1
|
Drews F, Boenigk J, Simon M. Paramecium epigenetics in development and proliferation. J Eukaryot Microbiol 2022; 69:e12914. [PMID: 35363910 DOI: 10.1111/jeu.12914] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The term epigenetics is used for any layer of genetic information aside from the DNA base-sequence information. Mammalian epigenetic research increased our understanding of chromatin dynamics in terms of cytosine methylation and histone modification during differentiation, aging, and disease. Instead, ciliate epigenetics focused more on small RNA-mediated effects. On the one hand, these do concern the transport of RNA from parental to daughter nuclei, representing a regulated transfer of epigenetic information across generations. On the other hand, studies of Paramecium, Tetrahymena, Oxytricha, and Stylonychia revealed an almost unique function of transgenerational RNA. Rather than solely controlling chromatin dynamics, they control sexual progeny's DNA content quantitatively and qualitatively. Thus epigenetics seems to control genetics, at least genetics of the vegetative macronucleus. This combination offers ciliates, in particular, an epigenetically controlled genetic variability. This review summarizes the epigenetic mechanisms that contribute to macronuclear heterogeneity and relates these to nuclear dimorphism. This system's adaptive and evolutionary possibilities raise the critical question of whether such a system is limited to unicellular organisms or binuclear cells. We discuss here the relevance of ciliate genetics and epigenetics to multicellular organisms.
Collapse
Affiliation(s)
- Franziska Drews
- Molecular Cell Biology and Microbiology, School of Mathematics and Natural Sciences, University of Wuppertal
| | | | - Martin Simon
- Molecular Cell Biology and Microbiology, School of Mathematics and Natural Sciences, University of Wuppertal
| |
Collapse
|
2
|
Zhou Y, Fu L, Mochizuki K, Xiong J, Miao W, Wang G. Absolute quantification of chromosome copy numbers in the polyploid macronucleus of Tetrahymena thermophila at the single-cell level. J Eukaryot Microbiol 2022; 69:e12907. [PMID: 35313044 DOI: 10.1111/jeu.12907] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Amitosis is widespread among eukaryotes, but the underlying mechanisms are poorly understood. The polyploid macronucleus (MAC) of unicellular ciliates divides by amitosis, making ciliates a potentially valuable model system to study this process. However, a method to accurately quantify the copy number of MAC chromosomes has not yet been established. Here we used droplet digital PCR (ddPCR) to quantify the absolute copy number of the MAC chromosomes in Tetrahymena thermophila. We first confirmed that ddPCR is a sensitive and reproducible method to determine accurate chromosome copy numbers at the single-cell level. We then used ddPCR to determine the copy number of different MAC chromosomes by analyzing individual T. thermophila cells in the G1 and the amitotic (AM) phases. The average copy number of MAC chromosomes was 90.9 at G1 phase, approximately half the number at AM phase (189.8). The copy number of each MAC chromosome varied among individual cells in G1 phase and correlated with cell size, suggesting that amitosis accompanied by unequal cytokinesis causes copy number variability. Furthermore, the fact that MAC chromosome copy number is less variable among AM-phase cells suggests that the copy number is standardized by regulating DNA replication. We also demonstrated that copy numbers differ among different MAC chromosomes and that interchromosomal variations in copy number are consistent across individual cells. Our findings demonstrate that ddPCR can be used to model amitosis in T. thermophila and possibly in other ciliates.
Collapse
Affiliation(s)
- Yuanyuan Zhou
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lu Fu
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kazufumi Mochizuki
- Institute of Human Genetics (IGH), CNRS, University of Montpellier, Montpellier, 34090, France
| | - Jie Xiong
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Wei Miao
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.,CAS Center for Excellence in Animal Evolution and Genetics, Kunming, 650223, China
| | - Guangying Wang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| |
Collapse
|
3
|
Fu YX, Wang G, Chen K, Ma X, Liu SQ, Miao W. Amitosis as a strategy of cell division—Insight from the proliferation of Tetrahymena thermophila macronuclei. Theor Popul Biol 2022; 145:52-62. [DOI: 10.1016/j.tpb.2022.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 11/25/2022]
|
4
|
Kaczanowski A, Kiersnowska M. Formation and degradation of large extrusion bodies in Tetrahymena thermophila: The role of intramacronuclear microtubules in chromatin segregation. Eur J Protistol 2018; 66:177-188. [DOI: 10.1016/j.ejop.2018.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 09/19/2018] [Accepted: 09/24/2018] [Indexed: 11/17/2022]
|
5
|
Macronuclear Actin copy number variations in single cells of different Pseudokeronopsis (Alveolata, Ciliophora) populations. Eur J Protistol 2017; 59:75-81. [DOI: 10.1016/j.ejop.2017.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 02/01/2017] [Accepted: 02/08/2017] [Indexed: 10/20/2022]
|
6
|
Tetrahymena as a Unicellular Model Eukaryote: Genetic and Genomic Tools. Genetics 2017; 203:649-65. [PMID: 27270699 DOI: 10.1534/genetics.114.169748] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 04/08/2016] [Indexed: 12/12/2022] Open
Abstract
Tetrahymena thermophila is a ciliate model organism whose study has led to important discoveries and insights into both conserved and divergent biological processes. In this review, we describe the tools for the use of Tetrahymena as a model eukaryote, including an overview of its life cycle, orientation to its evolutionary roots, and methodological approaches to forward and reverse genetics. Recent genomic tools have expanded Tetrahymena's utility as a genetic model system. With the unique advantages that Tetrahymena provide, we argue that it will continue to be a model organism of choice.
Collapse
|
7
|
Hamilton EP, Kapusta A, Huvos PE, Bidwell SL, Zafar N, Tang H, Hadjithomas M, Krishnakumar V, Badger JH, Caler EV, Russ C, Zeng Q, Fan L, Levin JZ, Shea T, Young SK, Hegarty R, Daza R, Gujja S, Wortman JR, Birren BW, Nusbaum C, Thomas J, Carey CM, Pritham EJ, Feschotte C, Noto T, Mochizuki K, Papazyan R, Taverna SD, Dear PH, Cassidy-Hanley DM, Xiong J, Miao W, Orias E, Coyne RS. Structure of the germline genome of Tetrahymena thermophila and relationship to the massively rearranged somatic genome. eLife 2016; 5. [PMID: 27892853 PMCID: PMC5182062 DOI: 10.7554/elife.19090] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 11/14/2016] [Indexed: 12/30/2022] Open
Abstract
The germline genome of the binucleated ciliate Tetrahymena thermophila undergoes programmed chromosome breakage and massive DNA elimination to generate the somatic genome. Here, we present a complete sequence assembly of the germline genome and analyze multiple features of its structure and its relationship to the somatic genome, shedding light on the mechanisms of genome rearrangement as well as the evolutionary history of this remarkable germline/soma differentiation. Our results strengthen the notion that a complex, dynamic, and ongoing interplay between mobile DNA elements and the host genome have shaped Tetrahymena chromosome structure, locally and globally. Non-standard outcomes of rearrangement events, including the generation of short-lived somatic chromosomes and excision of DNA interrupting protein-coding regions, may represent novel forms of developmental gene regulation. We also compare Tetrahymena's germline/soma differentiation to that of other characterized ciliates, illustrating the wide diversity of adaptations that have occurred within this phylum.
Collapse
Affiliation(s)
- Eileen P Hamilton
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, United States
| | - Aurélie Kapusta
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, United States
| | - Piroska E Huvos
- Biochemistry and Molecular Biology, Southern Illinois University, Carbondale, United States
| | | | - Nikhat Zafar
- J. Craig Venter Institute, Rockville, United States
| | - Haibao Tang
- J. Craig Venter Institute, Rockville, United States
| | | | | | | | | | - Carsten Russ
- Eli and Edythe L. Broad Institute of Harvard and MIT, Cambridge, United States
| | - Qiandong Zeng
- Eli and Edythe L. Broad Institute of Harvard and MIT, Cambridge, United States
| | - Lin Fan
- Eli and Edythe L. Broad Institute of Harvard and MIT, Cambridge, United States
| | - Joshua Z Levin
- Eli and Edythe L. Broad Institute of Harvard and MIT, Cambridge, United States
| | - Terrance Shea
- Eli and Edythe L. Broad Institute of Harvard and MIT, Cambridge, United States
| | - Sarah K Young
- Eli and Edythe L. Broad Institute of Harvard and MIT, Cambridge, United States
| | - Ryan Hegarty
- Eli and Edythe L. Broad Institute of Harvard and MIT, Cambridge, United States
| | - Riza Daza
- Eli and Edythe L. Broad Institute of Harvard and MIT, Cambridge, United States
| | - Sharvari Gujja
- Eli and Edythe L. Broad Institute of Harvard and MIT, Cambridge, United States
| | - Jennifer R Wortman
- Eli and Edythe L. Broad Institute of Harvard and MIT, Cambridge, United States
| | - Bruce W Birren
- Eli and Edythe L. Broad Institute of Harvard and MIT, Cambridge, United States
| | - Chad Nusbaum
- Eli and Edythe L. Broad Institute of Harvard and MIT, Cambridge, United States
| | - Jainy Thomas
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, United States
| | - Clayton M Carey
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, United States
| | - Ellen J Pritham
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, United States
| | - Cédric Feschotte
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, United States
| | - Tomoko Noto
- Institute of Molecular Biotechnology, Vienna, Austria
| | | | - Romeo Papazyan
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, United States
| | - Sean D Taverna
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, United States
| | - Paul H Dear
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | | | - Jie Xiong
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Wei Miao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Eduardo Orias
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, United States
| | | |
Collapse
|
8
|
Abstract
The intra-S phase checkpoint kinase of metazoa and yeast, ATR/MEC1, protects chromosomes from DNA damage and replication stress by phosphorylating subunits of the replicative helicase, MCM2-7. Here we describe an unprecedented ATR-dependent pathway in Tetrahymena thermophila in which the essential pre-replicative complex proteins, Orc1p, Orc2p and Mcm6p are degraded in hydroxyurea-treated S phase cells. Chromosomes undergo global changes during HU-arrest, including phosphorylation of histone H2A.X, deacetylation of histone H3, and an apparent diminution in DNA content that can be blocked by the deacetylase inhibitor sodium butyrate. Most remarkably, the cell cycle rapidly resumes upon hydroxyurea removal, and the entire genome is replicated prior to replenishment of ORC and MCMs. While stalled replication forks are elongated under these conditions, DNA fiber imaging revealed that most replicating molecules are produced by new initiation events. Furthermore, the sole origin in the ribosomal DNA minichromosome is inactive and replication appears to initiate near the rRNA promoter. The collective data raise the possibility that replication initiation occurs by an ORC-independent mechanism during the recovery from HU-induced replication stress. DNA damage and replication stress activate cell cycle checkpoint responses that protect the integrity of eukaryotic chromosomes. A well-conserved response involves the reversible phosphorylation of the replicative helicase, MCM2-7, which together with the origin recognition complex (ORC) dictates when and where replication initiates in chromosomes. The central role of ORC and MCMs in DNA replication is illustrated by the fact that small changes in abundance of these pre-replicative complex (pre-RC) components are poorly tolerated from yeast to humans. Here we describe an unprecedented replication stress checkpoint response in the early branching eukaryote, Tetrahymena thermophila, that is triggered by the depletion of dNTP pools with hydroxyurea (HU). Instead of transiently phosphorylating MCM subunits, ORC and MCM proteins are physically degraded in HU-treated Tetrahymena. Unexpectedly, upon HU removal the genome is completely and effortlessly replicated prior to replenishment of ORC and MCM components. Using DNA fiber imaging and 2D gel electrophoresis, we show that ORC-dependent mechanisms are bypassed during the recovery phase to produce bidirectional replication forks throughout the genome. Our findings suggest that Tetrahymena enlists an alternative mechanism for replication initiation, and that the underlying process can operate on a genome-wide scale.
Collapse
Affiliation(s)
- Pamela Y. Sandoval
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, Texas, United States of America
| | - Po-Hsuen Lee
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, College Station, Texas, United States of America
| | - Xiangzhou Meng
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Geoffrey M. Kapler
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, Texas, United States of America
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, College Station, Texas, United States of America
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
9
|
Morgens DW, Cavalcanti ARO. Amitotic chromosome loss predicts distinct patterns of senescence and non-senescence in ciliates. Protist 2015; 166:224-33. [PMID: 25840368 DOI: 10.1016/j.protis.2015.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 02/24/2015] [Accepted: 03/02/2015] [Indexed: 11/26/2022]
Abstract
Over time and repeated asexual divisions, many ciliate species display the characteristics of senescence, reduced fecundity and increased mortality. Their only path to recovery is sexual conjugation or autogamy. While more traditional models of cellular aging have been proposed, one of the most accepted explanations relies on the faulty mechanism by which ciliates duplicate their somatic nucleus, a process referred to as amitosis. Amitosis involves the random segregation of chromosomes with no consideration for homology. Over subsequent divisions, chromosome copy numbers will fluctuate until an entire chromosome is lost, resulting in death. Via simulations of this process, we find that senescence and death via chromosome loss is not the only possible result of amitosis. Random chromosome loss is less damaging to populations than previously thought, and strict adherence to the model predicts that Paramecium tetraurelia would not senesce. A combination of the reciprocal nature of amitosis and lethal selection against low-copy number chromosomes is responsible for this startling prediction. Additionally, our results provide an alternate explanation to recent evidence for selection on chromosome copy number in Tetrahymena thermophila and peculiar patterns of senescence in Tetrahymena pyriformis.
Collapse
Affiliation(s)
- David W Morgens
- Biology Department, Pomona College, 175W 6(th) Street, Claremont, CA 91711, USA
| | - Andre R O Cavalcanti
- Biology Department, Pomona College, 175W 6(th) Street, Claremont, CA 91711, USA.
| |
Collapse
|
10
|
Lee PH, Meng X, Kapler GM. Developmental regulation of the Tetrahymena thermophila origin recognition complex. PLoS Genet 2015; 11:e1004875. [PMID: 25569357 PMCID: PMC4287346 DOI: 10.1371/journal.pgen.1004875] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 11/05/2014] [Indexed: 01/06/2023] Open
Abstract
The Tetrahymena thermophila DNA replication machinery faces unique demands due to the compartmentalization of two functionally distinct nuclei within a single cytoplasm, and complex developmental program. Here we present evidence for programmed changes in ORC and MCM abundance that are not consistent with conventional models for DNA replication. As a starting point, we show that ORC dosage is critical during the vegetative cell cycle and development. A moderate reduction in Orc1p induces genome instability in the diploid micronucleus, aberrant division of the polyploid macronucleus, and failure to generate a robust intra-S phase checkpoint response. In contrast to yeast ORC2 mutants, replication initiation is unaffected; instead, replication forks elongation is perturbed, as Mcm6p levels decline in parallel with Orc1p. Experimentally induced down-regulation of ORC and MCMs also impairs endoreplication and gene amplification, consistent with essential roles during development. Unexpectedly Orc1p and Mcm6p levels fluctuate dramatically in developing wild type conjugants, increasing for early cycles of conventional micronuclear DNA replication and macronuclear anlagen replication (endoreplication phase I, rDNA gene amplification). This increase does not reflect the DNA replication load, as much less DNA is synthesized during this developmental window compared to vegetative S phase. Furthermore, although Orc1p levels transiently increase prior to endoreplication phase II, Orc1p and Mcm6p levels decline when the replication load increases and unconventional DNA replication intermediates are produced. We propose that replication initiation is re-programmed to meet different requirements or challenges during the successive stages of Tetrahymena development. The Origin Recognition Complex is required for site-specific replication initiation in eukaryotic chromosomes. Null mutations are lethal in yeast and metazoa, and hypomorphs induce genome instability, a hallmark of cancer. We exploited the unique biology of Tetrahymena to explore ORC's role in conventional and alternative replication programs. Modest experimental down-regulation of ORC1 induces genome instability in vegetative growing Tetrahymena, and diminishes the capacity to support developmentally regulated endoreplication and gene amplification, consistent with essential roles in all of these processes. ORC mutants fail to activate the ATR checkpoint response, and are compromised in their ability to elongate existing replication forks. Remarkably, ORC and MCM levels fluctuate in unexpected ways during wild type development. Most notably, programmed changes in ORC abundance do not reflect the impending DNA replication load. Relative to the vegetative cell cycle, ORC and MCM levels increase dramatically and are highest early in development, when the replication load is lowest. Conversely, ORC levels are lowest during genome-wide macronuclear endoreplication, when the replication load increases. Endocycling cells generate unconventional replication intermediates that distinguish them from vegetative ORC1 knockdown mutants. The collective data suggest that the dependence on ORC may be relaxed during late stages of macronuclear development.
Collapse
Affiliation(s)
- Po-Hsuen Lee
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, College Station, Texas, United States of America
| | - Xiangzhou Meng
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Geoffrey M. Kapler
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, College Station, Texas, United States of America
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
11
|
Long H, Zufall RA. Mutational robustness of morphological traits in the ciliate Tetrahymena thermophila. J Eukaryot Microbiol 2014; 62:249-54. [PMID: 25227613 DOI: 10.1111/jeu.12174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 07/17/2014] [Accepted: 07/22/2014] [Indexed: 11/29/2022]
Abstract
Ciliate nuclear architecture, in particular the sequestration of a transcriptionally silent germline genome, allows for the accumulation of mutations that are "hidden" from selection during many rounds of asexual reproduction. After sexual conjugation, these mutations are expressed, potentially resulting in highly variable phenotypes. Morphological traits are widely used in ciliate taxonomy, however, the extent to which the values of these traits are robust to change in the face of mutation remains largely unknown. In this study, we examine the effects of mutations accumulated in the germline genome to test the mutational robustness of four traits commonly used in ciliate morphological taxonomy (number of somatic kineties, number of postoral kineties, macronuclear size, and cell size). We found that the number of postoral kineties is robust to mutation, confirming that it should be preferentially used in taxonomy. By contrast, we found that, as in other unicellular and multicellular species, cell and macronucleus sizes change in response to mutation. Thus, we argue that cell and macronucleus sizes, which are widely used in taxonomy, should be treated cautiously for species identification. Finally, we found evidence of correlations between cell and macronucleus sizes and fitness, suggesting possible mutational pleiotropy. This study demonstrates the importance of, and methods for, determining mutational robustness to guide morphological taxonomy in ciliates.
Collapse
Affiliation(s)
- Hongan Long
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, 77204-5001; Department of Biology, Indiana University, Bloomington, Indiana, 47405
| | | |
Collapse
|
12
|
Copy number variations of 11 macronuclear chromosomes and their gene expression in Oxytricha trifallax. Gene 2012; 505:75-80. [DOI: 10.1016/j.gene.2012.05.045] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 03/25/2012] [Accepted: 05/21/2012] [Indexed: 01/17/2023]
|
13
|
Brito PH, Guilherme E, Soares H, Gordo I. Mutation accumulation in Tetrahymena. BMC Evol Biol 2010; 10:354. [PMID: 21078144 PMCID: PMC2998532 DOI: 10.1186/1471-2148-10-354] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Accepted: 11/15/2010] [Indexed: 12/01/2022] Open
Abstract
Background The rate and fitness effects of mutations are key in understanding the evolution of every species. Traditionally, these parameters are estimated in mutation accumulation experiments where replicate lines are propagated in conditions that allow mutations to randomly accumulate without the purging effect of natural selection. These experiments have been performed with many model organisms but we still lack empirical estimates of the rate and effects of mutation in the protists. Results We performed a mutation accumulation (MA) experiment in Tetrahymena thermophila, a species that can reproduce sexually and asexually in nature, and measured both the mean decline and variance increase in fitness of 20 lines. The results obtained with T. thermophila were compared with T. pyriformis that is an obligate asexual species. We show that MA lines of T. thermophila go to extinction at a rate of 1.25 clonal extinctions per bottleneck. In contrast, populations of T. pyriformis show a much higher resistance to extinction. Variation in gene copy number is likely to be a key factor in explaining these results, and indeed we show that T. pyriformis has a higher mean copy number per cell than T. thermophila. From fitness measurements during the MA experiment, we infer a rate of mutation to copy number variation of 0.0333 per haploid MAC genome of T. thermophila and a mean effect against copy number variation of 0.16. A strong effect of population size in the rate of fitness decline was also found, consistent with the increased power of natural selection. Conclusions The rate of clonal extinction measured for T. thermophila is characteristic of a mutational degradation and suggests that this species must undergo sexual reproduction to avoid the deleterious effects detected in the laboratory experiments. We also suggest that an increase in chromosomal copy number associated with the phenotypic assortment of amitotic divisions can provide an alternative mechanism to escape the deleterious effect of random chromosomal copy number variation in species like T. pyriformis that lack the resetting mechanism of sexual reproduction. Our results are relevant to the understanding of cell line longevity and senescence in ciliates.
Collapse
|
14
|
A developmentally regulated gene, ASI2, is required for endocycling in the macronuclear anlagen of Tetrahymena. EUKARYOTIC CELL 2010; 9:1343-53. [PMID: 20656911 DOI: 10.1128/ec.00089-10] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Ciliated protozoa contain two types of nuclei, germ line micronuclei (Mic) and transcriptionally active macronuclei (Mac). During sexual reproduction, the parental Mac degenerates and a new Mac develops from a mitotic product of the zygotic Mic. Macronuclear development involves extensive endoreplication of the genome. The present study shows that endoreplication of macronuclear DNA in Tetrahymena is an example of endocyling, a variant of the mitotic cycle with alternating S and G phases in the absence of cell division. Thus, endocycling is conserved from ciliates to multicellular organisms. The gene ASI2 in Tetrahymena thermophila encodes a putative signal transduction receptor. ASI2 is nonessential for vegetative growth, but it is upregulated during development of the new Mac. Cells that lack ASI2 in the developing Mac anlagen are arrested in endoreplication of the DNA and die. This study shows that ASI2 is also transcribed in the parental Mac early in conjugation and that transcription of ASI2 in the parental Mac supports endoreplication of the DNA during early stages of development of the Mac anlagen. Other molecular events in Mac anlage development, including developmentally regulated DNA rearrangement, occur normally in matings between ASI2 knockouts, suggesting that ASI2 specifically regulates endocycling in Tetrahymena.
Collapse
|
15
|
ALLEN SALLYLYMAN, WHITE THEODOREC, LANGMORE JOHNP, SWANCUTT MARKA. Highly Purified Micro- and Macronuclei fromTetrahymena thermophilaIsolated by Percoll Gradients1. ACTA ACUST UNITED AC 2007. [DOI: 10.1111/j.1550-7408.1983.tb01027.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Smith JJ, Yakisich JS, Kapler GM, Cole ES, Romero DP. A beta-tubulin mutation selectively uncouples nuclear division and cytokinesis in Tetrahymena thermophila. EUKARYOTIC CELL 2004; 3:1217-26. [PMID: 15470250 PMCID: PMC522614 DOI: 10.1128/ec.3.5.1217-1226.2004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2003] [Accepted: 06/23/2004] [Indexed: 11/20/2022]
Abstract
The ciliated protozoan Tetrahymena thermophila contains two distinct nuclei within a single cell-the mitotic micronucleus and the amitotic macronucleus. Although microtubules are required for proper division of both nuclei, macronuclear chromosomes lack centromeres and the role of microtubules in macronuclear division has not been established. Here we describe nuclear division defects in cells expressing a mutant beta-tubulin allele that confers hypersensitivity to the microtubule-stabilizing drug paclitaxel. Macronuclear division is profoundly affected by the btu1-1 (K350M) mutation, producing cells with widely variable DNA contents, including cells that lack macronuclei entirely. Protein expressed by the btu1-1 allele is dominant over wild-type protein expressed by the BTU2 locus. Normal macronuclear division is restored when the btu1-1 allele is inactivated by targeted disruption or expressed as a truncated protein. Immunofluorescence studies reveal elongated microtubular structures that surround macronuclei that fail to migrate to the cleavage furrows. In contrast, other cytoplasmic microtubule-dependent processes, such as cytokinesis, cortical patterning, and oral apparatus assembly, appear to be unaffected in the mutant. Micronuclear division is also perturbed in the K350M mutant, producing nuclei with elongated early-anaphase spindle configurations that persist well after the initiation of cytokinesis. The K350M mutation affects tubulin dynamics, as the macronuclear division defect is exacerbated by three treatments that promote microtubule polymerization: (i) elevated temperatures, (ii) sublethal concentrations of paclitaxel, and (iii) high concentrations of dimethyl sulfoxide. Inhibition of phosphatidylinositol 3-kinase (PI 3-kinase) with 3-methyladenine or wortmannin also induces amacronucleate cell formation in a btu1-1-dependent manner. Conversely, the myosin light chain kinase inhibitor ML-7 has no effect on nuclear division in the btu1-1 mutant strain. These findings provide new insights into microtubule dynamics and link the evolutionarily conserved PI 3-kinase signaling pathway to nuclear migration and/or division in Tetrahymena.
Collapse
Affiliation(s)
- Joshua J Smith
- Department of Pharmacology, Medical School, University of Minnesota, 6-120 Jackson Hall, 321 Church Street S.E., Minneapolis, MN 55455, USA
| | | | | | | | | |
Collapse
|
17
|
Abstract
Studies of the ciliate cell cycle have moved from early examination of its biochemistry with heat-synchronized Tetrahymena through descriptive studies of Paramecium using small synchronous cell samples. These studies described what happens during the cell cycle and provided some initial insights into control, especially the idea that there was a point at which cells became committed to division. This early work was followed by an analytical phase in which the same small sample techniques, combined with gene mutations, were used to tease apart some major features of the regulation of cell growth kinetics, including regulation of macronuclear DNA content and regulation of cell size, the control of timing of initiation of macronuclear DNA synthesis, and the control of commitment to division in Paramecium. The availability of new molecular genetic approaches and new means of manipulating cells en masse made it possible to map out some of the basic features of the molecular biology of cell cycle regulation in ciliates. The challenge before us is to move beyond the 'me-too-ism' of validating the presence of basic molecular regulative machinery underlying the cell cycle in ciliates to a deeper analysis of the role of specific molecules in processes unique to ciliates or to analysis of the role of regulatory molecules in the control of cell process that can be uniquely well studied in ciliates.
Collapse
Affiliation(s)
- J D Berger
- Department of Zoology, The University of British Columbia, Vancouver, Canada.
| |
Collapse
|
18
|
Williams SA, Hosein RE, Garcés JA, Gavin RH. MYO1, a novel, unconventional myosin gene affects endocytosis and macronuclear elongation in Tetrahymena thermophila. J Eukaryot Microbiol 2000; 47:561-8. [PMID: 11128708 DOI: 10.1111/j.1550-7408.2000.tb00090.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Targeted gene disruption was used to investigate the function of MYO1, an unconventional myosin gene in Tetrahymena thermophila. Phenotypic analysis of a transformed strain that lacked a functional MYO1 gene was conducted at both 20 degrees C and 35 degrees C. At either temperature the delta MYO1 strain had a smaller cytoplasm/nucleus ratio than wild type. At 20 degrees C, delta MYO1 populations had a longer doubling time than wild type, lower saturation density, and a reduced rate of food vacuole formation. However, at 35 degrees C, these characteristics were comparable to wild type. Although micronuclear division and cytokinesis appeared normal in delta MYO1 cells, failure of the macronucleus to elongate properly resulted in unequal segregation of macronuclear DNA in cells maintained at either 20 degrees C or 35 degrees C.
Collapse
Affiliation(s)
- S A Williams
- Department of Biology, Brooklyn College of the City University of New York, New York 11210, USA
| | | | | | | |
Collapse
|
19
|
Fujiu K, Numata O. Reorganization of microtubules in the amitotically dividing macronucleus of tetrahymena. CELL MOTILITY AND THE CYTOSKELETON 2000; 46:17-27. [PMID: 10842330 DOI: 10.1002/(sici)1097-0169(200005)46:1<17::aid-cm3>3.0.co;2-c] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We developed a modified immunofluorescence protocol that permitted visualization of microtubules inside the macronucleus of the ciliate Tetrahymena. Although the amitotically dividing macronucleus lacks a spindle, an elaborate system of microtubules is assembled inside the macronucleus and between the macronucleus and the cortex. Microtubules could not be detected inside the interphase macronuclei. The early stage of macronuclear division was associated with the assembly of short macronuclear microtubules that localized randomly. The intramacronuclear microtubules were subsequently organized in a radial manner. During elongation of the macronucleus, the distribution of macronuclear microtubules changed from radial to parallel. During constriction of the macronucleus, dense and tangled macronuclear microtubules were detected at the region of nuclear constriction. In the cytosol, microtubules were linking the macronucleus and cell cortex. During recovery after drug-induced depolymerization, microtubules reassembled at multiple foci inside the macronucleus in close proximity to the chromatin. We propose that these microtubules play roles in chromatin partitioning, macronuclear constriction, and positioning of the macronucleus in relation to the cell cortex.
Collapse
Affiliation(s)
- K Fujiu
- Institute of Biological Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | | |
Collapse
|
20
|
Affiliation(s)
- J Frankel
- Department of Biological Sciences, University of Iowa, Iowa City 52242, USA
| |
Collapse
|
21
|
Cole ES, Cassidy-Hanley D, Hemish J, Tuan J, Bruns PJ. A mutational analysis of conjugation in Tetrahymena thermophila. 1. Phenotypes affecting early development: meiosis to nuclear selection. Dev Biol 1997; 189:215-32. [PMID: 9299115 DOI: 10.1006/dbio.1997.8648] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Conjugation in the freshwater ciliate Tetrahymena thermophila involves a developmental program that models meiosis, fertilization, and early developmental events characteristic of multicellular eukaryotes. We describe a gallery of five early-acting conjugation mutations. These mutants, cnj1-5, exhibit phenotypes in which specific steps in the conjugal pathway have been altered or eliminated. Specifically, cnj1 and cnj2 fail to condense their micronuclear chromatin prior to each of the three prezygotic nuclear divisions. This results in nuclear division failure, failure to replicate DNA, and failure to initiate postzygotic development. The cnj3 mutant appears to exhibit a defect in chromosome separation during anaphase of mitosis. cnj4 mutants successfully carry out meiosis I, yet are unable to execute the second meiotic division and abort all further development. cnj5 mutants are unable to initiate either meiosis I or meiosis II, yet proceed to execute all subsequent developmental events. These mutant phenotypes are used to draw inferences regarding developmental dependencies that exist within the conjugation program.
Collapse
Affiliation(s)
- E S Cole
- Biology Department, St. Olaf College, Northfield, Minnesota 55057, USA.
| | | | | | | | | |
Collapse
|
22
|
Cole ES, Soelter TA. A mutational analysis of conjugation in Tetrahymena thermophila. 2. Phenotypes affecting middle and late development: third prezygotic nuclear division, pronuclear exchange, pronuclear fusion, and postzygotic development. Dev Biol 1997; 189:233-45. [PMID: 9299116 DOI: 10.1006/dbio.1997.8649] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Conjugation following pair formation in Tetrahymena can be divided into three distinct sequences of events: prezygotic development, postzygotic development, and exconjugant development. The decision to proceed with postzygotic development is governed by a developmental checkpoint occurring sometime during the middle stages of conjugation. A second developmental decision is made to initiate pair separation and exconjugant development. This paper examines the phenotypes of five newly isolated conjugation mutants (cnj6-cnj10) which affect middle and late events within the conjugation program. cnj6 mutants exhibit normal nuclear behavior throughout development up to and including differentiation of new macronuclear anlagen. Pairs arrest at this developmental endpoint, unable to dissociate. cnj7 and cnj8 eliminate the third prezygotic nuclear division and the first postzygotic nuclear division. All subsequent developmental events appear normal. cnj9 eliminates the second postzygotic nuclear division, and subsequently, new macronuclei fail to develop despite parental macronuclear degradation. cnj10 results in a pleiotropic phenotype characterized by failure of numerous events which all appear to involve nuclear-cytoskeletal interactions. These defects include nuclear selection (anchoring nuclei to the exchange junction), pronuclear exchange, pronuclear fusion, and anchoring postzygotic nuclear division products to the posterior cell cortex. These mutant phenotypes are used to draw inferences regarding developmental dependencies that govern a cell's entry into the postzygotic and exconjugant developmental programs.
Collapse
Affiliation(s)
- E S Cole
- Biology Department, St. Olaf College, Northfield, Minnesota, 55057, USA.
| | | |
Collapse
|
23
|
Doerder FP, Gates MA, Eberhardt FP, Arslanyolu M. High frequency of sex and equal frequencies of mating types in natural populations of the ciliate Tetrahymena thermophila. Proc Natl Acad Sci U S A 1995; 92:8715-8. [PMID: 7568003 PMCID: PMC41037 DOI: 10.1073/pnas.92.19.8715] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In ciliate protists, sex involves the temporary joining of two cells of compatible mating type, followed by meiosis and exchange of gametic nuclei between conjugants. Reproduction is by asexual binary fission following conjugation. For the many ciliates with fixed multiple mating types, frequency-dependent sex-ratio theory predicts equal frequencies of mating types, if sex is common in nature. Here, we report that in natural populations of Tetrahymena thermophila sexually immature cells, indicative of recent conjugation, are found from spring through fall. In addition, the seven mating types occur in approximately equal frequencies, and these frequencies appear to be maintained by interaction between complex, multiple mat alleles and environmental conditions during conjugation. Such genotype-environment interaction determining mating type frequency is rare among ciliates.
Collapse
Affiliation(s)
- F P Doerder
- Department of Biology, Cleveland State University, OH 44115, USA
| | | | | | | |
Collapse
|
24
|
Abstract
Our presented studies describe a correlation between the content of macronuclear DNA in mother cells and their progeny after one cycle of cell growth in Chilodonella steini. We have found that the cells with a high level of macronuclear DNA produce daughter cells with a low DNA level and vice versa, and that the compensation of differences in the content of macronuclear DNA in sister cells requires several cell cycles. This compensation does not depend on the full replication rounds (as in the case of Tetrabymena) nor on the "increment" phenomenon (as in the case of Paramecium). Furthermore, we have found that in Chilodonella the length of the cell cycle is inversely proportional to the initial content of macronuclear DNA, i.e., the higher the Gl level, the shorter the cell cycle.
Collapse
|
25
|
Bodenbender J, Prohaska A, Jauker F, Hipke H, Cleffmann G. DNA elimination and its relation to quantities in the macronucleus of Tetrahymena. DEVELOPMENTAL GENETICS 1992; 13:103-10. [PMID: 1499151 DOI: 10.1002/dvg.1020130203] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The macronucleus of Tetrahymena contains a large number of DNA molecules of subchromosomal size. They belong to about 270 species each one occurring at an average number of 45 copies. Macronuclei divide unequally and nothing is known of segregation control. This and the elimination and degradation of DNA during macronuclear amitosis make the clonal stability of macronuclei a problem of qualitative and quantitative control on a subchromosomal level. We studied the contribution of DNA elimination to the quantitative composition of the macronucleus cytophotometrically in single cells of different strains. This was done under standard conditions and under conditions known to influence the amount of macronuclear DNA. The following results were found: Elimination of DNA occurs at almost every division. The size of the elimination body is highly variable but still positively correlated with the macronuclear DNA content. In T. thermophila the amount of eliminated DNA is 2.5% of the G2 content and is not dependent on the growth state. It varies with species, amounting to as much as 8% in T. pigmentosa. During conditions which increase the macronuclear DNA content, very little DNA is eliminated. On the other hand, large amounts are eliminated under other conditions causing the macronuclear DNA content to decrease. DNA to be eliminated at division is synthesized at the same time as bulk DNA. We developed a computer program which helps us study the effects of DNA elimination and unequal divisions upon the copy numbers of subchromosomal DNA classes.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- J Bodenbender
- Institute of Animal Physiology, University of Giessen, Federal Republic of Germany
| | | | | | | | | |
Collapse
|
26
|
Doerder FP, Deak JC, Lief JH. Rate of phenotypic assortment in Tetrahymena thermophila. DEVELOPMENTAL GENETICS 1992; 13:126-32. [PMID: 1499154 DOI: 10.1002/dvg.1020130206] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
During vegetative, asexual reproduction in heterozygous Tetrahymena thermophila, the macronucleus divides amitotically to produce clonal lineages that express either one or the other allele but not both. Because such phenotypic assortment has been described for every locus studied, its mechanism has important implications concerning the development and structure of the macronucleus. The primary tools to study assortment are Rf, the rate at which subclones come to express a single allele stably, and the output ratio, the ratio of assortee classes. Because Rf is related to the number of assorting units, a constant Rf for all loci suggests that all genes are maintained at the same copy number. Output ratios reflect the input ratio of assorting units, with a 1:1 output ratio implying equal numbers of alleles at the end of macronuclear development. Because different outcomes would suggest a different macronuclear structure, it is crucial that these parameters be accurately measured. Although published Rf values are similar for all loci measured, there has been no commonly accepted form of presentation and analysis. Here we examine the experimental determination of Rf. First, we use computer simulation to describe how the variability inherent in the assortment process affects experimental determination of Rf. Second, we describe a simple method of plotting assortment data that permits the uniform calculation of Rf, and we describe how to measure Rf accurately in instances when it is possible to score only the recessive allele. Using this method to produce truly comparable Rfs for all published data, we find that most, if not all, loci assort at Rfs consistent with approximately 45 assorting units, as has been asserted.
Collapse
Affiliation(s)
- F P Doerder
- Department of Biology, Cleveland State University, Ohio
| | | | | |
Collapse
|
27
|
Srienc F, Fredrickson AG, Lavin DP. Feeding, growth, and reproduction of ciliate microorganisms. An engineering view. Ann N Y Acad Sci 1987; 506:357-70. [PMID: 3124691 DOI: 10.1111/j.1749-6632.1987.tb23833.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- F Srienc
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis/St. Paul 55108
| | | | | |
Collapse
|
28
|
Ching AS, Berger JD. The timing of initiation of macronuclear DNA synthesis is set during the preceding cell cycle in Paramecium tetraurelia. Analysis of the effects of abrupt changes in nutrient level. Exp Cell Res 1986; 167:177-90. [PMID: 3758200 DOI: 10.1016/0014-4827(86)90215-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In many eukaryotic organisms, initiation of DNA synthesis is associated with a major control point within the cell cycle and reflects the commitment of the cell to the DNA replication-division portion of the cell cycle. In Paramecium, the timing of DNA synthesis initiation is established prior to fission during the preceding cell cycle. DNA synthesis normally starts at 0.25 in the cell cycle. When dividing cells are subjected to abrupt nutrient shift-up by transfer from a chemostat culture to medium with excess food, or shift-down from a well-fed culture to exhausted medium. DNA synthesis initiation in the post-shift cell cycle occurs at 0.25 of the parental cell cycle and not at either 0.25 in the post-shift cell cycle or at 0.25 in the equilibrium cell cycle produced under the post-shift conditions. The long delay prior to initiation of DNA synthesis following nutritional shift-up is not a consequence of continued slow growth because the rate of protein synthesis increases rapidly to the normal level after shift-up. Analysis of the relation between increase in cell mass and initiation of DNA synthesis following nutritional shifts indicates that increase in cell mass, per se, is neither a necessary nor a sufficient condition for initiation of DNA synthesis, in spite of the strong association between accumulation of cell mass and initiation of DNA synthesis in cells growing under steady-state conditions.
Collapse
|
29
|
Brunk CF, Bohman RE. Analysis of nuclei from exponentially growing and conjugated Tetrahymena thermophila using the flow microfluorimeter. Exp Cell Res 1986; 162:390-400. [PMID: 3943551 DOI: 10.1016/0014-4827(86)90344-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Isolated nuclei of Tetrahymena thermophila from both exponentially growing cultures and from cells following conjugation have been analysed using a flow microfluorimeter. The macronuclei from a culture in exponential growth display a single broad distribution of DNA contents, without bimodal character. The micronuclei are virtually all in G2 phase (4C). The mean of the macronuclear DNA distribution is about 12.4 times the micronuclear mean (50C). When cells are starved in preparation for conjugation, the macronuclei DNA content is decreased about 30%, but the distribution remains similar to that of nuclei from a culture in exponential growth. Following conjugation, the macronuclear anlagen develop through a set of relatively synchronous endoreplications. At 12 h after the initiation of conjugation the anlagen are at a 4C stage and at 18 h they are virtually all at a 8C stage. If the culture is refed, anlagen development progresses to a 16C and 32C, but the synchrony is poorly conserved. Cells that are not refed are arrested at the 8C stage and only a fraction of the population ever become mature macronuclei. In general we do not observe distinct peaks of anlagen with DNA contents in excess of 32C. The amitotic division of macronuclei may obscure any endoreplications producing anlagen stages with higher DNA content.
Collapse
|
30
|
Abstract
After conjugation in Tetrahymena thermophila, the old macronuclei degenerate, and new macronuclei (anlagen) develop. During anlagen development a number of DNA sequences found in the micronuclear genome (micronuclear limited sequences) are eliminated from the anlagen. A cloned copy of a repetitive micronuclear limited sequence has been used to determine the developmental stage at which micronuclear limited sequences are eliminated. DNAs from anlagen of various developmental stages were examined by Southern analysis. It was found that micronuclear limited sequences are present in 4C anlagen and essentially absent in 8C and 16C anlagen. The precipitous loss of these sequences in the 8C anlagen rules out under-replication as the mechanism for the loss and suggests that these sequences are specifically degraded early during anlagen development.
Collapse
|
31
|
Brunk CF, Conover RK. Elimination of micronuclear specific DNA sequences early in anlagen development. Mol Cell Biol 1985; 5:93-8. [PMID: 3982421 PMCID: PMC366682 DOI: 10.1128/mcb.5.1.93-98.1985] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
After conjugation in Tetrahymena thermophila, the old macronuclei degenerate, and new macronuclei (anlagen) develop. During anlagen development a number of DNA sequences found in the micronuclear genome (micronuclear limited sequences) are eliminated from the anlagen. A cloned copy of a repetitive micronuclear limited sequence has been used to determine the developmental stage at which micronuclear limited sequences are eliminated. DNAs from anlagen of various developmental stages were examined by Southern analysis. It was found that micronuclear limited sequences are present in 4C anlagen and essentially absent in 8C and 16C anlagen. The precipitous loss of these sequences in the 8C anlagen rules out under-replication as the mechanism for the loss and suggests that these sequences are specifically degraded early during anlagen development.
Collapse
|
32
|
|
33
|
Abstract
A stable amicronucleate strain of Tetrahymena thermophila was isolated following nitrosoguanidine mutagenesis. The mutant has the same growth rate and viability as the micronucleate parent strain, and has no micronucleus detectable by chromatin-specific staining in vegetative growth or during conjugation. The mutant pairs with normal efficiency with cells of complementary mating type. Matings of the mutant with aneuploid strains which lose their micronucleus during meiosis produced cell pairs yielding one viable and one inviable cell. The mutant receives a micronucleus from a normal mating partner, but this micronucleus is lost by the mutant cells within two hundred generations.
Collapse
|
34
|
Doerder F. Differential expression of immobilization antigen genes in Tetrahymena thermophila, II. Reciprocal and non-reciprocal transfer of i-antigen during conjugation and expression of i-antigen genes during macronuclear development. ACTA ACUST UNITED AC 1981. [DOI: 10.1016/0045-6039(81)90012-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
35
|
Cleffmann G. Chromatin elimination and the genetic organisation of the macronucleus in Tetrahymena thermophila. Chromosoma 1980; 78:313-25. [PMID: 7389513 DOI: 10.1007/bf00327390] [Citation(s) in RCA: 35] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In exponentially growing Tretrahymena thermophila the DNA content of the following structures was determined by cytophotometry: macronuclei of sister cells immediately after division; micronuclei; extranuclear chromatin in dividing cells and postdividers. Further, the development of macronuclear DNA amount in successive cell generations was determined. It was found that chromatin elimination is a frequent process reducing DNA content by about 4% per fission. This chromatin disappears within 20 min after division. The quantity of DNA extruded is highly variable and is different from the micronuclear DNA amount of multiples of it. The frequency of generations with two replication rounds as well as those without replication is estimated to be in the range of 2% each. These findings together with the qualitative difference between micro- and macronuclear DNAs suggest that the macronucleus of Tetrahymena is not entirely composed of complete genomes and that parts of the genetic material must be treated specifically for different sequences either during extrusion or during replication.
Collapse
|