1
|
Abstract
The mechanism by which cells recognize and complete replicated regions at their precise doubling point must be remarkably efficient, occurring thousands of times per cell division along the chromosomes of humans. However, this process remains poorly understood. Here we show that, in Escherichia coli, the completion of replication involves an enzymatic system that effectively counts pairs and limits cellular replication to its doubling point by allowing converging replication forks to transiently continue through the doubling point before the excess, over-replicated regions are incised, resected, and joined. Completion requires RecBCD and involves several proteins associated with repairing double-strand breaks including, ExoI, SbcDC, and RecG. However, unlike double-strand break repair, completion occurs independently of homologous recombination and RecA. In some bacterial viruses, the completion mechanism is specifically targeted for inactivation to allow over-replication to occur during lytic replication. The results suggest that a primary cause of genomic instabilities in many double-strand-break-repair mutants arises from an impaired ability to complete replication, independent from DNA damage.
Collapse
|
2
|
Kuzminov A. Homologous Recombination-Experimental Systems, Analysis, and Significance. EcoSal Plus 2011; 4:10.1128/ecosalplus.7.2.6. [PMID: 26442506 PMCID: PMC4190071 DOI: 10.1128/ecosalplus.7.2.6] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Indexed: 12/30/2022]
Abstract
Homologous recombination is the most complex of all recombination events that shape genomes and produce material for evolution. Homologous recombination events are exchanges between DNA molecules in the lengthy regions of shared identity, catalyzed by a group of dedicated enzymes. There is a variety of experimental systems in Escherichia coli and Salmonella to detect homologous recombination events of several different kinds. Genetic analysis of homologous recombination reveals three separate phases of this process: pre-synapsis (the early phase), synapsis (homologous strand exchange), and post-synapsis (the late phase). In E. coli, there are at least two independent pathway of the early phase and at least two independent pathways of the late phase. All this complexity is incongruent with the originally ascribed role of homologous recombination as accelerator of genome evolution: there is simply not enough duplication and repetition in enterobacterial genomes for homologous recombination to have a detectable evolutionary role and therefore not enough selection to maintain such a complexity. At the same time, the mechanisms of homologous recombination are uniquely suited for repair of complex DNA lesions called chromosomal lesions. In fact, the two major classes of chromosomal lesions are recognized and processed by the two individual pathways at the early phase of homologous recombination. It follows, therefore, that homologous recombination events are occasional reflections of the continual recombinational repair, made possible in cases of natural or artificial genome redundancy.
Collapse
|
3
|
Effects of single-strand DNases ExoI, RecJ, ExoVII, and SbcCD on homologous recombination of recBCD+ strains of Escherichia coli and roles of SbcB15 and XonA2 ExoI mutant enzymes. J Bacteriol 2007; 190:179-92. [PMID: 17965170 DOI: 10.1128/jb.01052-07] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To assess the contributions of single-strand DNases (ssDNases) to recombination in a recBCD+ background, we studied 31 strains with all combinations of null alleles of exonuclease I (delta xon), exonuclease VII (xseA), RecJ DNase (recJ), and SbcCD DNase (sbcCD) and exonuclease I mutant alleles xonA2 and sbcB15. The xse recJ sbcCD delta xon and xse recJ sbcCD sbcB15 quadruple mutants were cold sensitive, while the quadruple mutant with xonA2 was not. UV sensitivity increased with ssDNase deficiencies. Most triple and quadruple mutants were highly sensitive. The absence of ssDNases hardly affected P1 transductional recombinant formation, and conjugational recombinant production was decreased (as much as 94%) in several cases. Strains with sbcB15 were generally like the wild type. We determined that the sbcB15 mutation caused an A183V exchange in exonuclease motif III and identified xonA2 as a stop codon eliminating the terminal 8 amino acids. Purified enzymes had 1.6% (SbcB15) and 0.9% (XonA2) of the specific activity of wild-type Xon (Xon+), respectively, with altered activity profiles. In gel shift assays, SbcB15 associated relatively stably with 3' DNA overhangs, giving protection against Xon+. In addition to their postsynaptic roles in the RecBCD pathway, exonuclease I and RecJ are proposed to have presynaptic roles of DNA end blunting. Blunting may be specifically required during conjugation to make DNAs with overhangs RecBCD targets for initiation of recombination. Evidence is provided that SbcB15 protein, known to activate the RecF pathway in recBC strains, contributes independently of RecF to recombination in recBCD+ cells. DNA end binding by SbcB15 can also explain other specific phenotypes of strains with sbcB15.
Collapse
|
4
|
Harmon FG, Kowalczykowski SC. Biochemical characterization of the DNA helicase activity of the escherichia coli RecQ helicase. J Biol Chem 2001; 276:232-43. [PMID: 11024023 DOI: 10.1074/jbc.m006555200] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We demonstrate that RecQ helicase from Escherichia coli is a catalytic helicase whose activity depends on the concentration of ATP, free magnesium ion, and single-stranded DNA-binding (SSB) protein. Helicase activity is cooperative in ATP concentration, with an apparent S(0.5) value for ATP of 200 microm and a Hill coefficient of 3.3 +/- 0.3. Therefore, RecQ helicase utilizes multiple, interacting ATP-binding sites to mediate double-stranded DNA (dsDNA) unwinding, implicating a multimer of at least three subunits as the active unwinding species. Unwinding activity is independent of dsDNA ends, indicating that RecQ helicase can unwind from both internal regions and ends of dsDNA. The K(M) for dsDNA is 0.5-0.9 microm base pairs; the k(cat) for DNA unwinding is 2.3-2.7 base pairs/s/monomer of RecQ helicase; and unexpectedly, helicase activity is optimal at a free magnesium ion concentration of 0.05 mm. Omitting Escherichia coli SSB protein lowers the rate and extent of dsDNA unwinding, suggesting that RecQ helicase associates with the single-stranded DNA (ssDNA) product. In agreement, the ssDNA-dependent ATPase activity is reduced in proportion to the SSB protein concentration; in its absence, ATPase activity saturates at six nucleotides/RecQ helicase monomer and yields a k(cat) of 24 s(-1). Thus, we conclude that SSB protein stimulates RecQ helicase-mediated unwinding by both trapping the separated ssDNA strands after unwinding and preventing the formation of non-productive enzyme-ssDNA complexes.
Collapse
Affiliation(s)
- F G Harmon
- Division of Biological Sciences, Section of Microbiology, University of California, Davis, California 95616, USA
| | | |
Collapse
|
5
|
Cromie GA, Millar CB, Schmidt KH, Leach DR. Palindromes as substrates for multiple pathways of recombination in Escherichia coli. Genetics 2000; 154:513-22. [PMID: 10655207 PMCID: PMC1460955 DOI: 10.1093/genetics/154.2.513] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A 246-bp imperfect palindrome has the potential to form hairpin structures in single-stranded DNA during replication. Genetic evidence suggests that these structures are converted to double-strand breaks by the SbcCD nuclease and that the double-strand breaks are repaired by recombination. We investigated the role of a range of recombination mutations on the viability of cells containing this palindrome. The palindrome was introduced into the Escherichia coli chromosome by phage lambda lysogenization. This was done in both wt and sbcC backgrounds. Repair of the SbcCD-induced double-strand breaks requires a large number of proteins, including the components of both the RecB and RecF pathways. Repair does not involve PriA-dependent replication fork restart, which suggests that the double-strand break occurs after the replication fork has passed the palindrome. In the absence of SbcCD, recombination still occurs, probably using a gap substrate. This process is also PriA independent, suggesting that there is no collapse of the replication fork. In the absence of RecA, the RecQ helicase is required for palindrome viability in a sbcC mutant, suggesting that a helicase-dependent pathway exists to allow replicative bypass of secondary structures.
Collapse
Affiliation(s)
- G A Cromie
- Institute of Cell and Molecular Biology, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom
| | | | | | | |
Collapse
|
6
|
Harmon FG, Kowalczykowski SC. RecQ helicase, in concert with RecA and SSB proteins, initiates and disrupts DNA recombination. Genes Dev 1998; 12:1134-44. [PMID: 9553043 PMCID: PMC316708 DOI: 10.1101/gad.12.8.1134] [Citation(s) in RCA: 211] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/1998] [Accepted: 02/20/1998] [Indexed: 02/07/2023]
Abstract
RecQ helicase is important to homologous recombination and DNA repair in Escherichia coli. We demonstrate that RecQ helicase, in conjunction with RecA and SSB proteins, can initiate recombination events in vitro. In addition, RecQ protein is capable of unwinding a wide variety of DNA substrates, including joint molecules formed by RecA protein. These data are consistent with RecQ helicase assuming two roles in the cell; it can be (1) an initiator of homologous recombination, or (2) a disrupter of joint molecules formed by aberrant recombination. These findings also shed light on the function of the eukaryotic homologs of RecQ helicase, the Sgs1, Blm, and Wrn helicases.
Collapse
Affiliation(s)
- F G Harmon
- Division of Biological Sciences, Section of Microbiology, Graduate Group in Microbiology, University of California, Davis, California 95616 USA
| | | |
Collapse
|
7
|
Al-Deib AA, Mahdi AA, Lloyd RG. Modulation of recombination and DNA repair by the RecG and PriA helicases of Escherichia coli K-12. J Bacteriol 1996; 178:6782-9. [PMID: 8955297 PMCID: PMC178576 DOI: 10.1128/jb.178.23.6782-6789.1996] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The RecG protein of Escherichia coli is a structure-specific DNA helicase that targets strand exchange intermediates in genetic recombination and drives their branch migration along the DNA. Strains carrying null mutations in recG show reduced recombination and DNA repair. Suppressors of this phenotype, called srgA, were located close to metB and shown to be alleles of priA. Suppression depends on the RecA, RecBCD, RecF, RuvAB, and RuvC recombination proteins. Nine srgA mutations were sequenced and shown to specify mutant PriA proteins with single amino acid substitutions located in or close to one of the conserved helicase motifs. The mutant proteins retain the ability to catalyze primosome assembly, as judged by the viability of recG srgA and srgA strains and their ability to support replication of plasmids based on the ColE1 replicon. Multicopy priA+ plasmids increase substantially the recombination- and repair-deficient phenotype of recG strains and confer similar phenotypes on recG srgA double mutants but not on ruvAB or wild-type strains. The multicopy effect is eliminated by K230R, C446G, and C477G substitutions in PriA. It is concluded that the 3'-5' DNA helicase/translocase activity of PriA inhibits recombination and that this effect is normally countered by RecG.
Collapse
Affiliation(s)
- A A Al-Deib
- Department of Genetics, University of Nottingham, Queens Medical Centre, United Kingdom
| | | | | |
Collapse
|
8
|
Matic I. Les mécanismes du contrôle des échanges génétiques interspécifiques et de la variabilité génétique chez les bactéries. ACTA ACUST UNITED AC 1995. [DOI: 10.1016/0020-2452(96)81489-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
9
|
Ryder L, Whitby MC, Lloyd RG. Mutation of recF, recJ, recO, recQ, or recR improves Hfr recombination in resolvase-deficient ruv recG strains of Escherichia coli. J Bacteriol 1994; 176:1570-7. [PMID: 8132450 PMCID: PMC205241 DOI: 10.1128/jb.176.6.1570-1577.1994] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The formation of recombinants in Hfr crosses was studied in Escherichia coli strains carrying combinations of genes known to affect recombination and DNA repair. Mutations in ruv and recG eliminate activities that have been shown to process Holliday junction intermediates by nuclease cleavage and/or branch migration. Strains carrying null mutations in both ruv and recG produce few recombinants in Hfr crosses and are extremely sensitive to UV light. The introduction of additional mutations in recF, recJ, recO, recQ, or recR is shown to increase the yield of recombinants by 6- to 20-fold via a mechanism that depends on recBC. The products of these genes have been linked with the initiation of recombination. We propose that mutation of recF, recJ, recO, recQ, or recR redirects recombination to events initiated by the RecBCD enzyme. The strains constructed were also tested for sensitivity to UV light. Addition of recF, recJ, recN, recO, recQ, or recR mutations had no effect on the survival of ruv recG strains. The implications of these findings are discussed in relation to molecular models for recombination and DNA repair that invoke different roles for the branch migration activities of the RuvAB and RecG proteins.
Collapse
Affiliation(s)
- L Ryder
- Department of Genetics, University of Nottingham, United Kingdom
| | | | | |
Collapse
|
10
|
Whitby MC, Ryder L, Lloyd RG. Reverse branch migration of Holliday junctions by RecG protein: a new mechanism for resolution of intermediates in recombination and DNA repair. Cell 1993; 75:341-50. [PMID: 8402917 DOI: 10.1016/0092-8674(93)80075-p] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The RecG protein of E. coli is a junction-specific DNA helicase involved in recombination and DNA repair. The function of the protein was investigated using an in vitro recombination reaction catalyzed by RecA. We show that RecG counters RecA-driven strand exchange by catalyzing branch migration of the Holliday junction in the reverse direction. This activity represents a new mechanism for resolving recombination intermediates that is independent of junction cleavage. We discuss how reverse branch migration can facilitate DNA repair, promote recombination in conjugational crosses, and confine the distribution of Chi-stimulated cross-overs. We suggest that the RecG mechanism for resolution of junctions is universal and provides a simple system that allows gene conversion without associated crossing over.
Collapse
Affiliation(s)
- M C Whitby
- Department of Genetics, University of Nottingham, Queens Medical Centre, England
| | | | | |
Collapse
|
11
|
Abstract
Bacteria provide a simple system for the genetic analysis of homologous recombination. More than twenty genes have been identified in Escherichia coli. The enzymatic activities associated with the products of many of these genes have been revealed by studies with model DNA substrates. It is now possible to pair homologous molecules in vitro and process these through defined intermediates into mature recombinants of the types predicted by genetic crosses.
Collapse
Affiliation(s)
- R G Lloyd
- University of Nottingham, Queens Medical Centre, UK
| | | |
Collapse
|
12
|
Takahashi NK, Yamamoto K, Kitamura Y, Luo SQ, Yoshikura H, Kobayashi I. Nonconservative recombination in Escherichia coli. Proc Natl Acad Sci U S A 1992; 89:5912-6. [PMID: 1631073 PMCID: PMC49407 DOI: 10.1073/pnas.89.13.5912] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Homologous recombination between two duplex DNA molecules might result in two duplex DNA molecules (conservative) or, alternatively, it might result in only one recombinant duplex DNA molecule (nonconservative). Here we present evidence that the mode of homologous recombination is nonconservative in an Escherichia coli strain with an active RecF pathway (a recBC sbcBC mutant). We employed plasmid substrates that enable us to recover both recombination products. These plasmids carry two mutant alleles of neo gene in direct orientation, two drug-resistance marker genes, and two compatible replication origins. After their transfer to the cells followed by immediate selection for the recombination to neo+, we could recover only one recombination product. A double-strand break at the region of homology increased this nonconservative recombination. If a nonconservative exchange should leave an end, this end may stimulate another exchange. Such "successive half crossing-over events" can explain several recombination-related phenomena in E. coli, including the origin of plasmid linear multimers and of transcribable, nonreplicated recombination products, and also in yeast and mammalian cells.
Collapse
Affiliation(s)
- N K Takahashi
- Department of Bacteriology, Faculty of Medicine, University of Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
13
|
Lloyd RG. Linkage distortion following conjugational transfer of sbcC+ to recBC sbcBC strains of Escherichia coli. J Bacteriol 1991; 173:5694-8. [PMID: 1885546 PMCID: PMC208299 DOI: 10.1128/jb.173.18.5694-5698.1991] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Conjugational recombination in Escherichia coli depends normally on RecBCD enzyme, a multifunctional nuclease and DNA helicase produced by the recB, recC, and recD genes. However, recombination can proceed efficiently without RecBCD in recB or recC strains carrying additional mutations in both the sbcB and sbcC genes. Recombination in these strains, sometimes referred to as the RecF pathway, requires gene products that are not essential in the RecBCD-dependent process predominating in the wild type. It has also been reported to produce a different spectrum of recombinant genotypes in crosses with Hfr donors. However, the sbcC+ gene was unknowingly transferred to the recipient strain in some of these crosses, and this may have affected the outcome. This possibility was examined by conducting parallel crosses with Hfr donors that were either wild type or mutant for sbcC. Transfer of sbcC+ from an Hfr donor is shown to alter the frequency of recombinant genotypes recovered. There is a severe reduction in progeny that inherit donor markers linked to the sbcC+ allele and an increase in the incidence of multiple exchanges. Colonies of mixed genotype for one or more of the unselected proximal markers are also much more prevalent. Since the yield of recombinants is lower than normal, these changes are attributed to the reduced viability of recombinants that inherit sbcC+ from the Hfr donor. When the Hfr donor used is also mutant for sbcC, the yield of recombinants is greater and the frequencies of the different genotypes recovered are similar to those obtained in crosses with a rec+ sbc+ recipient, in which transfer of sbcC+ has no apparent effect. Earlier studies are re-examined in light of these findings. It is concluded that, while recombination in recBC sbcBC strains involves different enzymes, the underlying molecular mechanism is essentially the same as that in the wild type.
Collapse
Affiliation(s)
- R G Lloyd
- Department of Genetics, University of Nottingham, Queens Medical Centre, United Kingdom
| |
Collapse
|
14
|
Lloyd RG, Buckman C. Overlapping functions of recD, recJ and recN provide evidence of three epistatic groups of genes in Escherichia coli recombination and DNA repair. Biochimie 1991; 73:313-20. [PMID: 1883889 DOI: 10.1016/0300-9084(91)90218-p] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The recD, recJ and recN genes of Escherichia coli K-12 have been shown to be involved in genetic recombination and DNA repair in this organism. Yet, mutation of any one of these genes does not seem to interfere much with the recovery of recombinants from conjugational crosses. Strains carrying all possible combinations of mutations inactivating these genes were constructed and examined for their recombination proficiency and sensitivity to UV light. The recD recJ and recJ recN double mutants are moderately sensitive to UV light and slightly deficient in recombination. A combination of mutations in all 3 genes produced strains that are very deficient in recombination (50- to 100-fold reduction) and strikingly sensitive to UV light. We conclude that these genes provide overlapping activities that compensate for one another in the single mutants. On the basis of these and other data, recombination genes are classified into 3 epistatic groups that define activities which function pre-synaptically or post-synaptically to promote genetic exchanges catalysed by RecA.
Collapse
Affiliation(s)
- R G Lloyd
- Department of Genetics, University of Nottingham, Queens Medical Centre, UK
| | | |
Collapse
|
15
|
Benson F, Collier S, Lloyd RG. Evidence of abortive recombination in ruv mutants of Escherichia coli K12. MOLECULAR & GENERAL GENETICS : MGG 1991; 225:266-72. [PMID: 2005868 DOI: 10.1007/bf00269858] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Genetic recombination in Escherichia coli was investigated by measuring the effect of mutations in ruv and rec genes on F-prime transfer and mobilization of nonconjugative plasmids. Mutation of ruv was found to reduce the recovery of F-prime transconjugants in crosses with recB recC sbcA strains by about 30-fold and with recB recC sbcB sbcC strains by more than 300-fold. Conjugative plasmids lacking any significant homology with the chromosome were transferred normally to these ruv mutants. Mobilization of the plasmid cloning vectors pHSG415, pBR322, pACYC184 and pUC18 were reduced by 20- to 100-fold in crosses with ruv rec+ sbc+ strains, depending on the plasmid used. Recombinant plasmids carrying ruv+ were transferred efficiently. With both F-prime transfer and F-prime cointegrate mobilization, the effect of ruv was suppressed by inactivating recA. It is proposed that the failure to recover transconjugants in ruv recA+ strains is due to abortive recombination and that the ruv genes define activities which function late in recombination to help convert recombination intermediates into viable products.
Collapse
Affiliation(s)
- F Benson
- Genetics Department, University of Nottingham, Queens Medical Centre, UK
| | | | | |
Collapse
|
16
|
Lloyd RG, Buckman C. Genetic analysis of the recG locus of Escherichia coli K-12 and of its role in recombination and DNA repair. J Bacteriol 1991; 173:1004-11. [PMID: 1846849 PMCID: PMC207218 DOI: 10.1128/jb.173.3.1004-1011.1991] [Citation(s) in RCA: 136] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We describe a transposon insertion that reduces the efficiency of homologous recombination and DNA repair in Escherichia coli. The insertion, rec-258, was located between pyrE and dgo at min 82.1 on the current linkage map. On the basis of linkage to pyrE and complementation studies with the cloned rec+ gene, rec-258 was identified as an allele of the recG locus first reported by Storm et al. (P. K. Storm, W. P. M. Hoekstra, P. G. De Haan, and C. Verhoef, Mutat. Res. 13:9-17, 1971). The recG258 mutation confers sensitivity to mitomycin C and UV light and a 3- to 10-fold deficiency in conjugational recombination in wild-type, recB recC sbcA, and recB recC sbcB sbcC genetic backgrounds. It does not appear to affect plasmid recombination in the wild-type. A recG258 single mutant is also sensitive to ionizing radiation. The SOS response is induced normally, although the basal level of expression is elevated two- to threefold. Further genetic studies revealed that recB recG and recG recJ double mutants are much more sensitive to UV light than the respective single mutants in each case. However, no synergistic interactions were discovered between recG258 and mutations in recF, recN, or recQ. It is concluded that recG does not fall within any of the accepted groups of genes that affect recombination and DNA repair.
Collapse
Affiliation(s)
- R G Lloyd
- Department of Genetics, University of Nottingham, Queens Medical Centre, United Kingdom
| | | |
Collapse
|
17
|
Affiliation(s)
- G R Smith
- Fred Hutchinson Cancer Research Center, Seattle, Washington 98104
| |
Collapse
|
18
|
March JB, Colloms MD, Hart-Davis D, Oliver IR, Masters M. Cloning and characterization of an Escherichia coli gene, pcnB, affecting plasmid copy number. Mol Microbiol 1989; 3:903-10. [PMID: 2677604 DOI: 10.1111/j.1365-2958.1989.tb00239.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A gene, pcnB, affecting the copy number of ColE1-related plasmids has been cloned and mapped to 3.6 min on the Escherichia coli chromosome between panD and fhu. The gene encodes a previously undescribed 48 kD protein. Several independently isolated mutants exhibiting the same phenotype, reduced copy number, have been shown to be pcnB-.
Collapse
Affiliation(s)
- J B March
- Department of Molecular Biology, University of Edinburgh
| | | | | | | | | |
Collapse
|
19
|
Dutreix M, Moreau PL, Bailone A, Galibert F, Battista JR, Walker GC, Devoret R. New recA mutations that dissociate the various RecA protein activities in Escherichia coli provide evidence for an additional role for RecA protein in UV mutagenesis. J Bacteriol 1989; 171:2415-23. [PMID: 2651400 PMCID: PMC209916 DOI: 10.1128/jb.171.5.2415-2423.1989] [Citation(s) in RCA: 209] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
To isolate strains with new recA mutations that differentially affect RecA protein functions, we mutagenized in vitro the recA gene carried by plasmid mini-F and then introduced the mini-F-recA plasmid into a delta recA host that was lysogenic for prophage phi 80 and carried a lac duplication. By scoring prophage induction and recombination of the lac duplication, we isolated new recA mutations. A strain carrying mutation recA1734 (Arg-243 changed to Leu) was found to be deficient in phi 80 induction but proficient in recombination. The mutation rendered the host not mutable by UV, even in a lexA(Def) background. Yet, the recA1734 host became mutable upon introduction of a plasmid encoding UmuD*, the active carboxyl-terminal fragment of UmuD. Although the recA1734 mutation permits cleavage of lambda and LexA repressors, it renders the host deficient in the cleavage of phi 80 repressor and UmuD protein. Another strain carrying mutation recA1730 (Ser-117 changed to Phe) was found to be proficient in phi 80 induction but deficient in recombination. The recombination defect conferred by the mutation was partly alleviated in a cell devoid of LexA repressor, suggesting that, when amplified, RecA1730 protein is active in recombination. Since LexA protein was poorly cleaved in the recA1730 strain while phage lambda was induced, we conclude that RecA1730 protein cannot specifically mediate LexA protein cleavage. Our results show that the recA1734 and recA1730 mutations differentially affect cleavage of various substrates. The recA1730 mutation prevented UV mutagenesis, even upon introduction into the host of a plasmid encoding UmuD* and was dominant over recA+. With respect to other RecA functions, recA1730 was recessive to recA+. This demonstrates that RecA protein has an additional role in mutagenesis beside mediating the cleavage of LexA and UmuD proteins.
Collapse
Affiliation(s)
- M Dutreix
- Groupe d'Etude Mutagénèse et Cancérogénèse, Enzymologie, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France
| | | | | | | | | | | | | |
Collapse
|
20
|
Nussbaum A, Cohen A. Use of a bioluminescence gene reporter for the investigation of red-dependent and gam-dependent plasmid recombination in Escherichia coli K12. J Mol Biol 1988; 203:391-402. [PMID: 3058984 DOI: 10.1016/0022-2836(88)90007-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A plasmid recombination assay, which utilized mutated Vibrio fischeri luciferase genes, cloned in Escherichia coli plasmids was developed. Expression of the recombination product, a functional luxA gene, was assayed by measuring light intensity. This system was used to investigate the effect of E. coli gene functions on lambda Red- and Gam-dependent plasmid recombination. The genetic and physiological requirements for Red- and Gam-dependent plasmid recombination are similar to the conditions which allow synthesis of plasmid linear multimers. Both recombination and linear multimer synthesis are mediated by Red activity in recBrecC and in sbcB mutants and by Gam activity in sbcB and sbcA mutants, but neither recombination nor linear multimer synthesis is mediated by Red or Gam functions in RecBCD+ExoI+ cells. When mediated by Red in sbcB mutants, both recombination and linear multimer synthesis are RecA-independent, and when mediated by Gam, in the same genetic background, both are RecA-dependent. A role for replication in Red- and Gam-mediated plasmid recombination is suggested by the dependence of the recombination activity on DnaB. A model which hypothesizes mutual dependence of linear plasmid multimer synthesis and plasmid recombination by the RecE, RecF and Red pathways is presented. We propose that ends that are produced during this type of replication are recombinogenic in all three pathways and that new rounds of replication are primed by a recombination-dependent invasion of duplex DNA by 3' single strand ends.
Collapse
Affiliation(s)
- A Nussbaum
- Department of Molecular Genetics, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | |
Collapse
|
21
|
Phillips GJ, Prasher DC, Kushner SR. Physical and biochemical characterization of cloned sbcB and xonA mutations from Escherichia coli K-12. J Bacteriol 1988; 170:2089-94. [PMID: 2834321 PMCID: PMC211091 DOI: 10.1128/jb.170.5.2089-2094.1988] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In Escherichia coli K-12, sbcB/xonA is the structural gene for exonuclease I, an enzyme that hydrolyzes single-stranded DNA to mononucleotides in the 3'-to-5' direction. This enzyme has been implicated in the DNA repair and recombination pathways mediated by the recB and recC gene products (exonuclease V). We have cloned several sbcB/xonA mutant alleles in bacterial plasmids and have partially characterized the cloned genes and their protein products. Two of the mutations (xonA2 and xonA6) retain no detectable exonucleolytic activity on single-stranded DNA. The xonA6 allele was shown to harbor an insertion of an IS30-related genetic element near the 3' end of the gene. Two other mutations, sbcB15 and xonA8, exhibited significantly reduced levels of exonuclease I activity as compared to the cloned wild-type gene. A correlation was observed between levels of exonuclease I activity and the ability of the sbcB/xonA mutations to suppress UV sensitivity in recB and recC strains. Also, recombinant plasmids bearing either the sbcB15 or xonA6 allele exhibited a high degree of instability during growth of their bacterial hosts. The results suggest that the sbcB/xonA gene product is a bi- or multifunctional protein that interacts with single-stranded DNA and possibly with other proteins in the suppression of genetic recombination and DNA-repair deficiencies in recB and recC mutants.
Collapse
Affiliation(s)
- G J Phillips
- Department of Genetics, University of Georgia, Athens 30602
| | | | | |
Collapse
|
22
|
Lloyd RG, Porton MC, Buckman C. Effect of recF, recJ, recN, recO and ruv mutations on ultraviolet survival and genetic recombination in a recD strain of Escherichia coli K12. MOLECULAR & GENERAL GENETICS : MGG 1988; 212:317-24. [PMID: 2841571 DOI: 10.1007/bf00334702] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
DNA repair and recombination were investigated in a recD mutant of Escherichia coli which lacked the nuclease activity of the RecBCD enzyme. The resistance of this mutant to ultraviolet (UV) light was shown to be a function of recJ. A recD recJ double mutant was found to be more sensitive to UV radiation than a recB mutant, whereas recD and recJ single mutants were resistant. Recombination in conjugational crosses with Hfr donors was also reduced in recD recJ strains, but the effect was modest in comparison with the sensitivity to UV. Within certain limits, mutations in recF, recN, recO, lexA and ruv did not affect sensitivity to UV and recombination in a recD mutant any more than in a recD+ strain. The possibility that recD and recJ provide overlapping activities, either of which can promote DNA repair and recombination in the absence of the other, is discussed.
Collapse
Affiliation(s)
- R G Lloyd
- Department of Genetics, University of Nottingham, Medical School, Queens Medical Centre, UK
| | | | | |
Collapse
|
23
|
Lloyd RG, Evans NP, Buckman C. Formation of recombinant lacZ+ DNA in conjugational crosses with a recB mutant of Escherichia coli K12 depends on recF, recJ, and recO. MOLECULAR & GENERAL GENETICS : MGG 1987; 209:135-41. [PMID: 2823066 DOI: 10.1007/bf00329848] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Conjugational recombination in Escherichia coli was investigated by monitoring synthesis of the lacZ+ product, beta-galactosidase, in crosses between lacZ mutants. We report here that mutation of recB and any combination of recF, recJ, or recO reduces enzyme production by a factor of between 10- and 25-fold whereas mutation of only one of these genes or any combination of recF, recJ, or recO has no more than a 2-fold effect. Mutation of recN has no effect either alone or in combination with the other mutations. We suggest that the products of recF, recJ, and recO may provide an efficient alternative to the RecBCD enzyme for the initiation of recombination in conjugational crosses but that RecBCD activity is needed in this case to produce a viable recombinant product.
Collapse
Affiliation(s)
- R G Lloyd
- Department of Genetics, Queens Medical Centre, University of Nottingham, UK
| | | | | |
Collapse
|
24
|
Wang TC, Smith KC. Mechanism of sbcB-suppression of the recBC-deficiency in postreplication repair in UV-irradiated Escherichia coli K-12. MOLECULAR & GENERAL GENETICS : MGG 1985; 201:186-91. [PMID: 3911022 DOI: 10.1007/bf00425658] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The mechanism by which an sbcB mutation suppresses the deficiency in postreplication repair shown by recB recC mutants of Escherichia coli was studied. The presence of an sbcB mutation in uvrA recB recC cells increased their resistance to UV radiation. This enhanced resistance was not due to a suppression of the minor deficiency in the repair of DNA daughter-strand gaps or to an inhibition of the production of DNA double-strand breaks in UV-irradiated uvrA recB recC cells; rather, the presence of an sbcB mutation enabled uvrA recB recC cells to carry out the repair of DNA double-strand breaks. In the uvrA recB recC sbcB background, a mutation at recF produced a huge sensitization to UV radiation, and it rendered cells deficient in the repair of both DNA daughter-strand gaps and DNA double-strand breaks. Thus, an additional sbcB mutation in uvrA recB recC cells restored their ability to perform the repair of DNA double-strand breaks, but the further addition of a recF mutation blocked this repair capacity.
Collapse
|
25
|
Picksley SM, Morton SJ, Lloyd RG. The recN locus of Escherichia coli K12: molecular analysis and identification of the gene product. MOLECULAR & GENERAL GENETICS : MGG 1985; 201:301-7. [PMID: 3003532 DOI: 10.1007/bf00425675] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The recN gene which is necessary for inducible DNA repair and recombination in Escherichia coli has been cloned into the low copy plasmid vector pHSG415. Analysis of the recombinant plasmid, pSP100, revealed a 5.6 Kb HindIII insert of chromosomal DNA. Transposon inactivation of recN function and analysis of a recN::Mu(Ap lac) fusion located the coding region to a 1.4 Kb region within a 2.1 Kb BglII-AvaI DNA fragment transcribed in a clockwise direction with respect to the chromosome map. The gene product was identified in maxicells as a 60,000 dalton protein. Synthesis of this protein was increased in cells lacking LexA activity or in strains carrying recN cloned into the multicopy vector pBR322. Multiple copies of recN increase resistance to ionizing radiation in recN mutants but reduce the survival of a wild-type strain.
Collapse
|
26
|
Lloyd RG, Buckman C. Identification and genetic analysis of sbcC mutations in commonly used recBC sbcB strains of Escherichia coli K-12. J Bacteriol 1985; 164:836-44. [PMID: 3932331 PMCID: PMC214327 DOI: 10.1128/jb.164.2.836-844.1985] [Citation(s) in RCA: 169] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Evidence is presented to show that Escherichia coli JC7618, JC7621, and JC7623, previously regarded as having a recB recC sbcB genotype, carry an additional mutation in a new gene designated sbcC at minute 9 on the standard genetic map. In the absence of the sbcC mutation these strains are sensitive to mitomycin C and have a reduced efficiency of recombination. Cultures of recBC sbcB (sbcC+) strains grow slowly, contain many inviable cells, and rapidly accumulate fast-growing variants due to mutation of sbcC. sbcC has been identified on recombinant plasmids and tentatively located by Tn1000 mutagenesis to a 0.9-kilobase DNA section between proC and phoR.
Collapse
|