1
|
Maslova A, Krasikova A. FISH Going Meso-Scale: A Microscopic Search for Chromatin Domains. Front Cell Dev Biol 2021; 9:753097. [PMID: 34805161 PMCID: PMC8597843 DOI: 10.3389/fcell.2021.753097] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/08/2021] [Indexed: 12/14/2022] Open
Abstract
The intimate relationships between genome structure and function direct efforts toward deciphering three-dimensional chromatin organization within the interphase nuclei at different genomic length scales. For decades, major insights into chromatin structure at the level of large-scale euchromatin and heterochromatin compartments, chromosome territories, and subchromosomal regions resulted from the evolution of light microscopy and fluorescence in situ hybridization. Studies of nanoscale nucleosomal chromatin organization benefited from a variety of electron microscopy techniques. Recent breakthroughs in the investigation of mesoscale chromatin structures have emerged from chromatin conformation capture methods (C-methods). Chromatin has been found to form hierarchical domains with high frequency of local interactions from loop domains to topologically associating domains and compartments. During the last decade, advances in super-resolution light microscopy made these levels of chromatin folding amenable for microscopic examination. Here we are reviewing recent developments in FISH-based approaches for detection, quantitative measurements, and validation of contact chromatin domains deduced from C-based data. We specifically focus on the design and application of Oligopaint probes, which marked the latest progress in the imaging of chromatin domains. Vivid examples of chromatin domain FISH-visualization by means of conventional, super-resolution light and electron microscopy in different model organisms are provided.
Collapse
Affiliation(s)
| | - Alla Krasikova
- Laboratory of Nuclear Structure and Dynamics, Cytology and Histology Department, Saint Petersburg State University, Saint Petersburg, Russia
| |
Collapse
|
2
|
Imperador CHL, Rodrigues VLCC, Mello MLS. The Topological Distribution of the Chromocenter in Panstrongylus megistus (Burmeister) Malpighian Tubule Cells Examined by Confocal Microscopy. CYTOLOGIA 2021. [DOI: 10.1508/cytologia.86.47] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
| | | | - Maria Luiza S. Mello
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (Unicamp)
| |
Collapse
|
3
|
Imperador CHL, Bardella VB, Dos Anjos EHM, Rodrigues VLCC, Cabral-de-Mello DC, Mello MLS. Spatial Distribution of Heterochromatin Bodies in the Nuclei of Triatoma infestans (Klug). MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2020; 26:567-574. [PMID: 32393416 DOI: 10.1017/s143192762000149x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Constitutive heterochromatin typically exhibits low gene density and is commonly found adjacent or close to the nuclear periphery, in contrast to transcriptionally active genes concentrated in the innermost nuclear region. In Triatoma infestans cells, conspicuous constitutive heterochromatin forms deeply stained structures named chromocenters. However, to the best of our knowledge, no information exists regarding whether these chromocenters acquire a precise topology in the cell nuclei or whether their 18S rDNA, which is important for ribosome function, faces the nuclear center preferentially. In this work, the spatial distribution of fluorescent Feulgen-stained chromocenters and the distribution of their 18S rDNA was analyzed in Malpighian tubule cells of T. infestans using confocal microscopy. The chromocenters were shown to be spatially positioned relatively close to the nuclear periphery, though not adjacent to it. The variable distance between the chromocenters and the nuclear periphery suggests mobility of these bodies within the cell nuclei. The distribution of 18S rDNA at the edge of the chromocenters was not found to face the nuclear interior exclusively. Because the genome regions containing 18S rDNA in the chromocenters also face the nuclear periphery, the proximity of the chromocenters to this nuclear region is not assumed to be associated with overall gene silencing.
Collapse
Affiliation(s)
- Carlos Henrique L Imperador
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (Unicamp), Rua Monteiro Lobato 255, 13083-862Campinas, SP, Brazil
| | - Vanessa B Bardella
- Department of Biology, Institute of Biosciences, State University of São Paulo (Unesp), Avenida 24-A, 1515, 13506-900Rio Claro, SP, Brazil
| | - Eli Heber M Dos Anjos
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (Unicamp), Rua Monteiro Lobato 255, 13083-862Campinas, SP, Brazil
| | - Vera L C C Rodrigues
- Superintendence for Control of Endemic Diseases (SUCEN), Rua Afonso Pessini, 86, 13845-206Mogi-Guaçu, SP, Brazil
| | - Diogo C Cabral-de-Mello
- Department of Biology, Institute of Biosciences, State University of São Paulo (Unesp), Avenida 24-A, 1515, 13506-900Rio Claro, SP, Brazil
| | - Maria Luiza S Mello
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (Unicamp), Rua Monteiro Lobato 255, 13083-862Campinas, SP, Brazil
| |
Collapse
|
4
|
REDI CA, GARAGNA S, ZUCCOTTI M. Robertsonian chromosome formation and fixation: the genomic scenario. Biol J Linn Soc Lond 2008. [DOI: 10.1111/j.1095-8312.1990.tb00833.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Holmquist GP, Ashley T. Chromosome organization and chromatin modification: influence on genome function and evolution. Cytogenet Genome Res 2006; 114:96-125. [PMID: 16825762 DOI: 10.1159/000093326] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Accepted: 12/15/2005] [Indexed: 11/19/2022] Open
Abstract
Histone modifications of nucleosomes distinguish euchromatic from heterochromatic chromatin states, distinguish gene regulation in eukaryotes from that of prokaryotes, and appear to allow eukaryotes to focus recombination events on regions of highest gene concentrations. Four additional epigenetic mechanisms that regulate commitment of cell lineages to their differentiated states are involved in the inheritance of differentiated states, e.g., DNA methylation, RNA interference, gene repositioning between interphase compartments, and gene replication time. The number of additional mechanisms used increases with the taxon's somatic complexity. The ability of siRNA transcribed from one locus to target, in trans, RNAi-associated nucleation of heterochromatin in distal, but complementary, loci seems central to orchestration of chromatin states along chromosomes. Most genes are inactive when heterochromatic. However, genes within beta-heterochromatin actually require the heterochromatic state for their activity, a property that uniquely positions such genes as sources of siRNA to target heterochromatinization of both the source locus and distal loci. Vertebrate chromosomes are organized into permanent structures that, during S-phase, regulate simultaneous firing of replicon clusters. The late replicating clusters, seen as G-bands during metaphase and as meiotic chromomeres during meiosis, epitomize an ontological utilization of all five self-reinforcing epigenetic mechanisms to regulate the reversible chromatin state called facultative (conditional) heterochromatin. Alternating euchromatin/heterochromatin domains separated by band boundaries, and interphase repositioning of G-band genes during ontological commitment can impose constraints on both meiotic interactions and mammalian karyotype evolution.
Collapse
Affiliation(s)
- G P Holmquist
- Biology Department, City of Hope Medical Center, Duarte, CA, USA.
| | | |
Collapse
|
6
|
Vazquez J, Belmont AS, Sedat JW. Multiple regimes of constrained chromosome motion are regulated in the interphase Drosophila nucleus. Curr Biol 2001; 11:1227-39. [PMID: 11525737 DOI: 10.1016/s0960-9822(01)00390-6] [Citation(s) in RCA: 195] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND Increasing evidence indicates specific changes in the three-dimensional organization of chromosomes in the cell nucleus during the cell cycle and development. These changes may be linked to changes in both the coordinated regulation of gene transcription and the timing of chromosome replication. While there is cytological evidence for short-range diffusive motion of chromosomes during interphase, the mechanisms for large-scale chromosome remodeling inside the nucleus remain unknown. RESULTS Chromosome motion was tracked in Drosophila spermatocyte nuclei by 3D fluorescence microscopy. The Lac repressor/lac operator system was used to label specific chromosomal sites in live tissues, allowing extended observation of chromatin motion in different cell cycle stages. Our results reveal a highly dynamic chromosome organization governed by two types of motion: a fast, short-range component over a 1-2 s time scale and a slower component related to long-range chromosome motion within the nucleus. The motion patterns are consistent with a random walk. In early G2, short-range motion occurs within a small, approximately 0.5 microm radius domain, while long-range motion is confined to a much larger, chromosome-sized domain. Progression through G2 as cells approach meiotic prophase is accompanied by a complete arrest of long-range chromosome motion. CONCLUSIONS Our analysis provides direct evidence for cell cycle-regulated changes in interphase chromatin motion. These changes are consistent with changes in local and long-range constraints on chromosome motility. We propose that dynamic interactions between chromosomes and internal nuclear structures modulate the range and rate of interphase chromatin diffusion and thereby regulate large-scale nuclear chromosome organization.
Collapse
Affiliation(s)
- J Vazquez
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA 94143, USA
| | | | | |
Collapse
|
7
|
Affiliation(s)
- W F Marshall
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | | |
Collapse
|
8
|
Affiliation(s)
- I F Zhimulev
- Institute of Cytology and Genetics, Siberian Division of Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
9
|
Marshall WF, Fung JC, Sedat JW. Deconstructing the nucleus: global architecture from local interactions. Curr Opin Genet Dev 1997; 7:259-63. [PMID: 9115425 DOI: 10.1016/s0959-437x(97)80136-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Recent advances in fluorescence in situ hybridization and three-dimensional microscopy have revealed a high degree of large-scale order in the nucleus, indicating that the position of each gene within the nucleus is not random. As with any other biological phenomenon, this large-scale organization must ultimately be specified by molecular interactions. Biochemical and molecular investigations have revealed a small set of local molecular-scale interactions that can be used together in a combinatorial fashion to establish a global large-scale nuclear architecture.
Collapse
Affiliation(s)
- W F Marshall
- Department of Biochemistry and Biophysics, University of California, San Francisco, California, 94143, USA
| | | | | |
Collapse
|
10
|
Török T, Harvie PD, Buratovich M, Bryant PJ. The product of proliferation disrupter is concentrated at centromeres and required for mitotic chromosome condensation and cell proliferation in Drosophila. Genes Dev 1997; 11:213-25. [PMID: 9009204 DOI: 10.1101/gad.11.2.213] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Homozygosity for a null mutation in the proliferation disrupter (prod) gene of Drosophila causes decreased mitotic index, defects of anaphase chromatid separation, and imperfect chromosome condensation in larval neuroblasts and other proliferating cell populations. The defective condensation is especially obvious near the centromeres. Mutant larvae show slow growth and massive cell death in proliferating cell populations, followed by late larval lethality. Loss of prod function in mitotic clones leads to the arrest of oogenesis in the ovary and defective cuticle formation in imaginal disc derivatives. The prod gene encodes a novel 301-amino-acid protein that is ubiquitously expressed and highly concentrated at the centric heterochromatin of the second and third mitotic chromosomes, as well as at > 400 euchromatic loci on polytene chromosomes. We propose that Prod is a nonhistone protein essential for chromosome condensation and that the chromosomal and developmental defects are caused by incomplete centromere condensation in prod mutants.
Collapse
Affiliation(s)
- T Török
- Developmental Biology Center, University of California at Irvine, 92717, USA
| | | | | | | |
Collapse
|
11
|
Marshall WF, Dernburg AF, Harmon B, Agard DA, Sedat JW. Specific interactions of chromatin with the nuclear envelope: positional determination within the nucleus in Drosophila melanogaster. Mol Biol Cell 1996; 7:825-42. [PMID: 8744953 PMCID: PMC275932 DOI: 10.1091/mbc.7.5.825] [Citation(s) in RCA: 160] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Specific interactions of chromatin with the nuclear envelope (NE) in early embryos of Drosophila melanogaster have been mapped and analyzed. Using fluorescence in situ hybridization, the three-dimensional positions of 42 DNA probes, primarily to chromosome 2L, have been mapped in nuclei of intact Drosophila embryos, revealing five euchromatic and two heterochromatic regions associated with the NE. These results predict that there are approximately 15 NE contacts per chromosome arm, which delimit large chromatin loops of approximately 1-2 Mb. These NE association sites do not strictly correlate with scaffold-attachment regions, heterochromatin, or binding sites of known chromatin proteins. Pairs of neighboring probes surrounding one NE association site were used to delimit the NE association site more precisely, suggesting that peripheral localization of a large stretch of chromatin is likely to result from NE association at a single discrete site. These NE interactions are not established until after telophase, by which time the nuclear envelope has reassembled around the chromosomes, and they are thus unlikely to be involved in binding of NE vesicles to chromosomes following mitosis. Analysis of positions of these probes also reveals that the interphase nucleus is strongly polarized in a Rabl configuration which, together with specific targeting to the NE or to the nuclear interior, results in each locus occupying a highly determined position within the nucleus.
Collapse
Affiliation(s)
- W F Marshall
- Department Biochemistry and Biophysics, University of California, San Francisco 94143, USA
| | | | | | | | | |
Collapse
|
12
|
Boulikas T. Chromatin domains and prediction of MAR sequences. INTERNATIONAL REVIEW OF CYTOLOGY 1996; 162A:279-388. [PMID: 8575883 DOI: 10.1016/s0074-7696(08)61234-6] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Polynuceosomes are constrained into loops or domains and are insulated from the effects of chromatin structure and torsional strain from flanking domains by the cross-complexation of matrix-attached regions (MARs) and matrix proteins. MARs or SARs have an average size of 500 bp, are spaced about every 30 kb, and are control elements maintaining independent realms of gene activity. A fraction of MARs may cohabit with core origin replication (ORIs) and another fraction might cohabit with transcriptional enhancers. DNA replication, transcription, repair, splicing, and recombination seem to take place on the nuclear matrix. Classical AT-rich MARs have been proposed to anchor the core enhancers and core origins complexed with low abundancy transcription factors to the nuclear matrix via the cooperative binding to MARs of abundant classical matrix proteins (topoisomerase II, histone H1, lamins, SP120, ARBP, SATB1); this creates a unique nuclear microenvironment rich in regulatory proteins able to sustain transcription, replication, repair, and recombination. Theoretical searches and experimental data strongly support a model of activation of MARs and ORIs by transcription factors. A set of 21 characteristics are deduced or proposed for MAR/ORI sequences including their enrichment in inverted repeats, AT tracts, DNA unwinding elements, replication initiator protein sites, homooligonucleotide repeats (i.e., AAA, TTT, CCC), curved DNA, DNase I-hypersensitive sites, nucleosome-free stretches, polypurine stretches, and motifs with a potential for left-handed and triplex structures. We are establishing Banks of ORI and MAR sequences and have undertaken a large project of sequencing a large number of MARs in an effort to determine classes of DNA sequences in these regulatory elements and to understand their role at the origins of replication and transcriptional enhancers.
Collapse
Affiliation(s)
- T Boulikas
- Institute of Molecular Medical Sciences, Palo Alto, California 94306, USA
| |
Collapse
|
13
|
Mirzayan C, Copeland CS, Snyder M. The NUF1 gene encodes an essential coiled-coil related protein that is a potential component of the yeast nucleoskeleton. J Cell Biol 1992; 116:1319-32. [PMID: 1541631 PMCID: PMC2289381 DOI: 10.1083/jcb.116.6.1319] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In an attempt to identify structural components of the yeast nucleus, subcellular fractions of yeast nuclei were prepared and used as immunogens to generate complex polyclonal antibodies. One such serum was used to screen a yeast genomic lambda gt11 expression library. A clone encoding a gene called NUF1 (for nuclear filament-related) was identified and extensively characterized. Antibodies to NUF1 fusion proteins were generated, and affinity-purified antibodies were used for immunoblot analysis and indirect immunofluorescence localization. The NUF1 protein is 110 kD in molecular mass and localizes to the yeast nucleus in small granular patches. Intranuclear staining is present in cells at all stages of the cell cycle. The NUF1 protein of yeast is tightly associated with the nucleus; it was not removed by extraction of nuclei with nonionic detergent or salt, or treatment with RNAse and DNAse. Sequence analysis of the NUF1 gene predicts a protein 945 amino acids in length that contains three domains: a large 627 residue central domain predicted to form a coiled-coil structure flanked by nonhelical amino-terminal and carboxy-terminal regions. Disruption of the NUF1 gene indicates that it is necessary for yeast cell growth. These results indicate that NUF1 encodes an essential coiled-coil protein within the yeast nucleus; we speculate that NUF1 is a component of the yeast nucleoskeleton. In addition, immunofluorescence results indicate that mammalian cells contain a NUF1-related nuclear protein. These data in conjunction with those in the accompanying manuscript (Yang et al., 1992) lead to the hypothesis that an internal coiled-coil filamentous system may be a general structural component of the eukaryotic nucleus.
Collapse
Affiliation(s)
- C Mirzayan
- Department of Biology, Yale University, New Haven, Connecticut 06511
| | | | | |
Collapse
|
14
|
Clark RF, Wagner CR, Craig CA, Elgin SC. Distribution of chromosomal proteins in polytene chromosomes of Drosophila. Methods Cell Biol 1991; 35:203-27. [PMID: 1723480 DOI: 10.1016/s0091-679x(08)60574-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- R F Clark
- Department of Biology, Washington University, St. Louis, Missouri 63130
| | | | | | | |
Collapse
|
15
|
Hiraoka Y, Agard DA, Sedat JW. Temporal and spatial coordination of chromosome movement, spindle formation, and nuclear envelope breakdown during prometaphase in Drosophila melanogaster embryos. J Cell Biol 1990; 111:2815-28. [PMID: 2125300 PMCID: PMC2116368 DOI: 10.1083/jcb.111.6.2815] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The spatial and temporal dynamics of diploid chromosome organization, microtubule arrangement, and the state of the nuclear envelope have been analyzed in syncytial blastoderm embryos of Drosophila melanogaster during the transition from prophase to metaphase, by three-dimensional optical sectioning microscopy. Time-lapse, three-dimensional data recorded in living embryos revealed that congression of chromosomes (the process whereby chromosomes move to form the metaphase plate) at prometaphase occurs as a wave, starting at the top of the nucleus near the embryo surface and proceeding through the nucleus to the bottom. The time-lapse analysis was augmented by a high-resolution analysis of fixed embryos where it was possible to unambiguously trace the three-dimensional paths of individual chromosomes. In prophase, the centromeres were found to be clustered at the top of the nucleus while the telomeres were situated at the bottom of the nucleus or towards the embryo interior. This polarized centromere-telomere orientation, perpendicular to the embryo surface, was preserved during the process of prometaphase chromosome congression. Correspondingly, breakdown of the nuclear envelope started at the top of the nucleus with the mitotic spindle being formed at the positions of the partial breakdown of the nuclear envelope. Our observation provide an example in which nuclear structures are spatially organized and their functions are locally and coordinately controlled in three dimensions.
Collapse
Affiliation(s)
- Y Hiraoka
- Department of Biochemistry and Biophysics, University of California, San Francisco 94143-0554
| | | | | |
Collapse
|
16
|
Krystosek A, Puck TT. The spatial distribution of exposed nuclear DNA in normal, cancer, and reverse-transformed cells. Proc Natl Acad Sci U S A 1990; 87:6560-4. [PMID: 1697684 PMCID: PMC54576 DOI: 10.1073/pnas.87.17.6560] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The malignant CHO-K1 cell is reverse-transformed by cAMP, regaining the phenotype of a normal fibroblast. During this reaction, much of its DNA re-acquires sensitivity to hydrolysis by DNase I in a way characteristic of the normal fibroblast. Exposed DNA forms a rim about the nucleus in both the normal and reverse-transformed cell but not in the malignant CHO-K1. Reacquisition of the nuclear rim requires an organized cytoskeleton. Sequestered DNA forms families of different degrees of sequestration. In accordance with previous theoretical developments it is proposed that (i) genes specific to a given differentiation state are stored in the nuclear rim, whereas genes specific to other states are sequestered within the nucleus; (ii) only exposed genes are active, and their activity is modulated by regulatory molecules in the fluid medium; (iii) exposure and sequestration are regulated by cytoskeletal and nuclear protein structures; (iv) in at least several types of cancer the regulatory defect lies in the genome exposure process so that the specific DNA sequences and their associated growth regulatory loci have been transferred from the exposed to the sequestered condition with consequent loss of the nuclear rim of exposed DNA. The methodology described should be generally applicable to examining the accessibility state of subsets of DNA during various physiological modulations of cell function.
Collapse
Affiliation(s)
- A Krystosek
- Eleanor Roosevelt Institute for Cancer Research, Denver, CO 80206
| | | |
Collapse
|
17
|
Biessmann H, Mason JM, Ferry K, d'Hulst M, Valgeirsdottir K, Traverse KL, Pardue ML. Addition of telomere-associated HeT DNA sequences "heals" broken chromosome ends in Drosophila. Cell 1990; 61:663-73. [PMID: 2111731 DOI: 10.1016/0092-8674(90)90478-w] [Citation(s) in RCA: 203] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Stocks of D. melanogaster X chromosomes carrying terminal deletions (RT chromosomes) have been maintained for several years. Some of the chromosomes are slowly losing DNA from the broken ends (as expected if replication is incomplete) and show no telomere-associated DNA added to the receding ends. Two stocks carry chromosomes that have become "healed" and are no longer losing DNA. In both stocks the broken chromosome end has acquired a segment of HeT DNA, a family of complex repeats found only at telomeres and in pericentric heterochromatin. Although the HeT family is complex, the HeT sequence joined to the broken chromosome end is the same in both stocks. In contrast, the two chromosomes are broken in different places and have no detectable sequence similarity at the junction with the new DNA. Sequence analysis suggests that the new telomere sequences have been added by a specific mechanism that does not involve homologous recombination.
Collapse
Affiliation(s)
- H Biessmann
- Developmental Biology Center, University of California, Irvine 92717
| | | | | | | | | | | | | |
Collapse
|
18
|
Scherrer K. A unified matrix hypothesis of DNA-directed morphogenesis, protodynamism and growth control. Biosci Rep 1989; 9:157-88. [PMID: 2765661 DOI: 10.1007/bf01115994] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
A theoretical concept is proposed, in order to explain some enigmatic aspects of cellular and molecular biology of eukaryotic organisms. Among these are the C-value paradox of DNA redundancy, the correlation of DNA content and cell size, the disruption of genes at DNA level, the "Chromosome field" data of Lima de Faria (Hereditas 93:1, 1980), the "quantal mitosis" proposition of Holtzer et al. (Curr. Top. Dev. Biol. 7:229 1972), the inheritance of morphological patterns, the relations of DNA and chromosome organisation to cellular structure and function, the molecular basis of speciation, etc. The basic proposition of the "Unified Matrix Hypothesis" is that the nuclear DNA has a direct morphogenic function, in addition to its coding function in protein synthesis. This additional genetic information is thought to be largely contained in the non-protein coding transcribed DNA, and in the untranscribed part of the genome.
Collapse
Affiliation(s)
- K Scherrer
- Institut Jacques Monod, Université Paris VII, France
| |
Collapse
|
19
|
Manuelidis L, Borden J. Reproducible compartmentalization of individual chromosome domains in human CNS cells revealed by in situ hybridization and three-dimensional reconstruction. Chromosoma 1988; 96:397-410. [PMID: 3219911 DOI: 10.1007/bf00303033] [Citation(s) in RCA: 230] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Specific chromosome domains in interphase nuclei of neurons and glia were studied by three-dimensional (3-D) reconstruction of serial optical sections from in situ hybridized human CNS tissue. Overall patterns of centromere organization, delineated with alphoid repeats, were comparable to those seen in mouse, and are clearly conserved in mammalian evolution. Cloned probes from other individual chromosome domains were used to define interphase organization more precisely. Homologous chromosomes were spatially separated in nuclei. In large neurons, probes specific for 9q12, or 1q12 showed that at least one homolog was always compartmentalized together with centromeres on the nucleolus, while the second signal either abutted the nucleolus or was on the nuclear membrane. A telomeric Yq12 sequence also localized together with perinucleolar centromeres in a completely non-Rabl orientation. In astrocytes, these three chromosome regions were on the membrane and not necessarily associated with nucleoli. Therefore there are different patterns of interphase chromosome organization in functionally distinct cell types. In contrast to the above domains, a 1p36.3 telomeric sequence embedded in a large Alu-rich and early replicating chromosome region, was always found in an interior euchromatic nuclear compartment in both neurons and glial cells. In double hybridizations with 1q12 and 1p36.3 probes, 1p arms were clearly separated in all cells, and arms projected radially into the interior nucleoplasm with non-Rabl orientations. There was no absolute or rigid position for each 1p arm with respect to each other or to the major dendrite, indicating that individual chromosome arms may be dynamically positioned even in highly differentiated cell types. We suggest that centromeric and other highly repeated non-transcribed sequence domains may act as general organizing centers for cell type specific interphase patterns that are conserved in mammalian evolution. Such centers would allow selected groups of chromosome arms to extend into (and contract from) an interior, presumably transcriptionally active, nuclear compartment.
Collapse
Affiliation(s)
- L Manuelidis
- Yale University School of Medicine, New Haven, CT 06510
| | | |
Collapse
|
20
|
|
21
|
Hochstrasser M, Mathog D, Gruenbaum Y, Saumweber H, Sedat JW. Spatial organization of chromosomes in the salivary gland nuclei of Drosophila melanogaster. J Cell Biol 1986; 102:112-23. [PMID: 3079766 PMCID: PMC2114037 DOI: 10.1083/jcb.102.1.112] [Citation(s) in RCA: 196] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Using a computer-based system for model building and analysis, three-dimensional models of 24 Drosophila melanogaster salivary gland nuclei have been constructed from optically or physically sectioned glands, allowing several generalizations about chromosome folding and packaging in these nuclei. First and most surprising, the prominent coiling of the chromosomes is strongly chiral, with right-handed gyres predominating. Second, high frequency appositions between certain loci and the nuclear envelope appear almost exclusively at positions of intercalary heterochromatin; in addition, the chromocenter is always apposed to the envelope. Third, chromosomes are invariably separated into mutually exclusive spatial domains while usually extending across the nucleus in a polarized (Rabl) orientation. Fourth, the arms of each autosome are almost always juxtaposed, but no other relative arm positions are strongly favored. Finally, despite these nonrandom structural features, each chromosome is found to fold into a wide variety of different configurations. In addition, a set of nuclei has been analyzed in which the normally aggregrated centromeric regions of the chromosomes are located far apart from one another. These nuclei have the same architectural motifs seen in normal nuclei. This implies that such characteristics as separate chromosome domains and specific chromosome-nuclear envelope contacts are largely independent of the relative placement of the different chromosomes within the nucleus.
Collapse
|
22
|
Abstract
The position and arrangement of individual chromosomes in interphase nuclei were examined in mouse-human cell hybrids by in situ hybridization of biotinylated human DNA probes. Intense and even labeling of human chromosomes with little background was observed when polyethylene glycol and Tween-20 were included in hybridization solutions. Human interphase chromosomes were separated from each other in the nucleus, and were confined to well localized domains. Hybrid cells with a single human chromosome showed a reproducible position of this chromosome in the nucleus. Some chromosomes appeared to have a characteristic folding pattern in interphase. Optical section as well as electron microscopy of labeled regions revealed the presence of 0.2 micron wide fibers in each interphase domain, as well as adjacent, locally extended 500 nm fibers. Such fibers are consistent with previously proposed structural models of interphase chromosomes.
Collapse
|
23
|
Steffensen DM. Three-dimensional organization of nuclei of differentiated cells in Drosophila melanogaster. Differentiation 1985. [DOI: 10.1111/j.1432-0436.1985.tb00508.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Abstract
Mouse and human DNA sequences from centromeric and ribosomal domains were labeled with biotinylated deoxynucleotides and hybridized in situ to paraformaldehyde-fixed tissue culture cells. Centromeres were widely dispersed in most of these interphase nuclei. At late G2 phases of the cell cycle, centromeres appeared to coalesce and then to align in an orderly pattern, with discrete positional assignments for individuals chromosomes in metaphase and anaphase. Ribosomal cistrons were also organized in an orderly and defined fashion during mitosis. As soon as the nuclear membrane forms in early G1, centromeres rapidly disperse throughout the nucleus. Centromere patterns during G1 and S were indistinguishable in cultured cells, as determined by double-labeling experiments. Antibodies that bind to centric chromosomal proteins revealed the same patterns in cultured cells as those obtained with DNA sequence-specific probes. Large differentiated neurons display reproducible collections of centromeres in interphase that are very different from those seen in cultured cells. Neurons in widely divergent mammalian species, despite large differences in centromeric DNA sequences, maintain similar nuclear positions for these chromosomal segments. Similarly, ribosomal cistrons are positioned in comparable nuclear locales in neurons of divergent species. It is suggested that such arrangements reflect, or are necessary for, the function of a given cell type. Studies of large cerebellar neurons at critical times in development indicated a relative "movement" of centromeric domains, away from the nuclear membrane and toward the central nucleolar region. It is possible that the orderly and temporal positioning of centromeric, as well as of other chromosomal regions, is based on protein-nucleic acid interactions. Implications for trisomy 21 and other disorders involving chromosomal rearrangements, such as transposition, are considered from this perspective.
Collapse
|
25
|
Foe VE, Alberts BM. Reversible chromosome condensation induced in Drosophila embryos by anoxia: visualization of interphase nuclear organization. J Cell Biol 1985; 100:1623-36. [PMID: 3921555 PMCID: PMC2113892 DOI: 10.1083/jcb.100.5.1623] [Citation(s) in RCA: 132] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We have studied the morphology of nuclei in Drosophila embryos during the syncytial blastoderm stages. Nuclei in living embryos were viewed with differential interference-contrast optics; in addition, both isolated nuclei and fixed preparations of whole embryos were examined after staining with a DNA-specific fluorescent dye. We find that: (a) The nuclear volumes increase dramatically during interphase and then decrease during prophase of each nuclear cycle, with the magnitude of the nuclear volume increase being greatest for those cycles with the shortest interphase. (b) Oxygen deprivation of embryos produces a rapid developmental arrest that is reversible upon reaeration. During this arrest, interphase chromosomes condense against the nuclear envelope and the nuclear volumes increase dramatically. In these nuclei, individual chromosomes are clearly visible, and each condensed chromosome can be seen to adhere along its entire length to the inner surface of the swollen nuclear envelope, leaving the lumen of the nucleus devoid of DNA. (c) In each interphase nucleus the chromosomes are oriented in the "telophase configuration," with all centromeres and all telomeres at opposite poles of the nucleus; all nuclei at the embryo periphery (with the exception of the pole cell nuclei) are oriented with their centromeric poles pointing to the embryo exterior.
Collapse
|
26
|
Mathog D, Hochstrasser M, Gruenbaum Y, Saumweber H, Sedat J. Characteristic folding pattern of polytene chromosomes in Drosophila salivary gland nuclei. Nature 1984; 308:414-21. [PMID: 6424026 DOI: 10.1038/308414a0] [Citation(s) in RCA: 126] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A computer-based system for recording and analysing light microscope images, combined with classical cytogenetic analysis, has revealed the spatial organization of the giant chromosomes of Drosophila salivary gland cells. Each polytene chromosome arm folds up in a characteristic way, contacts the nuclear surface at specific sites and is topologically isolated from all other arms.
Collapse
|
27
|
|
28
|
|