1
|
Said N, Finazzo M, Hilal T, Wang B, Selinger TL, Gjorgjevikj D, Artsimovitch I, Wahl MC. Sm-like protein Rof inhibits transcription termination factor ρ by binding site obstruction and conformational insulation. Nat Commun 2024; 15:3186. [PMID: 38622114 PMCID: PMC11018626 DOI: 10.1038/s41467-024-47439-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 04/01/2024] [Indexed: 04/17/2024] Open
Abstract
Transcription termination factor ρ is a hexameric, RNA-dependent NTPase that can adopt active closed-ring and inactive open-ring conformations. The Sm-like protein Rof, a homolog of the RNA chaperone Hfq, inhibits ρ-dependent termination in vivo but recapitulation of this activity in vitro has proven difficult and the precise mode of Rof action is presently unknown. Here, our cryo-EM structures of ρ-Rof and ρ-RNA complexes show that Rof undergoes pronounced conformational changes to bind ρ at the protomer interfaces, undercutting ρ conformational dynamics associated with ring closure and occluding extended primary RNA-binding sites that are also part of interfaces between ρ and RNA polymerase. Consistently, Rof impedes ρ ring closure, ρ-RNA interactions and ρ association with transcription elongation complexes. Structure-guided mutagenesis coupled with functional assays confirms that the observed ρ-Rof interface is required for Rof-mediated inhibition of cell growth and ρ-termination in vitro. Bioinformatic analyses reveal that Rof is restricted to Pseudomonadota and that the ρ-Rof interface is conserved. Genomic contexts of rof differ between Enterobacteriaceae and Vibrionaceae, suggesting distinct modes of Rof regulation. We hypothesize that Rof and other cellular anti-terminators silence ρ under diverse, but yet to be identified, stress conditions when unrestrained transcription termination by ρ may be detrimental.
Collapse
Affiliation(s)
- Nelly Said
- Laboratory of Structural Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 6, D-14195 Berlin, Germany
| | - Mark Finazzo
- Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - Tarek Hilal
- Laboratory of Structural Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 6, D-14195 Berlin, Germany
- Research Center of Electron Microscopy and Core Facility BioSupraMol, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Fabeckstr. 36a, D-14195 Berlin, Germany
| | - Bing Wang
- Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - Tim Luca Selinger
- Laboratory of Structural Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 6, D-14195 Berlin, Germany
| | - Daniela Gjorgjevikj
- Laboratory of Structural Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 6, D-14195 Berlin, Germany
- Department of Medicine, MRC Laboratory of Molecular Biology, University of Cambridge, Cambridge CB2 0QH, United Kingdom
| | - Irina Artsimovitch
- Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, OH, USA.
| | - Markus C Wahl
- Laboratory of Structural Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 6, D-14195 Berlin, Germany.
- Macromolecular Crystallography, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, D-12489 Berlin, Germany.
| |
Collapse
|
2
|
Said N, Finazzo M, Hilal T, Wang B, Selinger TL, Gjorgjevikj D, Artsimovitch I, Wahl MC. Sm-like protein Rof inhibits transcription termination factor ρ by binding site obstruction and conformational insulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.30.555460. [PMID: 37693585 PMCID: PMC10491184 DOI: 10.1101/2023.08.30.555460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Transcription termination factor ρ is a hexameric, RNA-dependent NTPase that can adopt active closed-ring and inactive open-ring conformations. The Sm-like protein Rof, a homolog of the RNA chaperone Hfq, inhibits ρ-dependent termination in vivo but recapitulation of this activity in vitro has proven difficult and the precise mode of Rof action is presently unknown. Our electron microscopic structures of ρ-Rof and ρ-RNA complexes show that Rof undergoes pronounced conformational changes to bind ρ at the protomer interfaces, undercutting ρ conformational dynamics associated with ring closure and occluding extended primary RNA-binding sites that are also part of interfaces between ρ and RNA polymerase. Consistently, Rof impedes ρ ring closure, ρ-RNA interactions, and ρ association with transcription elongation complexes. Structure-guided mutagenesis coupled with functional assays confirmed that the observed ρ-Rof interface is required for Rof-mediated inhibition of cell growth and ρ-termination in vitro. Bioinformatic analyses revealed that Rof is restricted to Pseudomonadota and that the ρ-Rof interface is conserved. Genomic contexts of rof differ between Enterobacteriaceae and Vibrionaceae, suggesting distinct modes of Rof regulation. We hypothesize that Rof and other cellular anti-terminators silence ρ under diverse, but yet to be identified, stress conditions when unrestrained transcription termination by ρ would be lethal.
Collapse
Affiliation(s)
- Nelly Said
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Takustr. 6, D-14195 Berlin, Germany
| | - Mark Finazzo
- The Ohio State University, Department of Microbiology and Center for RNA Biology, Columbus, OH, USA
| | - Tarek Hilal
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Takustr. 6, D-14195 Berlin, Germany
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Research Center of Electron Microscopy and Core Facility BioSupraMol, Fabeckstr. 36a, 14195 Berlin, Germany
| | - Bing Wang
- The Ohio State University, Department of Microbiology and Center for RNA Biology, Columbus, OH, USA
| | - Tim Luca Selinger
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Takustr. 6, D-14195 Berlin, Germany
| | - Daniela Gjorgjevikj
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Takustr. 6, D-14195 Berlin, Germany
| | - Irina Artsimovitch
- The Ohio State University, Department of Microbiology and Center for RNA Biology, Columbus, OH, USA
| | - Markus C. Wahl
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Takustr. 6, D-14195 Berlin, Germany
- Helmholtz-Zentrum Berlin für Materialien und Energie, Macromolecular Crystallography, Albert-Einstein-Str. 15, D-12489 Berlin, Germany
| |
Collapse
|
3
|
Petroni E, Esnault C, Tetreault D, Dale RK, Storz G, Adams PP. Extensive diversity in RNA termination and regulation revealed by transcriptome mapping for the Lyme pathogen Borrelia burgdorferi. Nat Commun 2023; 14:3931. [PMID: 37402717 PMCID: PMC10319736 DOI: 10.1038/s41467-023-39576-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 06/16/2023] [Indexed: 07/06/2023] Open
Abstract
Transcription termination is an essential and dynamic process that can tune gene expression in response to diverse molecular signals. Yet, the genomic positions, molecular mechanisms, and regulatory consequences of termination have only been studied thoroughly in model bacteria. Here, we use several RNA-seq approaches to map RNA ends for the transcriptome of the spirochete Borrelia burgdorferi - the etiological agent of Lyme disease. We identify complex gene arrangements and operons, untranslated regions and small RNAs. We predict intrinsic terminators and experimentally test examples of Rho-dependent transcription termination. Remarkably, 63% of RNA 3' ends map upstream of or internal to open reading frames (ORFs), including genes involved in the unique infectious cycle of B. burgdorferi. We suggest these RNAs result from premature termination, processing and regulatory events such as cis-acting regulation. Furthermore, the polyamine spermidine globally influences the generation of truncated mRNAs. Collectively, our findings provide insights into transcription termination and uncover an abundance of potential RNA regulators in B. burgdorferi.
Collapse
Affiliation(s)
- Emily Petroni
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA
| | - Caroline Esnault
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA
| | - Daniel Tetreault
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA
| | - Ryan K Dale
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA
| | - Gisela Storz
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA
| | - Philip P Adams
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA.
- Postdoctoral Research Associate Program, National Institute of General Medical Sciences, National Institutes of Health, Bethesda, MD, 20892, USA.
- Independent Research Scholar Program, Intramural Research Program, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
4
|
Petroni E, Esnault C, Tetreault D, Dale RK, Storz G, Adams PP. Extensive diversity in RNA termination and regulation revealed by transcriptome mapping for the Lyme pathogen B. burgdorferi. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.04.522626. [PMID: 36712141 PMCID: PMC9881889 DOI: 10.1101/2023.01.04.522626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Transcription termination is an essential and dynamic process that can tune gene expression in response to diverse molecular signals. Yet, the genomic positions, molecular mechanisms, and regulatory consequences of termination have only been studied thoroughly in model bacteria. We employed complementary RNA-seq approaches to map RNA ends for the transcriptome of the spirochete Borrelia burgdorferi - the etiological agent of Lyme disease. By systematically mapping B. burgdorferi RNA ends at single nucleotide resolution, we delineated complex gene arrangements and operons and mapped untranslated regions (UTRs) and small RNAs (sRNAs). We experimentally tested modes of B. burgdorferi transcription termination and compared our findings to observations in E. coli , P. aeruginosa , and B. subtilis . We discovered 63% of B. burgdorferi RNA 3' ends map upstream or internal to open reading frames (ORFs), suggesting novel mechanisms of regulation. Northern analysis confirmed the presence of stable 5' derived RNAs from mRNAs encoding gene products involved in the unique infectious cycle of B. burgdorferi . We suggest these RNAs resulted from premature termination and regulatory events, including forms of cis- acting regulation. For example, we documented that the polyamine spermidine globally influences the generation of truncated mRNAs. In one case, we showed that high spermidine concentrations increased levels of RNA fragments derived from an mRNA encoding a spermidine import system, with a concomitant decrease in levels of the full- length mRNA. Collectively, our findings revealed new insight into transcription termination and uncovered an abundance of potential RNA regulators.
Collapse
Affiliation(s)
- Emily Petroni
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Caroline Esnault
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Daniel Tetreault
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Ryan K. Dale
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Gisela Storz
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Philip P. Adams
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA.,Postdoctoral Research Associate Program, National Institute of General Medical Sciences, National Institutes of Health, Bethesda, MD 20892, USA.,Independent Research Scholar Program, Intramural Research Program, National Institutes of Health, Bethesda, MD 20892, USA.,correspondence:
| |
Collapse
|
5
|
Abstract
RfaH activates horizontally acquired operons that encode lipopolysaccharide core components, pili, toxins, and capsules. Unlike its paralog NusG, which potentiates Rho-mediated silencing, RfaH strongly inhibits Rho. RfaH is recruited to its target operons via a network of contacts with an elongating RNA polymerase (RNAP) and a specific DNA element called ops to modify RNAP into a pause- and NusG-resistant state. rfaH null mutations confer hypersensitivity to antibiotics and detergents, altered susceptibility to bacteriophages, and defects in virulence. Here, we carried out a selection for suppressors that restore the ability of a ΔrfaH mutant Escherichia coli strain to grow in the presence of sodium dodecyl sulfate. We isolated rho, rpoC, and hns suppressor mutants with changes in regions previously shown to be important for their function. In addition, we identified mutants with changes in an unstructured region that connects the primary RNA-binding and helicase domains of Rho. The connector mutants display strong defects in vivo, consistent with their ability to compensate for the loss of RfaH, and act synergistically with bicyclomycin (BCM), which has been recently shown to inhibit Rho transformation into a translocation-competent state. We hypothesize that the flexible connector permits the reorientation of Rho domains and serves as a target for factors that control the motor function of Rho allosterically. Our results, together with the existing data, support a model in which the connector segment plays a hitherto overlooked role in the regulation of Rho-dependent termination.IMPORTANCE The transcription termination factor Rho silences foreign DNA, reduces antisense transcription, mediates surveillance of mRNA quality, and maintains genome integrity by resolving transcription-replication collisions and deleterious R loops. Upon binding to RNA, Rho undergoes a rate-limiting transition from an open "lock washer" state to a closed ring capable of processive translocation on, and eventually the release of, the nascent transcript. Recent studies revealed that Rho ligands, including its cofactor NusG and inhibitor bicyclomycin, control the ring dynamics allosterically. In this work, we used a genetic selection for suppressors of RfaH, a potent inhibitor of Rho, to isolate a new class of mutations in a flexible region that connects the primary RNA-binding and ATPase/translocase domains of Rho. We propose that the connector is essential for the modulation of Rho activity by different RNA sequences and accessory proteins.
Collapse
|
6
|
Modulation of Rho-dependent transcription termination in Escherichia coli by the H-NS family of proteins. J Bacteriol 2011; 193:3832-41. [PMID: 21602341 DOI: 10.1128/jb.00220-11] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nascent transcripts in Escherichia coli that fail to be simultaneously translated are subject to a factor-dependent mechanism of termination (also termed a polarity) that involves the proteins Rho and NusG. In this study, we found that overexpression of YdgT suppressed the polarity relief phenotypes and restored the efficiency of termination in rho or nusG mutants. YdgT and Hha belong to the H-NS and StpA family of proteins that repress a large number of genes in Gram-negative bacteria. Variants of H-NS defective in one or the other of its two dimerization domains, but not those defective in DNA binding alone, also conferred a similar suppression phenotype in rho and nusG mutants. YdgT overexpression was associated with derepression of proU, a prototypical H-NS-silenced locus. Polarity relief conferred by rho or nusG was unaffected in a derivative completely deficient for both H-NS and StpA, although the suppression effects of YdgT or the oligomerization-defective H-NS variants were abolished in this background. Transcription elongation rates in vivo were unaffected in any of the suppressor-bearing strains. Finally, the polarity defects of rho and nusG mutants were exacerbated by Hha and YdgT deficiency. A model is proposed that invokes a novel role for the polymeric architectural scaffold formed on DNA by H-NS and StpA independent of the gene-silencing functions of these nucleoid proteins, in modulating Rho-dependent transcription termination such that interruption of the scaffold (as obtained by expression either of the H-NS oligomerization variants or of YdgT) is associated with improved termination efficiency in the rho and nusG mutants.
Collapse
|
7
|
Spinosa MR, Progida C, Talà A, Cogli L, Alifano P, Bucci C. The Neisseria meningitidis capsule is important for intracellular survival in human cells. Infect Immun 2007; 75:3594-603. [PMID: 17470547 PMCID: PMC1932921 DOI: 10.1128/iai.01945-06] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
While much data exist in the literature about how Neisseria meningitidis adheres to and invades human cells, its behavior inside the host cell is largely unknown. One of the essential meningococcal attributes for pathogenesis is the polysaccharide capsule, which has been shown to be important for bacterial survival in extracellular fluids. To investigate the role of the meningococcal capsule in intracellular survival, we used B1940, a serogroup B strain, and its isogenic derivatives, which lack either the capsule or both the capsule and the lipooligosaccharide outer core, to infect human phagocytic and nonphagocytic cells and monitor invasion and intracellular growth. Our data indicate that the capsule, which negatively affects bacterial adhesion and, consequently, entry, is, in contrast, fundamental for the intracellular survival of this microorganism. The results of in vitro assays suggest that an increased resistance to cationic antimicrobial peptides (CAMPs), important components of the host innate defense system against microbial infections, is a possible mechanism by which the capsule protects the meningococci in the intracellular environment. Indeed, unencapsulated bacteria were more susceptible than encapsulated bacteria to defensins, cathelicidins, protegrins, and polymyxin B, which has long been used as a model compound to define the mechanism of action of CAMPs. We also demonstrate that both the capsular genes (siaD and lipA) and those encoding an efflux pump involved in resistance to CAMPs (mtrCDE) were up-regulated during the intracellular phase of the infectious cycle.
Collapse
Affiliation(s)
- Maria Rita Spinosa
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università degli Studi del Salento, Via Monteroni, 73100 Lecce, Italy
| | | | | | | | | | | |
Collapse
|
8
|
Rajkumari K, Gowrishankar J. In vivo expression from the RpoS-dependent P1 promoter of the osmotically regulated proU operon in Escherichia coli and Salmonella enterica serovar Typhimurium: activation by rho and hns mutations and by cold stress. J Bacteriol 2001; 183:6543-50. [PMID: 11673423 PMCID: PMC95484 DOI: 10.1128/jb.183.22.6543-6550.2001] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Unlike the sigma(70)-controlled P2 promoter for the osmotically regulated proU operon of Escherichia coli and Salmonella enterica serovar Typhimurium, the sigma(s)-controlled P1 promoter situated further upstream appears not to contribute to expression of the proU structural genes under ordinary growth conditions. For S. enterica proU P1, there is evidence that promoter crypticity is the result of a transcription attenuation phenomenon which is relieved by the deletion of a 22-base C-rich segment in the transcript. In this study, we have sought to identify growth conditions and trans-acting mutations which activate in vivo expression from proU P1. The cryptic S. enterica proU P1 promoter was activated, individually and additively, in a rho mutant (which is defective in the transcription termination factor Rho) as well as by growth at 10 degrees C. The E. coli proU P1 promoter was also cryptic in constructs that carried 1.2 kb of downstream proU sequence, and in these cases activation of in vivo expression was achieved either by a rho mutation during growth at 10 degrees C or by an hns null mutation (affecting the nucleoid protein H-NS) at 30 degrees C. The rho mutation had no effect at either 10 or 30 degrees C on in vivo expression from two other sigma(s)-controlled promoters tested, those for osmY and csiD. In cells lacking the RNA-binding regulator protein Hfq, induction of E. coli proU P1 at 10 degrees C and by hns mutation at 30 degrees C was still observed, although the hfq mutation was associated with a reduction in the absolute levels of P1 expression. Our results suggest that expression from proU P1 is modulated both by nucleoid structure and by Rho-mediated transcription attenuation and that this promoter may be physiologically important for proU operon expression during low-temperature growth.
Collapse
Affiliation(s)
- K Rajkumari
- Centre for Cellular and Molecular Biology, Hyderabad 500 007, India
| | | |
Collapse
|
9
|
Tsurushita N, Shigesada K, Imai M. Mutant rho factors with increased transcription termination activities. I. Functional correlations of the primary and secondary polynucleotide binding sites with the efficiency and site-selectivity of rho-dependent termination. J Mol Biol 1989; 210:23-37. [PMID: 2479756 DOI: 10.1016/0022-2836(89)90288-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We have characterized rho proteins from mutants of Escherichia coli, rho s-81 and rho s-82, which are hyperactive in termination. The two mutant rho proteins are differentially altered both in termination activities and in RNA interactions. rho s-81 generally elicits enhanced termination on various templates such as phage T7 DNA and a DNA restriction fragment containing the trpE intracistronic rho-dependent terminators, either measured as a whole or examined for individual sites. On the other hand, rho s-82 has strikingly different preferences toward individual termination sites, exhibiting overall termination activities higher or lower than normal, depending on templates. From measurements of the rho ATPase activity with T7 RNA and various homoribopolymers as cofactors, both mutant rho proteins are shown to have broadened RNA base specificities in contrast to the stringent requirement for cytosine observed with the wild-type rho. Functional tests on the two kinds of polynucleotide binding sites known for rho have indicated that rho s-81 is mainly altered in the primary site, whereas rho s-82 is simultaneously affected in the secondary binding site as well as the primary site. Thus, we conclude that the primary and secondary sites contribute distinctly in determining the overall efficiency and site-specificity of termination, respectively. Further analysis of detailed termination points at the trpE and lambda tR1 terminators has revealed that major RNA transcripts generated by the wild-type rho and rho s-81 are notably rich in adenine and poor in cytosine for the 3'-terminal five to ten nucleotides, whereas those preferentially terminated by rho s-82 are conversely richer in cytosine than adenine. This finding suggests that rho may recognize the RNA-DNA hybrid region at the 3' end of a nascent transcript in its secondary binding reaction.
Collapse
Affiliation(s)
- N Tsurushita
- Department of Biochemistry, Kyoto University, Japan
| | | | | |
Collapse
|
10
|
|
11
|
Nègre D, Cozzone AJ, Cenatiempo Y. Accuracy of natural messenger translation: analysis of codon-anticodon recognition in a simplified cell-free system. Biochemistry 1986; 25:6391-7. [PMID: 3539191 DOI: 10.1021/bi00369a008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A simplified plasmid-directed coupled system [Robakis, N., Cenatiempo, Y., Meza-Basso, L., Brot, N., & Weissbach, H. (1983) Methods Enzymol. 101, 690-706] was used to study the accuracy of natural messenger translation in vitro. In this system, protein synthesis is limited to the formation of the N-terminal di- or tripeptide of the gene product. Such a control is obtained by restricting the supply of aminoacyl-tRNAs in the assay medium to those corresponding specifically to the first two or three triplets in the mRNA coding sequence. We analyzed comparatively the interaction of 6 different codons with their cognate tRNAs and 18 noncognate tRNAs able to recognize triplets differing from the legitimate sequences by one base only. Special attention was paid to the single base errors occurring at the first and second codon positions during ribosomal selection of aminoacyl-tRNA molecules. The noncognate tRNAs were assayed either in the absence of the legitimate tRNAs or under competition conditions. They were chosen so that all the possibilities for misreading any particular base as each of the other three bases could be studied. First, it was mainly observed that translation mistakes can be equally detected in the first and second codon positions; there is no compelling evidence for a most or least accurate site. Second, pyrimidines seem to be read more accurately than purines. In particular, U cannot be read as either C or G, and C can hardly be mistaken for any other base.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
12
|
Autogenous regulation of the gene for transcription termination factor rho in Escherichia coli: localization and function of its attenuators. J Bacteriol 1986; 166:945-58. [PMID: 2423505 PMCID: PMC215217 DOI: 10.1128/jb.166.3.945-958.1986] [Citation(s) in RCA: 74] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We present evidence that the expression of rho is regulated by rho-dependent attenuation of transcription. Gene fusion analysis with nested series of deletions of rho indicated that the transcription of rho is attenuated in a rho-dependent manner in the leader region and that neither a read-through transcription from the upstream gene, trxA, nor a modulation of transcription initiation of the rho promoter is involved in the self-control of rho. S1 mapping and Northern hybridization analyses localized at least six transcription attenuation or termination sites in the region ranging from the 3' end of the trxA structural gene to the middle of the rho structural gene. Among them, the most upstream site overlapping the rho promoter sequence was assigned to the terminator for the trxA gene, and the second and third sites, mapping about 80 and 50 nucleotides upstream from the start codon of rho, were suggested to function as the major attenuation sites for regulation of the rho expression. Further, the start points of the trxA and rho RNAs were determined in an in vitro transcription system to be located 111 nucleotides (U) and 255 nucleotides (G) upstream from their respective start codons. These results necessitate revisions of previous predictions on the sites of transcriptional signals in the trxA and rho genes (S. Brown, B. Albrechtsen, S. Pedersen, and P. Klemm, J. Mol. Biol. 162:283-298, 1982; C.-J. Lim, D. Geraghty, and J. A. Fuchs, J. Bacteriol. 163:311-316, 1985; B.J. Wallace and S.R. Kushner, Gene 32:399-408, 1984).
Collapse
|
13
|
Abstract
Transcription-translation coupled systems have been developed to study prokaryotic gene expression. Several types of expression system have been described. The original system consists of a crude unfractionated Escherichia coli extract, which supports protein synthesis directed by a template DNA. Control of gene expression at the transcriptional stage has been studied using this unfractionated system. In this respect, two examples of particular interest, lactose and tryptophan operons, are described. Other systems are either partially reconstituted or highly defined, containing up to 30 purified factors necessary for transcription (RNA polymerase) and translation (aminoacyl-tRNA synthetases, initiation, elongation and release factors). Additional differences between the various systems relate to the analysis of the gene products. Whereas most methods involve analysis of the totally synthesized protein, a particular system implies the formation of only the N-terminal di- or tripeptide of the gene product. Reconstituted systems have proved useful in studies on transcriptional, e.g., discovery and role of L factor, as well as translational regulation of gene expression, e.g., autogenous control of ribosomal protein synthesis.
Collapse
|
14
|
Morgan WD, Bear DG, Litchman BL, von Hippel PH. RNA sequence and secondary structure requirements for rho-dependent transcription termination. Nucleic Acids Res 1985; 13:3739-54. [PMID: 2409526 PMCID: PMC341270 DOI: 10.1093/nar/13.10.3739] [Citation(s) in RCA: 89] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The interaction of E. coli termination factor rho with the nascent RNA transcript appears to be a central feature of the rho-dependent transcription termination process. Based on in vitro studies of the rho-dependent termination of the transcript initiated at the PR promoter of bacteriophage lambda, and on earlier studies, Morgan, Bear and von Hippel (J. Biol. Chem. 258, 9565-9574, 1983) proposed a model defining the features of a potential binding site for rho protein on transcripts subject to rho-dependent termination. This model suggested that an effective rho binding site on a nascent RNA transcript should be: (i) greater than 70-80 nucleotide residues in length; (ii) essentially unencumbered with stable secondary structure; (iii) relatively sequence non-specific; and (iv) located within a few hundred nucleotide residues upstream of the potential rho-dependent terminus. In this paper we examine the sequences and secondary structures of several transcripts that exhibit rho-dependent termination to test this hypothesis further. Unstructured regions of approximately the expected size and location were found on all the transcripts examined. Though several short specific sequence elements were found to occur in a very similar arrangement on the lambda PR- and lambda PL-initiated transcripts of lambda phage, no such elements of sequence regularity were found on any of the other rho-dependent transcripts. The results of the sequence comparisons reported here strongly support the generality of the "unstructured binding site" hypothesis for rho-dependent termination.
Collapse
|
15
|
Calhoun DH, Wallen JW, Traub L, Gray JE, Kung HF. Internal promoter in the ilvGEDA transcription unit of Escherichia coli K-12. J Bacteriol 1985; 161:128-32. [PMID: 3917997 PMCID: PMC214845 DOI: 10.1128/jb.161.1.128-132.1985] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Segments of the ilvGEDA transcription unit have been cloned into the promoter tester plasmid pMC81. This vector contains cloning sites situated upstream of the lacZ gene coding for beta-galactosidase. Using this method we have quantitatively evaluated in vivo (i) the activity of previously described promoter, pG, preceding ilvG; (ii) the relative activity of pE promoter, previously postulated to be located between ilvG and ilvE; and (iii) the effect of the frameshift site present in the wild-type ilvG gene by comparison with mutant derivatives lacking this frameshift site. Isogenic derivatives of strain MC1000 were constructed by transduction with phage P1 grown on rho-120, delta(ilvGEDA), delta(ilvED), and ilvA538 hosts. The potential effects of these alleles that were previously postulated to affect ilvGEDA expression were assessed in vivo by monitoring beta-galactosidase production directed by ilv DNA fragments. Cloned ilv segments were also tested for activity in vitro with a DNA-directed coupled transcription and translation system. The production in vitro of ilv-directed ilv gene expression and beta-galactosidase expression with ara-ilv-lac fusions paralleled the in vivo activity.
Collapse
|
16
|
Mott JE, Grant RA, Ho YS, Platt T. Maximizing gene expression from plasmid vectors containing the lambda PL promoter: strategies for overproducing transcription termination factor rho. Proc Natl Acad Sci U S A 1985; 82:88-92. [PMID: 3155859 PMCID: PMC396976 DOI: 10.1073/pnas.82.1.88] [Citation(s) in RCA: 144] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
We have constructed two plasmids in which transcription of the rho gene from Escherichia coli K-12 is under the control of the lambda phage PL promoter. In p31-356, the normal rho promoter is deleted, but the remainder of the rho leader region, including the ribosome binding site, is present. In p39-AS, the rho leader is completely absent, and the lambda cII ribosome binding site replaces that of rho. Under noninducing conditions, expression of rho protein from these plasmids is repressed by the lambda cI protein in hosts carrying lambda cryptic prophage. Induction using mitomycin C or nalidixic acid in a cryptic lysogen carrying the cI+ repressor resulted in the overproduction of rho protein to levels of 3%-5% of the total cellular protein with p31-356, and to levels of approximately equal to 40% with p39-AS. The overproduced protein is functionally indistinguishable from the rho protein isolated from the K-12 strain W3110, and it can be obtained from cells harboring p39-AS in yields of up to 25 mg of rho per g of cells. In contrast to chemical induction, heat induction in four cryptic lambda lysogens carrying the thermolabile cI857 repressor failed to yield the same high levels of rho protein (with either plasmid). Our results show that chemical induction of PL-containing plasmid expression vectors can serve as a convenient and useful alternative to the commonly used method of heat induction.
Collapse
|