of Type A. A single nucleotide substitution in the putative binding site diminishes affinity of ORF687 in Type H and is most likely the cause of the ineffectiveness of ORF687. Furthermore, fertility restoration by RNA processing at a novel site in some progeny plants indicated a new and the third fertility restorer gene, Rfs, for orf138. This study clarified that direct ORF687 binding to the coding region of orf138 is essential for fertility restoration by Rfo.
Collapse
Affiliation(s)
- Hiroshi Yamagishi
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo, Kita, Kyoto, 603-8555, Japan.
| | - Megumi Jikuya
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo, Kita, Kyoto, 603-8555, Japan
| | - Kanako Okushiro
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo, Kita, Kyoto, 603-8555, Japan
| | - Ayako Hashimoto
- Research Center of Botany, Kyoto Sangyo University, Kamigamo, Kita , Kyoto, 603-8555, Japan
| | - Asumi Fukunaga
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo, Kita, Kyoto, 603-8555, Japan
| | - Mizuki Takenaka
- Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Toru Terachi
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo, Kita, Kyoto, 603-8555, Japan
| |
Collapse
|
3
|
Abstract
Brassica oleracea is an important vegetable species which belongs to the genus Brassica and the mustard family Brassicaceae Burnett. Strong heterosis in B. oleracea is displayed in yield, quality, disease resistance, and stress tolerance. Heterosis breeding is the main way to improve B. oleracea varieties. Male sterile mutants play an important role in the utilization of heterosis and the study of development and regulation in plant reproduction. In this paper, advances in the research and application of male sterility in B. oleracea were reviewed, including aspects of the genetics, cytological characteristics, discovery of genes related to male sterility, and application of male sterility in B. oleracea. Moreover, the main existing problems and prospect of male sterility application in B. oleracea were addressed and a new hybrids’ production strategy with recessive genic male sterility is introduced.
Collapse
|
4
|
Zhao H, Wang J, Qu Y, Peng R, Magwanga RO, Liu F, Huang J. Transcriptomic and proteomic analyses of a new cytoplasmic male sterile line with a wild Gossypium bickii genetic background. BMC Genomics 2020; 21:859. [PMID: 33267770 PMCID: PMC7709281 DOI: 10.1186/s12864-020-07261-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 11/19/2020] [Indexed: 11/29/2022] Open
Abstract
Background Cotton is an important fiber crop but has serious heterosis effects, and cytoplasmic male sterility (CMS) is the major cause of heterosis in plants. However, to the best of our knowledge, no studies have investigated CMS Yamian A in cotton with the genetic background of Australian wild Gossypium bickii. Conjoint transcriptomic and proteomic analysis was first performed between Yamian A and its maintainer Yamian B. Results We detected 550 differentially expressed transcript-derived fragments (TDFs) and at least 1013 proteins in anthers at various developmental stages. Forty-two TDFs and 11 differentially expressed proteins (DEPs) were annotated by analysis in the genomic databases of G. austral, G. arboreum and G. hirsutum. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses were performed to better understand the functions of these TDFs and DEPs. Transcriptomic and proteomic results showed that UDP-glucuronosyl/UDP-glucosyltransferase, 60S ribosomal protein L13a-4-like, and glutathione S-transferase were upregulated; while heat shock protein Hsp20, ATPase, F0 complex, and subunit D were downregulated at the microspore abortion stage of Yamian A. In addition, several TDFs from the transcriptome and several DEPs from the proteome were detected and confirmed by quantitative real-time PCR as being expressed in the buds of seven different periods of development. We established the databases of differentially expressed genes and proteins between Yamian A and its maintainer Yamian B in the anthers at various developmental stages and constructed an interaction network based on the databases for a comprehensive understanding of the mechanism underlying CMS with a wild cotton genetic background. Conclusion We first analyzed the molecular mechanism of CMS Yamian A from the perspective of omics, thereby providing an experimental basis and theoretical foundation for future research attempting to analyze the abortion mechanism of new CMS with a wild Gossypium bickii background and to realize three-line matching. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-020-07261-y.
Collapse
Affiliation(s)
- Haiyan Zhao
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.,School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, Henan, China
| | - Jianshe Wang
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.,School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, Henan, China
| | - Yunfang Qu
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Renhai Peng
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, Henan, China
| | - Richard Odongo Magwanga
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000, Henan, China
| | - Fang Liu
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000, Henan, China
| | - Jinling Huang
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| |
Collapse
|
5
|
Singh S, Dey SS, Bhatia R, Kumar R, Behera TK. Current understanding of male sterility systems in vegetable Brassicas and their exploitation in hybrid breeding. PLANT REPRODUCTION 2019; 32:231-256. [PMID: 31053901 DOI: 10.1007/s00497-019-00371-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 04/25/2019] [Indexed: 06/09/2023]
Abstract
Overview of the current status of GMS and CMS systems available in Brassica vegetables, their molecular mechanism, wild sources of sterile cytoplasm and exploitation of male sterility in hybrid breeding. The predominantly herbaceous family Brassicaceae (crucifers or mustard family) encompasses over 3700 species, and many of them are scientifically and economically important. The genus Brassica is an economically important genus within the tribe Brassicaceae that comprises important vegetable, oilseed and fodder crops. Brassica vegetables display strong hybrid vigor, and heterosis breeding is the integral part in their improvement. Commercial production of F1 hybrid seeds in Brassica vegetables requires an effective male sterility system. Among the available male sterility systems, cytoplasmic male sterility (CMS) is the most widely exploited in Brassica vegetables. This system is maternally inherited and studied intensively. A limited number of reports about the genic male sterility (GMS) are available in Brassica vegetables. The GMS system is reported to be dominant, recessive and trirecessive in nature in different species. In this review, we discuss the available male sterility systems in Brassica vegetables and their potential use in hybrid breeding. The molecular mechanism of mt-CMS and causal mitochondrial genes of CMS has been discussed in detail. Finally, the exploitation of male sterility system in heterosis breeding of Brassica vegetables, future prospects and need for further understanding of these systems are highlighted.
Collapse
Affiliation(s)
- Saurabh Singh
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, 110012, India
| | - S S Dey
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, 110012, India.
| | - Reeta Bhatia
- Division of Floriculture and Landscaping, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, 110012, India
| | - Raj Kumar
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, 110012, India
| | - T K Behera
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, 110012, India
| |
Collapse
|
6
|
Han F, Zhang X, Yang L, Zhuang M, Zhang Y, Li Z, Fang Z, Lv H. iTRAQ-Based Proteomic Analysis of Ogura-CMS Cabbage and Its Maintainer Line. Int J Mol Sci 2018; 19:E3180. [PMID: 30326665 PMCID: PMC6214076 DOI: 10.3390/ijms19103180] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/08/2018] [Accepted: 10/08/2018] [Indexed: 12/20/2022] Open
Abstract
Ogura cytoplasmic male sterility (CMS) contributes considerably to hybrid seed production in Brassica crops. To detect the key protein species and pathways involved in Ogura-CMS, we analysed the proteome of the cabbage Ogura-CMS line CMS01-20 and its corresponding maintainer line F01-20 using the isobaric tags for the relative and absolute quantitation (iTRAQ) approach. In total, 162 differential abundance protein species (DAPs) were identified between the two lines, of which 92 were down-accumulated and 70 were up-accumulated in CMS01-20. For energy metabolism in the mitochondrion, eight DAPs involved in oxidative phosphorylation were down-accumulated in CMS01-20, whereas in the tricarboxylic acid (TCA) cycle, five DAPs were up-accumulated, which may compensate for the decreased respiration capacity and may be associated with the elevated O2 consumption rate in Ogura-CMS plants. Other key protein species and pathways involved in pollen wall assembly and programmed cell death (PCD) were also identified as being male-sterility related. Transcriptome profiling revealed 3247 differentially expressed genes between the CMS line and the fertile line. In a conjoint analysis of the proteome and transcriptome data, 30 and 9 protein species/genes showed the same and opposite accumulation patterns, respectively. Nine noteworthy genes involved in sporopollenin synthesis, callose wall degeneration, and oxidative phosphorylation were presumably associated with the processes leading to male sterility, and their expression levels were validated by qRT-PCR analysis. This study will improve our understanding of the protein species involved in pollen development and the molecular mechanisms underlying Ogura-CMS.
Collapse
Affiliation(s)
- Fengqing Han
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biologyand Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing 100081, China.
| | - Xiaoli Zhang
- Tianjin Kernel Vegetable Research Institute, The National Key Laboratory of Vegetable GermplasmInnovation, The Enterprise key Laboratory of Tianjin Vegetable Genetics and Breeding, Jinjing Road,Xiqing District, Tianjin 300384, China.
| | - Limei Yang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biologyand Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing 100081, China.
| | - Mu Zhuang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biologyand Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing 100081, China.
| | - Yangyong Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biologyand Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing 100081, China.
| | - Zhansheng Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biologyand Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing 100081, China.
| | - Zhiyuan Fang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biologyand Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing 100081, China.
| | - Honghao Lv
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biologyand Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing 100081, China.
| |
Collapse
|
7
|
Bhatnagar-Mathur P, Gupta R, Reddy PS, Reddy BP, Reddy DS, Sameerkumar CV, Saxena RK, Sharma KK. A novel mitochondrial orf147 causes cytoplasmic male sterility in pigeonpea by modulating aberrant anther dehiscence. PLANT MOLECULAR BIOLOGY 2018; 97:131-147. [PMID: 29667000 DOI: 10.1007/s11103-018-0728-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 04/06/2018] [Indexed: 06/08/2023]
Abstract
KEY MESSAGE A novel open reading frame (ORF) identified and cloned from the A4 cytoplasm of Cajanus cajanifolius induced partial to complete male sterility when introduced into Arabidopsis and tobacco. Pigeonpea (Cajanus cajan L. Millsp.) is the only legume known to have commercial hybrid seed technology based on cytoplasmic male sterility (CMS). We identified a novel ORF (orf147) from the A4 cytoplasm of C. cajanifolius that was created via rearrangements in the CMS line and co-transcribes with the known and unknown sequences. The bi/poly-cistronic transcripts cause gain-of-function variants in the mitochondrial genome of CMS pigeonpea lines having distinct processing mechanisms and transcription start sites. In presence of orf147, significant repression of Escherichia coli growth indicated its toxicity to the host cells and induced partial to complete male sterility in transgenic progenies of Arabidopsis thaliana and Nicotiana tabacum where phenotype co-segregated with the transgene. The male sterile plants showed aberrant floral development and reduced lignin content in the anthers. Gene expression studies in male sterile pigeonpea, Arabidopsis and tobacco plants confirmed down-regulation of several anther biogenesis genes and key genes involved in monolignol biosynthesis, indicative of regulation of retrograde signaling. Besides providing evidence for the involvement of orf147 in pigeonpea CMS, this study provides valuable insights into its function. Cytotoxicity and aberrant programmed cell death induced by orf147 could be important for mechanism underlying male sterility that offers opportunities for possible translation for these findings for exploiting hybrid vigor in other recalcitrant crops as well.
Collapse
Affiliation(s)
- Pooja Bhatnagar-Mathur
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, Telangana, 502324, India.
| | - Ranadheer Gupta
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, Telangana, 502324, India
| | - Palakolanu Sudhakar Reddy
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, Telangana, 502324, India
| | - Bommineni Pradeep Reddy
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, Telangana, 502324, India
| | - Dumbala Srinivas Reddy
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, Telangana, 502324, India
| | - C V Sameerkumar
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, Telangana, 502324, India
| | - Rachit Kumar Saxena
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, Telangana, 502324, India
| | - Kiran K Sharma
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, Telangana, 502324, India.
| |
Collapse
|
8
|
Mishra A, Bohra A. Non-coding RNAs and plant male sterility: current knowledge and future prospects. PLANT CELL REPORTS 2018; 37:177-191. [PMID: 29332167 DOI: 10.1007/s00299-018-2248-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 01/02/2018] [Indexed: 06/07/2023]
Abstract
Latest outcomes assign functional role to non-coding (nc) RNA molecules in regulatory networks that confer male sterility to plants. Male sterility in plants offers great opportunity for improving crop performance through application of hybrid technology. In this respect, cytoplasmic male sterility (CMS) and sterility induced by photoperiod (PGMS)/temperature (TGMS) have greatly facilitated development of high-yielding hybrids in crops. Participation of non-coding (nc) RNA molecules in plant reproductive development is increasingly becoming evident. Recent breakthroughs in rice definitively associate ncRNAs with PGMS and TGMS. In case of CMS, the exact mechanism through which the mitochondrial ORFs exert influence on the development of male gametophyte remains obscure in several crops. High-throughput sequencing has enabled genome-wide discovery and validation of these regulatory molecules and their target genes, describing their potential roles performed in relation to CMS. Discovery of ncRNA localized in plant mtDNA with its possible implication in CMS induction is intriguing in this respect. Still, conclusive evidences linking ncRNA with CMS phenotypes are currently unavailable, demanding complementing genetic approaches like transgenics to substantiate the preliminary findings. Here, we review the recent literature on the contribution of ncRNAs in conferring male sterility to plants, with an emphasis on microRNAs. Also, we present a perspective on improved understanding about ncRNA-mediated regulatory pathways that control male sterility in plants. A refined understanding of plant male sterility would strengthen crop hybrid industry to deliver hybrids with improved performance.
Collapse
Affiliation(s)
- Ankita Mishra
- ICAR-Indian Institute of Pulses Research (IIPR), Kanpur, 208024, India
| | - Abhishek Bohra
- ICAR-Indian Institute of Pulses Research (IIPR), Kanpur, 208024, India.
| |
Collapse
|
9
|
Wei X, Zhang X, Yao Q, Yuan Y, Li X, Wei F, Zhao Y, Zhang Q, Wang Z, Jiang W, Zhang X. The miRNAs and their regulatory networks responsible for pollen abortion in Ogura-CMS Chinese cabbage revealed by high-throughput sequencing of miRNAs, degradomes, and transcriptomes. FRONTIERS IN PLANT SCIENCE 2015; 6:894. [PMID: 26557132 PMCID: PMC4617173 DOI: 10.3389/fpls.2015.00894] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 10/08/2015] [Indexed: 05/23/2023]
Abstract
Chinese cabbage (Brassica rapa ssp. pekinensis) is one of the most important vegetables in Asia and is cultivated across the world. Ogura-type cytoplasmic male sterility (Ogura-CMS) has been widely used in the hybrid breeding industry for Chinese cabbage and many other cruciferous vegetables. Although, the cause of Ogura-CMS has been localized to the orf138 locus in the mitochondrial genome, however, the mechanism by which nuclear genes respond to the mutation of the mitochondrial orf138 locus is unclear. In this study, a series of whole genome small RNA, degradome and transcriptome analyses were performed on both Ogura-CMS and its maintainer Chinese cabbage buds using deep sequencing technology. A total of 289 known miRNAs derived from 69 families (including 23 new families first reported in B. rapa) and 426 novel miRNAs were identified. Among these novel miRNAs, both 3-p and 5-p miRNAs were detected on the hairpin arms of 138 precursors. Ten known and 49 novel miRNAs were down-regulated, while one known and 27 novel miRNAs were up-regulated in Ogura-CMS buds compared to the fertile plants. Using degradome analysis, a total of 376 mRNAs were identified as targets of 30 known miRNA families and 100 novel miRNAs. A large fraction of the targets were annotated as reproductive development related. Our transcriptome profiling revealed that the expression of the targets was finely tuned by the miRNAs. Two novel miRNAs were identified that were specifically highly expressed in Ogura-CMS buds and sufficiently suppressed two pollen development essential genes: sucrose transporter SUC1 and H (+) -ATPase 6. These findings provide clues for the contribution of a potential miRNA regulatory network to bud development and pollen engenderation. This study contributes new insights to the communication between the mitochondria and chromosome and takes one step toward filling the gap in the regulatory network from the orf138 locus to pollen abortion in Ogura-CMS plants from a miRNA perspective.
Collapse
Affiliation(s)
- Xiaochun Wei
- Institute of Horticulture, Henan Academy of Agricultural SciencesZhengzhou, China
| | - Xiaohui Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
| | - Qiuju Yao
- Institute of Horticulture, Henan Academy of Agricultural SciencesZhengzhou, China
| | - Yuxiang Yuan
- Institute of Horticulture, Henan Academy of Agricultural SciencesZhengzhou, China
| | - Xixiang Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
| | - Fang Wei
- College of Life Science, Zhengzhou UniversityZhengzhou, China
| | - Yanyan Zhao
- Institute of Horticulture, Henan Academy of Agricultural SciencesZhengzhou, China
| | - Qiang Zhang
- Institute of Horticulture, Henan Academy of Agricultural SciencesZhengzhou, China
| | - Zhiyong Wang
- Institute of Horticulture, Henan Academy of Agricultural SciencesZhengzhou, China
| | - Wusheng Jiang
- Institute of Horticulture, Henan Academy of Agricultural SciencesZhengzhou, China
| | - Xiaowei Zhang
- Institute of Horticulture, Henan Academy of Agricultural SciencesZhengzhou, China
| |
Collapse
|
10
|
Chakraborty A, Mitra J, Bhattacharyya J, Pradhan S, Sikdar N, Das S, Chakraborty S, Kumar S, Lakhanpaul S, Sen SK. Transgenic expression of an unedited mitochondrial orfB gene product from wild abortive (WA) cytoplasm of rice (Oryza sativa L.) generates male sterility in fertile rice lines. PLANTA 2015; 241:1463-1479. [PMID: 25754232 DOI: 10.1007/s00425-015-2269-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 02/12/2015] [Indexed: 06/04/2023]
Abstract
Over-expression of the unedited mitochondrial orfB gene product generates male sterility in fertile indica rice lines in a dose-dependent manner. Cytoplasmic male sterility (CMS) and nuclear-controlled fertility restoration are widespread developmental features in plant reproductive systems. In self-pollinated crop plants, these processes often provide useful tools to exploit hybrid vigour. The wild abortive CMS has been employed in the majority of the "three-line" hybrid rice production since 1970s. In the present study, we provide experimental evidence for a positive functional relationship between the 1.1-kb unedited orfB gene transcript, and its translated product in the mitochondria with male sterility. The generation of the 1.1-kb unedited orfB gene transcripts increased during flowering, resulting in low ATP synthase activity in sterile plants. Following insertion of the unedited orfB gene into the genome of male-fertile plants, the plants became male sterile in a dose-dependent manner with concomitant reduction of ATPase activity of F1F0-ATP synthase (complex V). Fertility of the transgenic lines and normal activity of ATP synthase were restored by down-regulation of the unedited orfB gene expression through RNAi-mediated silencing. The genetic elements deciphered in this study could further be tested for their use in hybrid rice development.
Collapse
Affiliation(s)
- Anirban Chakraborty
- Advanced Laboratory for Plant Genetic Engineering, Indian Institute of Technology, Kharagpur, 721302, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Mitochondrion role in molecular basis of cytoplasmic male sterility. Mitochondrion 2014; 19 Pt B:198-205. [PMID: 24732436 DOI: 10.1016/j.mito.2014.04.004] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 03/31/2014] [Accepted: 04/04/2014] [Indexed: 11/24/2022]
Abstract
Cytoplasmic male sterility and its fertility restoration via nuclear genes offer the possibility to understand the role of mitochondria during microsporogenesis. In most cases rearrangements in the mitochondrial DNA involving known mitochondrial genes as well as unknown sequences result in the creation of new chimeric open reading frames, which encode proteins containing transmembrane domains. So far, most of the CMS systems have been characterized via restriction fragment polymorphisms followed by transcript analysis. However, whole mitochondrial genome sequence analyses comparing male sterile and fertile cytoplasm open options for deeper insights into mitochondrial genome rearrangements. We more and more start to unravel how mitochondria are involved in triggering death of the male reproductive organs. Reduced levels of ATP accompanied by increased concentrations of reactive oxygen species, which are produced more under conditions of mitochondrial dysfunction, seem to play a major role in the fate of pollen production. Nuclear genes, so called restorer-of-fertility are able to restore the male fertility. Fertility restoration can occur via pentatricopeptide repeat (PPR) proteins or via different mechanisms involving non-PPR proteins.
Collapse
|
12
|
Wang ZW, Wang C, Gao L, Mei SY, Zhou Y, Xiang CP, Wang T. Heterozygous alleles restore male fertility to cytoplasmic male-sterile radish (Raphanus sativus L.): a case of overdominance. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:2041-2048. [PMID: 23630327 PMCID: PMC3638831 DOI: 10.1093/jxb/ert065] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The practice of hybridization has greatly contributed to the increase in crop productivity. A major component that exploits heterosis in crops is the cytoplasmic male sterility (CMS)/nucleus-controlled fertility restoration (Rf) system. Through positional cloning, it is shown that heterozygous alleles (RsRf3-1/RsRf3-2) encoding pentatricopeptide repeat (PPR) proteins are responsible for restoring fertility to cytoplasmic male-sterile radish (Raphanus sativus L.). Furthermore, it was found that heterozygous alleles (RsRf3-1/RsRf3-2) show higher expression and RNA polymerase II occupancy in the CMS cytoplasmic background compared with their homozygous alleles (RsRf3-1/RsRf3-1 or RsRf3-2/RsRf3-2). These data provide new insights into the molecular mechanism of fertility restoration to cytoplasmic male-sterile plants and illustrate a case of overdominance.
Collapse
Affiliation(s)
- Zhi Wei Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, PR China
| | - Chuan Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, PR China
- Graduate University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Lei Gao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, PR China
| | - Shi Yong Mei
- Hubei Academy of Agricultural Sciences, Wuhan 430064, PR China
| | - Yuan Zhou
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, PR China
| | - Chang Ping Xiang
- Key Laboratory of Ministry of Education for Horticultural Plant Biology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Ting Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, PR China
| |
Collapse
|
13
|
Dong X, Kim WK, Lim YP, Kim YK, Hur Y. Ogura-CMS in Chinese cabbage (Brassica rapa ssp. pekinensis) causes delayed expression of many nuclear genes. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 199-200:7-17. [PMID: 23265314 DOI: 10.1016/j.plantsci.2012.11.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 11/02/2012] [Accepted: 11/03/2012] [Indexed: 06/01/2023]
Abstract
We investigated the mechanism regulating cytoplasmic male sterility (CMS) in Brassica rapa ssp. pekinensis using floral bud transcriptome analyses of Ogura-CMS Chinese cabbage and its maintainer line in B. rapa 300-K oligomeric probe (Br300K) microarrays. Ogura-CMS Chinese cabbage produced few and infertile pollen grains on indehiscent anthers. Compared to the maintainer line, CMS plants had shorter filaments and plant growth, and delayed flowering and pollen development. In microarray analysis, 4646 genes showed different expression, depending on floral bud size, between Ogura-CMS and its maintainer line. We found 108 and 62 genes specifically expressed in Ogura-CMS and its maintainer line, respectively. Ogura-CMS line-specific genes included stress-related, redox-related, and B. rapa novel genes. In the maintainer line, genes related to pollen coat and germination were specifically expressed in floral buds longer than 3mm, suggesting insufficient expression of these genes in Ogura-CMS is directly related to dysfunctional pollen. In addition, many nuclear genes associated with auxin response, ATP synthesis, pollen development and stress response had delayed expression in Ogura-CMS plants compared to the maintainer line, which is consistent with the delay in growth and development of Ogura-CMS plants. Delayed expression may reduce pollen grain production and/or cause sterility, implying that mitochondrial, retrograde signaling delays nuclear gene expression.
Collapse
Affiliation(s)
- Xiangshu Dong
- Department of Biology, College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | | | | | | | | |
Collapse
|
14
|
Wang J, Jiang J, Li X, Li A, Zhang Y, Guan R, Wang Y. Complete sequence of heterogenous-composition mitochondrial genome (Brassica napus) and its exogenous source. BMC Genomics 2012. [PMID: 23190559 PMCID: PMC3561098 DOI: 10.1186/1471-2164-13-675] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Unlike maternal inheritance of mitochondria in sexual reproduction, somatic hybrids follow no obvious pattern. The introgressed segment orf138 from the mitochondrial genome of radish (Raphanus sativus) to its counterpart in rapeseed (Brassica napus) demonstrates that this inheritance mode derives from the cytoplasm of both parents. Sequencing of the complete mitochondrial genome of five species from Brassica family allowed the prediction of other extraneous sources of the cybrids from the radish parent, and the determination of their mitochondrial rearrangement. RESULTS We obtained the complete mitochondrial genome of Ogura-cms-cybrid (oguC) rapeseed. To date, this is the first time that a heterogeneously composed mitochondrial genome was sequenced. The 258,473 bp master circle constituted of 33 protein-coding genes, 3 rRNA sequences, and 23 tRNA sequences. This mitotype noticeably holds two copies of atp9 and is devoid of cox2-2. Relative to nap mitochondrial genome, 40 point mutations were scattered in the 23 protein-coding genes. atp6 even has an abnormal start locus whereas tatC has an abnormal end locus. The rearrangement of the 22 syntenic regions that comprised 80.11% of the genome was influenced by short repeats. A pair of large repeats (9731 bp) was responsible for the multipartite structure. Nine unique regions were detected when compared with other published Brassica mitochondrial genome sequences. We also found six homologous chloroplast segments (Brassica napus). CONCLUSIONS The mitochondrial genome of oguC is quite divergent from nap and pol, which are more similar with each other. We analyzed the unique regions of every genome of the Brassica family, and found that very few segments were specific for these six mitotypes, especially cam, jun, and ole, which have no specific segments at all. Therefore, we conclude that the most specific regions of oguC possibly came from radish. Compared with the chloroplast genome, six identical regions were found in the seven mitochondrial genomes, which show that the Brassica family has a stable chloroplast-derived source.
Collapse
Affiliation(s)
- Juan Wang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, 225009, China.
| | | | | | | | | | | | | |
Collapse
|
15
|
Tanaka Y, Tsuda M, Yasumoto K, Yamagishi H, Terachi T. A complete mitochondrial genome sequence of Ogura-type male-sterile cytoplasm and its comparative analysis with that of normal cytoplasm in radish (Raphanus sativus L.). BMC Genomics 2012; 13:352. [PMID: 22846596 PMCID: PMC3473294 DOI: 10.1186/1471-2164-13-352] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 07/20/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Plant mitochondrial genome has unique features such as large size, frequent recombination and incorporation of foreign DNA. Cytoplasmic male sterility (CMS) is caused by rearrangement of the mitochondrial genome, and a novel chimeric open reading frame (ORF) created by shuffling of endogenous sequences is often responsible for CMS. The Ogura-type male-sterile cytoplasm is one of the most extensively studied cytoplasms in Brassicaceae. Although the gene orf138 has been isolated as a determinant of Ogura-type CMS, no homologous sequence to orf138 has been found in public databases. Therefore, how orf138 sequence was created is a mystery. In this study, we determined the complete nucleotide sequence of two radish mitochondrial genomes, namely, Ogura- and normal-type genomes, and analyzed them to reveal the origin of the gene orf138. RESULTS Ogura- and normal-type mitochondrial genomes were assembled to 258,426-bp and 244,036-bp circular sequences, respectively. Normal-type mitochondrial genome contained 33 protein-coding and three rRNA genes, which are well conserved with the reported mitochondrial genome of rapeseed. Ogura-type genomes contained same genes and additional atp9. As for tRNA, normal-type contained 17 tRNAs, while Ogura-type contained 17 tRNAs and one additional trnfM. The gene orf138 was specific to Ogura-type mitochondrial genome, and no sequence homologous to it was found in normal-type genome. Comparative analysis of the two genomes revealed that radish mitochondrial genome consists of 11 syntenic regions (length >3 kb, similarity >99.9%). It was shown that short repeats and overlapped repeats present in the edge of syntenic regions were involved in recombination events during evolution to interconvert two types of mitochondrial genome. Ogura-type mitochondrial genome has four unique regions (2,803 bp, 1,601 bp, 451 bp and 15,255 bp in size) that are non-syntenic to normal-type genome, and the gene orf138 was found to be located at the edge of the largest unique region. Blast analysis performed to assign the unique regions showed that about 80% of the region was covered by short homologous sequences to the mitochondrial sequences of normal-type radish or other reported Brassicaceae species, although no homology was found for the remaining 20% of sequences. CONCLUSIONS Ogura-type mitochondrial genome was highly rearranged compared with the normal-type genome by recombination through one large repeat and multiple short repeats. The rearrangement has produced four unique regions in Ogura-type mitochondrial genome, and most of the unique regions are composed of known Brassicaceae mitochondrial sequences. This suggests that the regions unique to the Ogura-type genome were generated by integration and shuffling of pre-existing mitochondrial sequences during the evolution of Brassicaceae, and novel genes such as orf138 could have been created by the shuffling process of mitochondrial genome.
Collapse
Affiliation(s)
- Yoshiyuki Tanaka
- 31 Laboratory, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto 603-8555, Japan.
| | | | | | | | | |
Collapse
|
16
|
Jing B, Heng S, Tong D, Wan Z, Fu T, Tu J, Ma C, Yi B, Wen J, Shen J. A male sterility-associated cytotoxic protein ORF288 in Brassica juncea causes aborted pollen development. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:1285-95. [PMID: 22090439 PMCID: PMC3276091 DOI: 10.1093/jxb/err355] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 10/02/2011] [Accepted: 10/11/2011] [Indexed: 05/20/2023]
Abstract
Cytoplasmic male sterility (CMS) is a widespread phenomenon in higher plants, and several studies have established that this maternally inherited defect is often associated with a mitochondrial mutant. Approximately 10 chimeric genes have been identified as being associated with corresponding CMS systems in the family Brassicaceae, but there is little direct evidence that these genes cause male sterility. In this study, a novel chimeric gene (named orf288) was found to be located downstream of the atp6 gene and co-transcribed with this gene in the hau CMS sterile line. Western blotting analysis showed that this predicted open reading frame (ORF) was translated in the mitochondria of male-sterile plants. Furthermore, the growth of Escherichia coli was significantly repressed in the presence of ORF288, which indicated that this protein is toxic to the E. coli host cells. To confirm further the function of orf288 in male sterility, the gene was fused to a mitochondrial-targeting pre-sequence under the control of the Arabidopsis APETALA3 promoter and introduced into Arabidopsis thaliana. Almost 80% of transgenic plants with orf288 failed to develop anthers. It was also found that the independent expression of orf288 caused male sterility in transgenic plants, even without the transit pre-sequence. Furthermore, transient expression of orf288 and green fluorescent protein (GFP) as a fused protein in A. thaliana protoplasts showed that ORF288 was able to anchor to mitochondria even without the external mitochondrial-targeting peptide. These observations provide important evidence that orf288 is responsible for the male sterility of hau CMS in Brassica juncea.
Collapse
|
17
|
|
18
|
Yasumoto K, Terachi T, Yamagishi H. A novel Rf gene controlling fertility restoration of Ogura male sterility by RNA processing of orf138 found in Japanese wild radish and its STS markers. Genome 2009; 52:495-504. [PMID: 19483769 DOI: 10.1139/g09-026] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To reveal the molecular and genetic mechanism of fertility restoration in Ogura male sterility in Japanese wild radish (Raphanus sativus var. hortensis f. raphanistroides), we investigated fertility restoration of a plant that lacks the dominant type of orf687, a previously identified fertility restorer gene. A total of 100 F2 plants were made from the cross between a male-sterile strain with the Ogura cytoplasm, 'MS-Gensuke', and a Japanese wild radish plant. Segregation of pollen fertility in the F2 plants led us to assume that 2 dominant complementary genes controlled the fertility restoration of the plants. However, the fertility of 27 of 59 male-fertile plants was not completely restored, resulting in a group of plants with partial male fertility. Northern blot analysis of the CMS-associated gene orf138 indicated that one restorer allele (termed Rft) was involved in the processing of orf138 RNA. Rapid amplification of cDNA ends (RACE) and subsequent Northern blot analysis confirmed that the orf138 transcript lost a 5' part of the coding region of the orf138 gene in the restored plants. The accumulation of ORF138 protein was significantly reduced by Rft, but trace amounts of the protein were recognized in both partially male-fertile and male-sterile plants with Rft. The relationship of pollen fertility and segregation of co-dominant sequence tagged site (STS) markers in the F2 generation suggested that the penetrance of Rft was so low that Rft needs suitable conditions to function sufficiently for the complete restoration of fertility.
Collapse
Affiliation(s)
- Keita Yasumoto
- Department of Biotechnology, Faculty of Engineering, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto 603-8555, Japan
| | | | | |
Collapse
|
19
|
Duroc Y, Hiard S, Vrielynck N, Ragu S, Budar F. The Ogura sterility-inducing protein forms a large complex without interfering with the oxidative phosphorylation components in rapeseed mitochondria. PLANT MOLECULAR BIOLOGY 2009; 70:123-37. [PMID: 19199092 DOI: 10.1007/s11103-009-9461-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Accepted: 01/19/2009] [Indexed: 05/08/2023]
Abstract
The Ogura cytoplasmic male sterility causing protein, ORF138, was found to be part of a complex with an apparent size of over 750 kDa in the inner membrane of mitochondria of sterile plants. ORF138 did not colocalize with any of the oxidative phosphorylation complexes, nor did its presence modify their apparent size or amount, compared to samples from fertile isogenic plants. We attempted to detect potential proteins or nucleic acids that could be involved in the large ORF138 complex by 2D PAGE, immunoprecipitation and nuclease treatments of native extracts. All our results suggest that the ORF138 protein is the main, if not only, component of this large complex. The capacities of complexes I, II, IV, and ATP synthase were identical in samples from sterile and fertile plants. Isolated mitochondria from sterile plants showed a higher oxygen consumption than those from fertile plants. In vivo respiration measurements suggest that the difference in O(2) consumption measured at the organelle level is compensated at the cell/tissue level, completely in leaves, but only partially in male reproductive organs.
Collapse
Affiliation(s)
- Yann Duroc
- Station de Génétique et d'Amélioration des Plantes, Institut Jean-Pierre Bourgin, INRA UR254, Route de Saint-Cyr, 78026, Versailles cedex, France
| | | | | | | | | |
Collapse
|
20
|
Wang ZW, Zhang YJ, Xiang CP, Mei SY, Zhou Y, Chen GP, Wang T. A new fertility restorer locus linked closely to the Rfo locus for cytoplasmic male sterility in radish. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2008; 117:313-20. [PMID: 18542910 DOI: 10.1007/s00122-008-0776-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2007] [Accepted: 04/12/2008] [Indexed: 05/11/2023]
Abstract
In this study, we have investigated a new fertility restorer (Rf) locus for cytoplasmic male sterility (CMS) in radish. We have obtained a CMS-Rf system consisting of sterile line '9802A1', maintainer line '9802B1' and restorer line '9802H'. F(1) plants from cross between sterile line '9802A1' and restorer line '9802H' were all male fertile, self pollination of F(1) plants produced an F(2) segregating population consisting of 600 individuals. The segregating population was found to fit a segregation ratio 3:1 for male fertile and sterile types, indicating that male fertility is restored by a single dominant gene (termed Rfo2) in the CMS-Rf system. Based on the DNA sequence of Rfo/Rfk1 (AJ535623), just one full length gene in the sterile line '9802A1', in the restorer line '9802H' and in the male fertile line '2006H', was cloned, respectively. The three sequences correspond to the same gene with two alleles: Rfob in '9802H' and rfob in '9802A1' and '2006H'. These two alleles differ from Rfo/Rfk1 and rfk1 (AJ535624) alleles by two synonymous base substitutions, respectively. Based on the differences between the Rfob and rfob genes, one PCR-based marker was developed, and designated Marker 1, which is identical to the corresponding region of Rfob by sequence analysis. In the F(2) segregating population described above, the Marker 1 was present in 5 sterile plants and in 453 fertile plants, absent in 4 fertile plants and in 138 sterile plants, and was found to fit a segregation ratio 3:1 indicating that Rfob was single copy in '9802H'. Linkage analysis showed that the Rfo2 locus for our CMS-Rf system was distant from the Rfo locus by about 1.6 cM. The sterile line '9802A1' was pollinated by the male fertile line '2006H' and the resulting F(1) plants were all male fertile. These results indicated that the male fertility of radish CMS can be restored by a new Rf locus, which linked tightly to the Rfo locus.
Collapse
Affiliation(s)
- Zhi Wei Wang
- Wuhan Botanical Garden/Wuhan Institute of Botany, The Chinese Academy of Sciences, Wuhan, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
21
|
Yang JH, Zhang MF, Yu JQ. Mitochondrial nad2 gene is co-transcripted with CMS-associated orfB gene in cytoplasmic male-sterile stem mustard (Brassica juncea). Mol Biol Rep 2007; 36:345-51. [PMID: 18046626 DOI: 10.1007/s11033-007-9185-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2007] [Accepted: 11/14/2007] [Indexed: 10/22/2022]
Abstract
The transcriptional patterns of mitochondrial respiratory related genes were investigated in cytoplasmic male-sterile and fertile maintainer lines of stem mustard, Brassica juncea. There were numerous differences in nad2 (subunit 2 of NADH dehydrogenase) between stem mustard CMS and its maintainer line. One novel open reading frame, hereafter named orfB gene, was located at the downstream of mitochondrial nad2 gene in the CMS. The novel orfB gene had high similarity with YMF19 family protein, orfB in Raphanus sativus, Helianthus annuus, Nicotiana tabacum and Beta vulgaris, orfB-CMS in Daucus carota, atp8 gene in Arabidopsis thaliana, 5' flanking of orf224 in B. napus (nap CMS) and 5' flanking of orf220 gene in CMS Brassica juncea. Three copies probed by specific fragment (amplified by primers of nad2F and nad2R from CMS) were found in the CMS line following Southern blotting digested with HindIII, but only a single copy in its maintainer line. Meanwhile, two transcripts were shown in the CMS line following Northern blotting while only one transcript was detected in the maintainer line, which were probed by specific fragment (amplified by primers of nad2F and nad2R from CMS). Meanwhile, the expression of nad2 gene was reduced in CMS bud compared to that in its maintainer line. We thus suggested that nad2 gene may be co-transcripted with CMS-associated orfB gene in the CMS. In addition, the specific fragment that was amplified by primers of nad2F and nad2R just spanned partial sequences of nad2 gene and orfB gene. Such alterations in the nad2 gene would impact the activity of NADH dehydrogenase, and subsequently signaling, inducing the expression of nuclear genes involved in male sterility in this type of cytoplasmic male sterility.
Collapse
Affiliation(s)
- Jing-Hua Yang
- Laboratory of Genetic Resources & Functional Improvement for Horticultural Plants, Department of Horticulture, Zhejiang University, Hangzhou 310029, P.R. China
| | | | | |
Collapse
|
22
|
Kim S, Lim H, Park S, Cho KH, Sung SK, Oh DG, Kim KT. Identification of a novel mitochondrial genome type and development of molecular markers for cytoplasm classification in radish (Raphanus sativus L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2007; 115:1137-45. [PMID: 17828522 DOI: 10.1007/s00122-007-0639-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Accepted: 08/26/2007] [Indexed: 05/17/2023]
Abstract
Plant mitochondrial genomes have complex configurations resulting from the multipartite structures and highly rearranged substoichiometric molecules created by repetitive sequences. To expedite the reliable classification of the diverse radish (Raphanus sativus L.) cytoplasmic types, we have developed consistent molecular markers within their complex mitochondrial genomes. orf138, a gene responsible for Ogura male-sterility, was detected in normal cultivars in the form of low-copy-number substoichiometric molecules. In addition to the dominant orf138-atp8 Ogura mitochondrial DNA (mtDNA) organization, three novel substoichiometric organizations linked to the atp8 gene were identified in this study. PCR amplification profiles of seven atp8- and atp6-linked sequences were divided into three groups. Interestingly, the normal cytoplasm type, which had previously been considered a single group, showed two patterns by PCR amplification. The most prominent difference between the two normal mtDNAs was size variation within four short-repeat sequences linked to the atp6 gene. This variation appeared to be the result of a double crossover, mediated by these homologous, short-repeat sequences. Specific PCR amplification profiles reflecting the stoichiometry of different mtDNA fragments were conserved within cultivars and across generations. Therefore, the specific sequences detected in these profiles were used as molecular markers for the classification of diverse radish germplasm. Using this classification system, a total of 90 radish cultivars, or accessions, were successfully assigned to three different mitotypes.
Collapse
Affiliation(s)
- Sunggil Kim
- Biotech Research Center, Dongbu Advanced Research Institute, Dongbu HiTek Co., Ltd, Daejeon 305-708, South Korea
| | | | | | | | | | | | | |
Collapse
|
23
|
Jiang M, Cao J. Isolation and characterization of a male sterility gene homolog BcMS2 from Chinese cabbage-pak-choi that expressing in an anther-specific manner. Mol Biol Rep 2007; 35:299-305. [PMID: 17514434 DOI: 10.1007/s11033-007-9086-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2007] [Accepted: 04/09/2007] [Indexed: 11/28/2022]
Abstract
A male sterility gene homolog, designated BcMS2, was isolated from flower buds using gene-specific primer pairs and was submitted to GenBank under accession number EF093533. Comparison of BcMS2 gene with MS2 from Arabidopsis thaliana and MS2Bnap from Brassica napus revealed some differences in gene structure and evolution. The full genomic DNA sequence of BcMS2 was 2,576 bp in length containing 8 exons and 7 introns, more than those of MS2Bnap but less than MS2. RT-PCR showed that BcMS2 gene expressed only in stage III flower buds of male fertile Chinese cabbage-pak-choi 'ZUBajh97-01B' and there were no detection in all organs of Polima cytoplasmic male sterility (CMS) line 'Bpol97-05A' and Ogura CMS line 'Bogu97-06A'. Furthermore, RT-PCR revealed that BcMS2 expressed only in anthers of male fertile material and there were no expression in sepals, petals, filaments and pistils. These results suggested that BcMS2 was an anther-specific gene and might be essential for the fertility of Chinese cabbage-pak-choi.
Collapse
Affiliation(s)
- Ming Jiang
- Lab of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
| | | |
Collapse
|
24
|
Giancola S, Rao Y, Chaillou S, Hiard S, Martin-Canadell A, Pelletier G, Budar F. Cytoplasmic suppression of Ogura cytoplasmic male sterility in European natural populations of Raphanus raphanistrum. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2007; 114:1333-43. [PMID: 17318491 DOI: 10.1007/s00122-007-0520-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Accepted: 02/02/2007] [Indexed: 05/05/2023]
Abstract
The Ogura cytoplasmic male sterility (CMS) of radish has been used for hybrid seed production in radish and Brassica crops. It is the only CMS system occurring in wild populations for which the gene responsible for sterility and a restorer gene have been formally identified. In Japan, gynodioecious populations of radish carrying Ogura or an Ogura-related cytoplasm have been described. The occurrence of restorer genes for the Ogura CMS in wild radish (Raphanus raphanistrum) in France led us to search for the corresponding male sterility gene (orf138) in several natural populations in France, England and Lebanon. We detected the orf138 gene, by PCR, at low frequency, in three populations from France and one from Southern England. Further molecular characterization showed that these plants carried a cytoplasm closely related to the original Ogura cytoplasm, with a variant orf138 coding sequence, previously reported to be ancestral. We performed crosses with sterile and maintainer radish lines, to test the ability of this wild Ogura-related cytoplasm to induce sterility. Surprisingly, the European Ogura-related cytoplasm did not cause sterility. Northern blots and circular RT-PCR analyses showed that orf138 gene expression was impaired in these plants because of a novel cytoplasm-dependent transcript-processing site.
Collapse
Affiliation(s)
- Sandra Giancola
- Station de Génétique et d'Amélioration des Plantes, Institut Jean-Pierre Bourgin, INRA UR254, Versailles, France
| | | | | | | | | | | | | |
Collapse
|
25
|
Meur G, Gaikwad K, Bhat SR, Prakash S, Kirti PB. Homeotic-like modification of stamens to petals is associated with aberrant mitochondrial gene expression in cytoplasmic male sterile Ogura Brassica juncea. J Genet 2006; 85:133-9. [PMID: 17072082 DOI: 10.1007/bf02729019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
We have previously reported correction of severe leaf chlorosis in the cytoplasmic male sterile Ogura (also called Ogu) Brassica juncea line carrying Ogura cytoplasm by plastid substitution via protoplast fusion. Two cybrids obtained from the fusion experiment, Og1 and Og2, were green and carried the plastid genome of B. juncea cv. RLM198. While Og1 displayed normal flower morphology comparable to that of its euplasmic B. juncea counterpart except for sterile anthers, Og2 retained homeotic-like floral modification of stamens to petal-like structures and several other floral deformities observed in the chlorotic (Ogu) B. juncea cv. RLM198 (or OgRLM). With respect to the mitochondrial genome, Og1 showed 81% genetic similarity to the fertile cultivar RLM while Og2 showed 93% similarity to OgRLM. In spite of recombination and rearrangements in the mitochondrial genomes in the cybrids, expression patterns of 10 out of 11 mitochondrial genes were similar in all the three CMS lines; the only exception was atp6, whose expression was altered. While Og1 showed normal atp6 transcript similar to that in RLM, in Og2 and OgRLM weak expression of a longer transcript was detected. These results suggest that the homeotic-like changes in floral patterning leading to petaloid stamens in Og2 and OgRLM may be associated with aberrant mitochondrial gene expression.
Collapse
Affiliation(s)
- Gargi Meur
- Department of Plant Sciences, University of Hyderabad, Hyderabad 500 046, India
| | | | | | | | | |
Collapse
|
26
|
Nahm SH, Lee HJ, Lee SW, Joo GY, Harn CH, Yang SG, Min BW. Development of a molecular marker specific to a novel CMS line in radish (Raphanus sativus L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2005; 111:1191-200. [PMID: 16142466 DOI: 10.1007/s00122-005-0052-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2005] [Accepted: 07/16/2005] [Indexed: 05/04/2023]
Abstract
In this study, we have investigated the cytoplasmic male sterility (CMS) of a novel male sterile radish line, designated NWB CMS. The NWB CMS was crossed with 16 fertile breeding lines, and all the progenies were completely male sterile. The degree of male sterility exhibited by NWB CMS is more than Ogura CMS from the Cruciferae family. The NWB CMS was found to induce 100% male sterility when crossed with all the tested breeding lines, whereas the Ogura CMS did not induce male sterility with any of the breeding lines. PCR analysis revealed that the molecular factor that influenced Ogura CMS, the orf138 gene, was absent in the NWB CMS line, and that the orf138 gene was not also expressed in this CMS line. In order to identify the cytoplasmic factors that confer male sterility in the NWB CMS line, we carried out RFLP analyses with 32 mitochondrial genes, all of which were used as probes. Fourteen genes exhibited polymorphisms between the NWB CMS line and other radish cultivars. Based on these RFLP data, intergenic primers were developed in order to amplify the intergenic regions between the polymorphic genes. Among these, a primer pair at the 3' region of the atp6 gene (5'-cgcttggactatgctatgtatga-3') and the 5' region of the nad3 gene (5'-tcatagagaaatccaatcgtcaa-3') produced a 2 kbp DNA fragment as a result of PCR. This DNA fragment was found to be specific to NWB CMS and was not present in other CMS types. It appears that this fragment could be used as a DNA marker to select NWB CMS line in a radish-breeding program.
Collapse
Affiliation(s)
- Seok-Hyeon Nahm
- Biotechnology Institute, Nong Woo Bio Co., Yeoju, Gyeonggi, South Korea.
| | | | | | | | | | | | | |
Collapse
|
27
|
Duroc Y, Gaillard C, Hiard S, Defrance MC, Pelletier G, Budar F. Biochemical and functional characterization of ORF138, a mitochondrial protein responsible for Ogura cytoplasmic male sterility in Brassiceae. Biochimie 2005; 87:1089-100. [PMID: 15979231 DOI: 10.1016/j.biochi.2005.05.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2005] [Revised: 05/20/2005] [Accepted: 05/20/2005] [Indexed: 11/24/2022]
Abstract
In cytoplasmic male sterility (CMS), original mitochondrial genes contribute to sex determinism by provoking pollen abortion. The function of the encoded proteins remains unclear. We studied the ORF138 protein, responsible for the 'Ogura' CMS, which is both used in hybrid seed production and present in natural populations. We analyzed the biochemical and structural properties of this protein in male-sterile plants and in E. coli. We showed that this protein spontaneously forms dimers in vitro. Truncated variants of the protein, containing either the hydrophobic or the hydrophilic moiety, also spontaneously dimerize. By fractionating mitochondria, we showed that ORF138 was strongly associated with the inner mitochondrial membrane of male-sterile plants. Our results also strongly suggest that ORF138 forms oligomers in male-sterile plant mitochondria. In E. coli, ORF138 was associated with the plasma membrane, as shown by membrane fractionation, and formed oligomers. The production of this protein strongly inhibited bacterial growth, but not by inhibiting respiration. The observed toxic effects required both the hydrophilic and hydrophobic moieties of the protein.
Collapse
Affiliation(s)
- Yann Duroc
- Station de Génétique et d'Amélioration des Plantes, Institut Jean-Pierre Bourgin, INRA, Route de Saint-Cyr, 78026 Versailles cedex, France
| | | | | | | | | | | |
Collapse
|
28
|
|
29
|
Kleter GA, Peijnenburg AACM. Presence of potential allergy-related linear epitopes in novel proteins from conventional crops and the implication for the safety assessment of these crops with respect to the current testing of genetically modified crops. PLANT BIOTECHNOLOGY JOURNAL 2003; 1:371-80. [PMID: 17166136 DOI: 10.1046/j.1467-7652.2003.00035.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Mitochondria of cytoplasmic male sterile crop plants contain novel, chimeric open reading frames. In addition, a number of crops carry endogenous double-stranded ribonucleic acid (dsRNA). In this study, the novel proteins encoded by these genetic components were screened for the presence of potential binding sites (epitopes) of allergy-associated IgE antibodies, as was previously done with transgenic proteins from genetically modified crops. The procedure entails the identification of stretches of at least six contiguous amino acids that are shared by novel proteins and known allergenic proteins. These stretches are further checked for potential linear IgE-binding epitopes. Of the 16 novel protein sequences screened in this study, nine contained stretches of six or seven amino acids that were also present in allergenic proteins. Four cases of similarity are of special interest, given the predicted antigenicity of the identical stretch within the allergenic and novel protein, the IgE-binding by a peptide containing an identical stretch reported in literature, or the multiple incidence of identical stretches of the same allergen within a novel protein. These selected stretches are present in novel proteins derived from oilseed rape and radish (ORF138), rice (dsRNA), and fava bean (dsRNA), and warrant further clinical testing. The frequency of positive outcomes and the sizes of the identical stretches were comparable to those previously found for transgenic proteins in genetically modified crops. It is discussed whether novel proteins from conventional crops should be subject to an assessment of potential allergenicity, a procedure which is currently mandatory for transgenic proteins from genetically modified crops.
Collapse
Affiliation(s)
- Gijs A Kleter
- RIKILT Institute of Food Safety, PO Box 230, NL 6700 AE Wageningen, The Netherlands
| | | |
Collapse
|
30
|
Pathania A, Bhat SR, Dinesh Kumar V, Kirti PB, Prakash S, Chopra VL. Cytoplasmic male sterility in alloplasmic Brassica juncea carrying Diplotaxis catholica cytoplasm: molecular characterization and genetics of fertility restoration. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2003; 107:455-461. [PMID: 12968615 DOI: 10.1007/s00122-003-1266-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The present study was aimed at characterizing cytoplasmic male sterility (CMS) and identifying the fertility restorer gene for CMS (Diplotaxis catholica) Brassica juncea derived through sexual hybridization. The fertility restorer gene was identified by crossing the CMS line with progeny plants derived from somatic hybrids of B. juncea and D. cathoilca. The CMS line is comparable to the nuclear donor B. juncea in all respects except for flower and silique characteristics. In CMS plants, the flowers have smaller nectaries, and anthers are converted into petals or tubular structures. Gynoecium exhibits a crooked style and trilocular ovary. Seed fertility was reduced in the CMS line. Genetic segregation data indicated that a single, dominant, nuclear gene governs fertility restoration. Restored plants showed a high female fertility and lacked gynoecium abnormalities. In fertility-restored plants, petal development was found to be variable; some flowers had the normal number of four petals, while others had zero to three petals. Interestingly, the trilocular character of the ovary was found to co-segregate with CMS and became bilocular upon male-fertility restoration. Thus, this trait appears to be affected by the interaction of nuclear and mitochondrial (mt) genomes. Restriction fragment length polymorphism analysis indicated that mt-genome of D. catholica is highly divergent from that of B. juncea. However, in Northern analysis, out of eight mt genes studied, an altered transcript pattern was recorded for only atpA. In fertility-restored plants, the atpA transcript became shorter, thereby showing its association with CMS.
Collapse
Affiliation(s)
- A Pathania
- National Research Centre on Plant Biotechnology, Indian Agricultural Resreach Institute, New Delhi, India
| | | | | | | | | | | |
Collapse
|
31
|
Leino M, Teixeira R, Landgren M, Glimelius K. Brassica napus lines with rearranged Arabidopsis mitochondria display CMS and a range of developmental aberrations. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2003; 106:1156-1163. [PMID: 12748764 DOI: 10.1007/s00122-002-1167-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2002] [Accepted: 09/16/2002] [Indexed: 05/24/2023]
Abstract
Numerous Brassica napus (+) Arabidopsis thaliana somatic hybrids were screened for male sterility and aberrant flower phenotypes. Nine hybrids were selected and backcrossed recurrently to B. napus. The resulting lines displayed stable maternal inheritance of flower phenotypes. Nuclear and organellar genomes were characterized molecularly using RFLP analysis. No DNA from A. thaliana was found in the nuclear genome after six back-crosses, whilst the mitochondrial genomes contained rearranged DNA from both A. thaliana and B. napus. Each line tested had a unique RFLP pattern of the mitochondrial DNA (mtDNA) that remained unchanged between the BC(3) and BC(6) generation. The plastid genomes consisted of B. napus DNA. Five lines of the BC(5) generation were subjected to more comprehensive investigations of growth, morphology and fertility. On the basis of these investigations, the five CMS lines could be assigned to two groups, one represented by three lines displaying reduced vegetative development, complete male sterility, and homeotic conversions of stamens into feminized structures. The second group, represented by the other two lines, were not completely male-sterile but still displayed severely affected flower morphologies. These two lines did not display any reduction in vegetative development. For both groups only stamens and petals suffered from the morphological and functional aberrations, while the sepals and pistils displayed normal morphology. All plants were fully female-fertile. Different rearrangements of the mitochondrial genome disturbed nuclear-mitochondrial interactions and led to various types of aberrant growth and flower development. The existence of numerous CMS lines with different mitochondrial patterns involving a species with a sequenced genome offers new opportunities to investigate the genetic regulation of CMS and its associated developmental perturbations.
Collapse
Affiliation(s)
- M Leino
- Department of Plant Biology, Box 7080, Swedish University for Agricultural Sciences, 750 07 Uppsala, Sweden.
| | | | | | | |
Collapse
|
32
|
Heazlewood JL, Whelan J, Millar AH. The products of the mitochondrial orf25 and orfB genes are FO components in the plant F1FO ATP synthase. FEBS Lett 2003; 540:201-5. [PMID: 12681508 DOI: 10.1016/s0014-5793(03)00264-3] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The F(O) portion of the mitochondrial ATP synthase contains a range of different subunits in bacteria, yeast and mammals. A search of the Arabidopsis genome identified sequence orthologs for only some of these subunits. Blue native polyacrylamide gel electrophoresis separation of Arabidopsis mitochondrial respiratory chain complexes revealed intact F(1)F(O), and separated F(1) and F(O) components. The subunits of each complex were analysed by mass spectrometry and matched to Arabidopsis genes. In the F(1)F(O) complex a series of nine known subunits were identified along with two additional proteins matching the predicted products of the mitochondrial encoded orfB and orf25 genes. The F(1) complex contained the five well-characterised F(1) subunits, while four subunits in the F(O) complex were identified: subunit 9, d subunit, and the orfB and orf25 products. Previously, orfB has been suggested as the plant equivalent of subunit 8 based on structural and sequence similarity. We propose that orf25 is the plant b subunit based on structural similarity and its presence in the F(O) complex. Chimerics of orf25, orfB, subunit 9 and subunit 6 have been associated with cytoplasmic male sterility in a variety of plant species, our additional findings now place all these proteins in the same protein complex.
Collapse
Affiliation(s)
- J L Heazlewood
- Plant Molecular Biology Group, School of Biomedical and Chemical Sciences, The University of Western Australia, Crawley 6009, WA, Australia
| | | | | |
Collapse
|
33
|
Yamagishi H, Terachi T. Multiple origins of cultivated radishes as evidenced by a comparison of the structural variations in mitochondrial DNA of Raphanus. Genome 2003; 46:89-94. [PMID: 12669800 DOI: 10.1139/g02-110] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Configurations of mitochondrial coxI and orfB gene regions were analysed by polymerase chain reaction (PCR) in three wild and one cultivated species of Raphanus. A total of 207 individual plants from 60 accessions were used. PCR with five combinations of primers identified five different amplification patterns both in wild and cultivated radishes. While the mitochondrial DNA (mtDNA) type of Ogura male-sterile cytoplasm was distinguishable from the normal type, the mtDNAs of normal radishes were further classified into four types. The variations were common to wild and cultivated radishes, although contrasting features were found depending on the region of cultivation. These results provide evidence that cultivated radishes have multiple origins from various wild plants of Raphanus.
Collapse
Affiliation(s)
- Hiroshi Yamagishi
- Department of Biotechnology, Institute for Comprehensive Research, Kyoto Sangyo University, Kamigamo, Kita-ku, Kyoto, 603-8555 Japan.
| | | |
Collapse
|
34
|
Kempken F, Pring D. Plant Breeding: Male Sterility in Higher Plants - Fundamentals and Applications. ACTA ACUST UNITED AC 1999. [DOI: 10.1007/978-3-642-59940-8_6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
35
|
|
36
|
Landgren M, Zetterstrand M, Sundberg E, Glimelius K. Alloplasmic male-sterile Brassica lines containing B. tournefortii mitochondria express an ORF 3' of the atp6 gene and a 32 kDa protein. off. PLANT MOLECULAR BIOLOGY 1996; 32:879-90. [PMID: 8980539 DOI: 10.1007/bf00020485] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Analyses of mitochondrial transcription and in organello translation were performed with the Brassica tournefortii cytoplasm. This cytoplasm causes alloplasmic male sterility when combined with the nuclear genomes of B. napus and B. juncea. Mitochondrial RNA and protein banding patterns were compared between the fertile wild species B. tournefortii, an alloplasmic male-sterile B. juncea line, an alloplasmic male-sterile B. napus line and an alloplasmic B. napus line with restored fertility. The analyses were carried out to identify differences in gene expression and to investigate whether alterations in gene expression accompanied male sterility. A difference in transcription patterns between the fertile B. tournefortii and the alloplasmic lines was found for the atp6 gene. The atp6 region was investigated further, since a similar alteration in atp6 transcription has been observed in two other Brassica cytoplasms which are associated with cytoplasmic male sterility (CMS). The additional longer atp6 transcript detected in the alloplasmic lines in the present study was found to contain an open reading frame (ORF) located downstream of the atp6 gene. DNA sequencing revealed that the ORF, orf263, could encode a protein with a predicted molecular weight of about 29 kDa. In organello analysis detected two proteins of 29 and 32 kDa respectively, which were found only in the alloplasmic lines. Furthermore, the 32 kDa protein accompanied male sterility since it was absent in alloplasmic plants restored to fertility. The protein analysis might indicate that orf263 is translated and causes CMS.
Collapse
Affiliation(s)
- M Landgren
- Department of Plant Breeding Research, Uppsala Genetic Center, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | | | | |
Collapse
|
37
|
Kubo T, Mikami T. A duplicated sequence in sugarbeet mitochondrial transcripts is differentially edited: analysis of orfB and its derivative orf324 mRNAs. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1307:259-62. [PMID: 8688457 DOI: 10.1016/0167-4781(96)00072-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
RNA editing of the duplicated sequences was investigated in the transcripts of orfB and orf324 genes from sugarbeet mitochondria. The orf324 shares the first 59 bp of the reading frame and 321 bp upstream sequence with orfB. Two cytidine-to-uridine editing sites were found in orfB, but the corresponding cytidine residues remained unchanged in the transcripts of orf324. In the vicinity of the non-edited cytidine residues within the shared sequence element of orf324 were identified three point mutations that may abolish orf324 editing. Our results also suggest that selection of editing sites depends on primary sequence.
Collapse
Affiliation(s)
- T Kubo
- Laboratory of Genetic Engineering, Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | | |
Collapse
|
38
|
Van Tang H, Pring DR, Muza FR, Yan B. Sorghum mitochondrial orf25 and a related chimeric configuration of a male-sterile cytoplasm. Curr Genet 1996; 29:265-74. [PMID: 8595673 DOI: 10.1007/bf02221557] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We describe fundamental characteristics of sorghum mitochondrial orf25, urf209, and a related chimeric configuration, orf265/130, which is restricted to the IS1112C source of cytoplasmic male sterility in sorghum. Transcripts of urf209 are edited at ten nucleotides, resulting in nine amino-acid changes predicted from genomic sequences. The cDNA-predicted polypeptide product is 23.6 kDa, while Western blot analyses identify a product of 20k Da. Transcription of urf209 is characterized by one or two transcripts, dependent on nuclear background, but this difference is not related to male fertility status. The orf265/130 chimeric region includes 288 bp 95% identical to sequences 5' to maize T-cytoplasm T-urf13 and atp6, which includes a common transcription initiation site, and terminates with a recombinational event involving urf209. The urf209 similarity extends 189 bp, followed by sequences duplicated 5' to sorghum atp6-2. Sequences immediately 3' to the atp6-2 similarity include a second in-frame start codon, defining orf130. Structural features 5' to orf130 are shared with motifs found 5' to several translated mitochondrial open reading frames. The orf265/orf130 configuration is uniquely transcribed, and transcripts of orf130 exhibit one silent RNA editing event. Transcription in somatic cells is not altered by male fertility status.
Collapse
Affiliation(s)
- H Van Tang
- Department of Plant Pathology and Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32611, USA
| | | | | | | |
Collapse
|
39
|
Handa H, Gualberto JM, Grienenberger JM. Characterization of the mitochondrial orfB gene and its derivative, orf224, a chimeric open reading frame specific to one mitochondrial genome of the "Polima" male-sterile cytoplasm in rapeseed (Brassica napus L.). Curr Genet 1995; 28:546-52. [PMID: 8593685 DOI: 10.1007/bf00518167] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
orf224 is a novel reading frame present upstream of the atp6 gene in the mitochondria of "Polima" cms cytoplasm of rapeseed. In order to determine the origin of orf224, the sequences homologous to orf224 were isolated and characterized. Sequence analysis indicated that orf224 originated by recombination events involving the 5'-flanking region and the amino-terminal segment of the coding region of orf158 (well-known as orfB in other plants), part of exon 1 of the ribosomal protein S3 (rps3) gene, and an unidentified sequence. Transcripts of the orf158 gene were found to be edited at three positions, one of which induces an amino-acid change, while orf224 transcripts have only one RNA editing site within the region homologous to the rps3 gene. This editing site is also present in the proper rps3 transcripts. This result indicates that editing of orf224 occurred because of the sequence homology to rps3. Polyclonal antibodies prepared against a rapeseed ORF158 fusion protein specifically recognize a 18-kDa protein in the membrane fractions of mitochondria from both normal and cms rapeseed.
Collapse
Affiliation(s)
- H Handa
- Department of Cell Biology, National Institute of Agrobiological Resources, Ibaraki, Japan
| | | | | |
Collapse
|
40
|
Conley CA, Hanson MR. How do alterations in plant mitochondrial genomes disrupt pollen development? J Bioenerg Biomembr 1995; 27:447-57. [PMID: 8595980 DOI: 10.1007/bf02110007] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Cytoplasmic male sterility arises when mitochondrial activities are disrupted that are essential for pollen development. Rearrangements in the mitochondrial genome that create novel open reading frames are strongly correlated with CMS phenotypes in a number of systems. The morphological aberrations which indicate CMS-associated degeneration are frequently restricted to the male sporogenous tissue and a limited number of vegetative tissues. In several cases, this tissue specificity may result from interactions between the mitochondrial genome and nuclear genes that regulate mitochondrial gene expression. A molecular mechanism by which CMS might be caused has not been conclusively demonstrated for any system. Several hypotheses for general mechanisms by which mitochondrial dysfunction might disrupt pollen development are discussed, based on similarities between the novel CMS-associated genes from a number of systems.
Collapse
Affiliation(s)
- C A Conley
- Section of Genetics and Development, Cornell University, Ithaca New York 14853-2703, USA
| | | |
Collapse
|
41
|
Krishnasamy S, Makaroff CA. Organ-specific reduction in the abundance of a mitochondrial protein accompanies fertility restoration in cytoplasmic male-sterile radish. PLANT MOLECULAR BIOLOGY 1994; 26:935-46. [PMID: 8000006 DOI: 10.1007/bf00028860] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The mitochondrial DNA of plants containing the male sterility-causing Ogura cytoplasm of radish contain a novel gene, orf138, that is transcribed as part of a bicistronic mRNA. Genetic studies have previously linked male sterility with the orf138 locus. To determine if orf138 is expressed at the protein level, and investigate the effect of fertility restoration on ORF138 levels, we have raised antibodies to an ORF138-glutathione S-transferase fusion protein. Anti-ORF138 antibodies detect a 20 kDa protein that is associated with the mitochondrial membrane of sterile Ogura radish plants. Nuclear restoration is accompanied by a dramatic reduction in the amount of this protein in mitochondria of flowers and leaves, but not roots of fertile Ogura radish plants. The presence or absence of fertility restoration genes has no detectable effect on the size, abundance, or RNA editing patterns of orf138 transcripts. These results support genetic studies that have implicated orf138 in Ogura cytoplasmic male sterility and suggest that the restorer genes may be affecting either the translation or stability of ORF138.
Collapse
Affiliation(s)
- S Krishnasamy
- Department of Chemistry, Miami University, Oxford, OH 45056
| | | |
Collapse
|
42
|
Grelon M, Budar F, Bonhomme S, Pelletier G. Ogura cytoplasmic male-sterility (CMS)-associated orf138 is translated into a mitochondrial membrane polypeptide in male-sterile Brassica cybrids. MOLECULAR & GENERAL GENETICS : MGG 1994; 243:540-7. [PMID: 8208245 DOI: 10.1007/bf00284202] [Citation(s) in RCA: 115] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Transcription of a putative mitochondrial gene (orf138) has previously been correlated with Ogura cytoplasmic male-sterility (CMS) in rapeseed cybrids. In this paper, studies performed on a Brassica cybrid with a different organization of the orf138 locus confirm this association. We also show that mitochondria isolated from male-sterile rapeseed plants synthesize a polypeptide of 19 kDa, which is absent in fertile revertants. Antibodies against a glutathione S-transferase-ORF138 fusion protein were raised to establish that this 19 kDa polypeptide is the product of orf138. The anti-ORF138 serum was used to demonstrate that the orf138 translation product occurs only in sterile cybrids and co-purifies with the mitochondrial membrane fraction.
Collapse
Affiliation(s)
- M Grelon
- Laboratoire de Biologie cellulaire, INRA centre de Versailles, France
| | | | | | | |
Collapse
|
43
|
Krishnasamy S, Grant RA, Makaroff CA. Subunit 6 of the Fo-ATP synthase complex from cytoplasmic male-sterile radish: RNA editing and NH2-terminal protein sequencing. PLANT MOLECULAR BIOLOGY 1994; 24:129-141. [PMID: 8111012 DOI: 10.1007/bf00040580] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
RNA editing and NH2-terminal processing of subunit 6 (atp6) of the mitochondrial Fo-ATPase complex has been investigated for the normal (fertile) and Ogura (male-sterile) radish cytoplasms to determine if previously identified differences between the Ogura atp6 locus and its normal radish counterpart are associated with cytoplasmic male sterility. Analysis of cDNA clones from five different sterile and fertile radish lines identified one C-to-U transition, which results in the replacement of a proline with a serine, in several of the lines. No editing of atp6 transcripts was observed in two lines, Scarlet Knight (normal radish) and sterile CrGC15 (Ogura radish). This is the first example of a naturally occurring plant mitochondrial gene that is not edited. The Ogura atp6 polypeptide is synthesized with a predicted NH2-terminal extension of 174 amino acids in contrast to the nine amino acid extension found in normal radish. In spite of the lack of similarity between the two extensions, NH2-terminal sequence analysis indicates that both polypeptides are processed to yield identical core proteins with a serine as the NH2-terminal residue. These results indicate that ATPase subunit 6 is synthesized normally in Ogura radish, and that it is unlikely that the atp6 locus is associated with Ogura cytoplasmic male sterility.
Collapse
Affiliation(s)
- S Krishnasamy
- Department of Chemistry, Miami University, Oxford, OH 45056
| | | | | |
Collapse
|