1
|
Comparative computational investigation of the reaction mechanism for the hydrolytic deamination of cytosine, cytosine butane dimer and 5,6-saturated cytosine analogues. COMPUT THEOR CHEM 2014. [DOI: 10.1016/j.comptc.2013.10.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
2
|
Fujimoto K, Konishi-Hiratsuka K, Sakamoto T, Yoshimura Y. Site-specific cytosine to uracil transition by using reversible DNA photo-crosslinking. Chembiochem 2010; 11:1661-4. [PMID: 20632434 DOI: 10.1002/cbic.201000274] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Kenzo Fujimoto
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan.
| | | | | | | |
Collapse
|
3
|
Cannistraro VJ, Taylor JS. Acceleration of 5-methylcytosine deamination in cyclobutane dimers by G and its implications for UV-induced C-to-T mutation hotspots. J Mol Biol 2009; 392:1145-57. [PMID: 19631218 DOI: 10.1016/j.jmb.2009.07.048] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Revised: 07/15/2009] [Accepted: 07/16/2009] [Indexed: 10/20/2022]
Abstract
Sunlight-induced C-->T mutation hotspots occur most frequently at methylated CpG sites in tumor suppressor genes and are thought to arise from translesion synthesis past deaminated cyclobutane pyrimidine dimers (CPDs). While it is known that methylation enhances CPD formation in sunlight, little is known about the effect of methylation and sequence context on the deamination of 5-methylcytosine ((m)C) and its contribution to mutagenesis at these hotspots. Using an enzymatic method, we have determined the yields and deamination rates of C and (m)C in CPDs and find that the frequency of UVB-induced CPDs correlates with the oxidation potential of the flanking bases. We also found that the deamination of T(m)C and (m)CT CPDs is about 25-fold faster when flanked by G's than by A's, C's or T's in duplex DNA and appears to involve catalysis by the O6 group of guanine. In contrast, the first deamination of either C or (m)C in AC(m)CG with a flanking G was much slower (t(1/2) >250 h) and rate limiting, while the second deamination was much faster. The observation that C(m)CG dimers deaminate very slowly but at the same time correlate with C-->T mutation hotspots suggests that their repair must be slow enough to allow sufficient time for deamination. There are, however, a greater number of single C-->T mutations than CC-->TT mutations at C(m)CG sites even though the second deamination is very fast, which could reflect faster repair of doubly deaminated dimers.
Collapse
|
4
|
Fujimoto K, Matsuda S, Yoshimura Y, Matsumura T, Hayashi M, Saito I. Site-specific transition of cytosine to uracil via reversible DNA photoligation. Chem Commun (Camb) 2006:3223-5. [PMID: 17028750 DOI: 10.1039/b605289d] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report that deamination coupled with 5-carboxyvinyldeoxyuridine-mediated photobranching causes the heat-induced transition of cytosine to uracil with high efficiency without any side reaction.
Collapse
Affiliation(s)
- Kenzo Fujimoto
- School of Materials Science, Japan Advanced Institute of Science and Technology, Ishikawa 923-1292, Japan.
| | | | | | | | | | | |
Collapse
|
5
|
Burger A, Fix D, Liu H, Hays J, Bockrath R. In vivo deamination of cytosine-containing cyclobutane pyrimidine dimers in E. coli: a feasible part of UV-mutagenesis. Mutat Res 2003; 522:145-56. [PMID: 12517420 DOI: 10.1016/s0027-5107(02)00310-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We have estimated in vivo deamination rates for cytosines in cyclobutane pyrimidine dimers (CPD or PyPy) in UV-irradiated E. coli deficient in uracil DNA glycosylase. The protocol consisted of UV-irradiation, holding in buffer to allow for deamination of cytosines in CPDs and photoreversal (PR) to establish uracils where cytosines in CPD deaminated. The deamination rate at TC photoproducts targeting glutamine tRNA suppressor mutations was estimated from the increase in the mutation frequency after PR (MF(PR)) that developed as UV-irradiated cells were held before PR. Evidence suggested that an earlier study with this protocol under-estimated the deamination rate at sites producing the same mutations in an E. coli B/r strain. With a K12 strain, where the targeting apparently is principally by CPD and not (6-4) photoproducts, a larger rate of k = 0.0091 min(-1) at 42 degrees C resulted. The dark assay for MF also increased significantly with time for deamination consistent with a model for efficient mutation by translesion synthesis at uracil-containing CPD. In addition, we used a strain constructed by Cupples and Miller in which beta-galactosidase was inactive because -GGG- was at codon 461 and would revert to Lac(+) only when replaced by -GAG- or -GAA- for glutamate. CC photoproducts at this target site in the opposite DNA strand could reveal effects of first and second deaminations in the same CPD. MF(PR) for Lac(+) mutations increased and then decreased as a function of deamination time (at six temperatures 36-48 degrees C). Fitting an approximate model equation that distinguished two different deamination rates to these data suggested a first deamination producing Lac(+) at a rate about eight-fold less than a second deamination restoring the Lac(-) phenotype. We conclude that deamination, changing a cytosine-containing CPD to a uracil-containing CPD, could be an integral part of UV-induced C-to-T mutations.
Collapse
Affiliation(s)
- A Burger
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | |
Collapse
|
6
|
Bockrath R, Li BH. Transcriptional mutagenesis and DNA strand asymmetrical mutations expressed in Escherichia coli under restrictive metabolic conditions. Mutat Res 1998; 422:351-5. [PMID: 9838189 DOI: 10.1016/s0027-5107(98)00201-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Mutagenesis by C-to-U events specifically in either DNA strand assayed with ung uvrA defective Escherichia coli on a metabolically restrictive medium produces more glutamine tRNA suppressor mutations from U occurring in the non-transcribed DNA strand than from U in the transcribed (template) DNA strand. This bias is the reverse of what might be expected from transcriptional mutagenesis (mutation expression utilizing mutated RNA transcribed from damaged template strand DNA). The results and related ideas are discussed.
Collapse
Affiliation(s)
- R Bockrath
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46023,
| | | |
Collapse
|
7
|
Tu Y, Dammann R, Pfeifer GP. Sequence and time-dependent deamination of cytosine bases in UVB-induced cyclobutane pyrimidine dimers in vivo. J Mol Biol 1998; 284:297-311. [PMID: 9813119 DOI: 10.1006/jmbi.1998.2176] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mutational specificity of UV-light is characterized by an abundance of C to T transition mutations at dipyrimidines containing cytosine or 5-methylcytosine. A significant percentage of these mutations are CC to TT double transitions. Of the major types of UV-induced DNA lesions, the cis-syn cyclobutane pyrimidine dimers (CPDs) are thought to be the most mutagenic lesions, at least in mammalian cells. It has been proposed that the CPDs become mutagenic perhaps only after cytosine bases within these dimers deaminate to uracil and the resulting U-containing photolesions are correctly bypassed by DNA polymerases. In order to assess the significance of this proposed mutagenic mechanism, we have developed two methods to specifically measure deaminated CPDs in UV-irradiated human cells or DNA. The first method is based on enzymatic photoreversal of CPDs, followed by cleavage of the DNA with uracil DNA glycosylase, an AP lyase activity, and ligation-mediated PCR to map the resulting strand breaks. The second method, which can be used to detect double deamination events (CC to UU), is PCR amplification of photolyase-treated DNA using primers complemetary to the deaminated sequences. We have measured deamination events in the human p53 gene, which contains a large percentage of C to T transitions in skin cancers. The deamination reactions are specific for cytosine within CPDs, are negligible immediately after irradiation, and are time-dependent and DNA sequence context-dependent. Twenty four hours after irradiation of human fibroblasts with UVB light, between 10 and 60% of most CPD signals are converted to the deaminated form, depending on the sequence. Significant deamination occurs at skin cancer mutation sites in the p53 gene. Double deamination also occurs and this reaction can involve dimers containing 5-methylcytosine or cytosine. These double events are expected to occur more frequently in cells with a DNA repair defect because there is more time for deamination in unrepaired lesions. This may explain the relatively high frequency of CC to TT mutations in skin cancers from xeroderma pigmentosum patients. In summary, these novel detection techniques demonstrate that deamination of cytosine in pyrimidine dimers is a significant event that most likely contributes to the mutational specificity of UVB irradiation in human cells.
Collapse
Affiliation(s)
- Y Tu
- Department of Biology, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA
| | | | | |
Collapse
|
8
|
Abstract
G x C-->A x T transitions within T-C or C-C bipyrimidine sequences are by far the most frequent class of mutation induced by 254-nm UV irradiation in most genes and species investigated, but the reason for the high degree of mutability and specificity at these sites is uncertain. Some data implicate the deamination of cytosine to uracil as a possible cause, but other results appear to indicate that the rate of deamination is too low for this to be significant in Escherichia coli. If deamination is not the cause, the high degree of mutability must presumably reflect the inherent properties of T-C and C-C dimers. We investigated this question by transfecting excision-deficient and excision-proficient strains of E. coli with single-stranded vectors that carried a site-specific cis-syn T-C cyclobutane dimer and by analyzing the nucleotide sequences of replicated vector products. We found that replication past the T-C dimer, like replication past its T-T and U-U counterparts, is in fact >95% accurate and that the frequencies of bypass are also very similar for these photoproducts. Since the T-C dimer appears to be only weakly mutagenic, the high frequency of UV-induced mutations at T-C sites presumably depends on some other process, such as deamination, although the mechanism remains to be established.
Collapse
Affiliation(s)
- M J Horsfall
- Department of Biophysics, University of Rochester School of Medicine and Dentistry, New York 14642, USA
| | | | | |
Collapse
|
9
|
Holmquist GP, Gao S. Somatic mutation theory, DNA repair rates, and the molecular epidemiology of p53 mutations. Mutat Res 1997; 386:69-101. [PMID: 9100856 DOI: 10.1016/s1383-5742(96)00045-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The theory of somatic mutagenesis predicts that the frequency pattern of induced selectable mutations along a gene is the product of the probability patterns of the several sequential steps of mutagenesis, e.g., damage, repair, polymerase misreading, and selection. Together, the variance of these component steps is propagated to generate a mutagen's induced mutational spectrum along a gene. The step with the greatest component of variance will drive most of the variability of the mutation frequency along a gene. This most variable step, for UV-induced mutations, is the cyclobutyl pyrimidine dimer repair rate. The repair rate of cyclopyrimidine dimers is quite variable from nucleotide position to nucleotide position and we show that this variation along the p53 gene drives the C-->T transition frequency of non-melanocytic skin tumors. On showing that the kinetics of cyclopyrimidine dimer repair at any one nucleotide position are first order, we use this kinetic and the somatic mutation theory to derive Leq, the adduct frequency along a gene as presented to a DNA polymerase after a cell population reaches damage-repair equilibrium from a chronic dose of mutagen. Leq is the product of the first two sequential steps of mutagenesis, damage and repair, and the frequency of this product is experimentally mapped using ligation-mediated PCR. The concept of Leq is applied to mutagenesis theory, chronic dose genetic toxicology, genome evolution, and the practical problems of molecular epidemiology.
Collapse
Affiliation(s)
- G P Holmquist
- Beckman Research Institute of the City of Hope, Department of Biology, Duarte CA 91010, USA.
| | | |
Collapse
|
10
|
Bockrath R, Li BH. Mutation frequency decline in Escherichia coli. II. Kinetics support the involvement of transcription-coupled excision repair. MOLECULAR & GENERAL GENETICS : MGG 1995; 249:591-9. [PMID: 8544824 DOI: 10.1007/bf00418028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Mutation frequency decline (MFD) in Escherichia coli was examined to demonstrate repair of targeting photoproducts during the post-UV incubation required in this process. Repair of mutation-targeting cyclobutane pyrimidine dimers (T < > C) was demonstrated when a correlation was established between the mutation frequency normally associated with these lesions and the rate of mutation production at these lesions by spontaneous deamination of cytosines and photoreversal in ung-defective cells. An incubation producing a decline in mutation frequency, i.e., MFD, also produces lower rates of mutation increase via the deamination mechanism. Since the latter assay involves processes entirely within the post-UV incubation period, the lower rates are attributed to rapid transcription-coupled nucleotide excision repair (TCR) that reduces the number of relevant T < > C dimers during this period. Rediscovery of the neglected fact that MFD can be stimulated by post-UV incubation in buffer alone is part of the analysis. Results presented here and a variety of others are discussed to support a model of MFD as a particular example of TCR: effective repair of photoproducts in the transcribed DNA strand that target glutamine tRNA suppressor mutations occurs during the appropriate post-UV incubation and is responsible for MFD.
Collapse
Affiliation(s)
- R Bockrath
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis 46202-5120, USA
| | | |
Collapse
|
11
|
Barak Y, Cohen-Fix O, Livneh Z. Deamination of cytosine-containing pyrimidine photodimers in UV-irradiated DNA. Significance for UV light mutagenesis. J Biol Chem 1995; 270:24174-9. [PMID: 7592621 DOI: 10.1074/jbc.270.41.24174] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The realization that cytosine in cyclobutyl pyrimidine dimers rapidly deaminates to uracil raised the possibility that this chemical transformation, rather than an enzymatic polymerase error, is the major mutagenic step in UV mutagenesis. We have established a sensitive bioassay system that enabled us to determine the rate of deamination of cytosine in cyclobutyl pyrimidine dimers in plasmid DNA. This was done by in vitro UV irradiation and deamination of a plasmid carrying the cro gene, followed by photoreactivation, and assaying uracils in DNA by their ability to cause Cro- mutations in an indicator strain that was deficient in uracil DNA N-glycosylase. DNA sequence analysis revealed that 27 out of 29 Cro- mutants carried GC --> AT transitions, as expected from deamination of cytosine. Deamination of cytosines in the cro gene in UV-irradiated plasmid pOC2 proceeded at 37 degrees C with first-order kinetics, at a rate of (3.9 +/- 0.6) x 10(-5) s-1, corresponding to a half-life of 5 h. Physiological salt conditions increased the half-life to 12 h, whereas decreasing the pH increased deamination. The temperature dependence of the rate constant yielded an activation energy of 13.6 +/- 3.3 kcal/mol. These kinetics data suggest that deamination of cytosine-containing dimers is too slow to play an important role in UV mutagenesis in Escherichia coli. However, it is likely to play an important role in mammalian cells, where the mutagenic process is slower.
Collapse
Affiliation(s)
- Y Barak
- Department of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| | | | | |
Collapse
|
12
|
Mosbaugh DW, Bennett SE. Uracil-excision DNA repair. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1994; 48:315-70. [PMID: 7938553 DOI: 10.1016/s0079-6603(08)60859-4] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- D W Mosbaugh
- Department of Agricultural Chemistry, Biochemistry and Biophysics, Oregon State University, Corvallis 97331
| | | |
Collapse
|
13
|
Jiang N, Taylor JS. In vivo evidence that UV-induced C-->T mutations at dipyrimidine sites could result from the replicative bypass of cis-syn cyclobutane dimers or their deamination products. Biochemistry 1993; 32:472-81. [PMID: 8422356 DOI: 10.1021/bi00053a011] [Citation(s) in RCA: 122] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The major mutations induced by UV light are C-->T transitions at dipyrimidines and arise from the incorporation of A opposite the C of dipyrimidine photoproducts. The incorporation of A has most often been explained by the known preference of a polymerase to do so opposite noninstructional DNA damage such as an abasic site (A rule). There are also mechanisms that suppose, however, that cis-syn dipyrimidine photodimers are instructional. In one such mechanism (tautomer bypass), the incorporation of A is directed by the tautomer of a C of a dimer that is equivalent in base-pairing properties to U [Person et al. (1974) Genetics 78, 1035-1049]. In another mechanism (deamination bypass), the incorporation of A is directed by a U of a dimer that results from the deamination of the C of a dimer [Taylor & O'Day (1990) Biochemistry 29, 1624-1632]. The viability of these mechanisms was tested by obtaining the mutation spectrum of a TU dimer in Escherichia coli by application of a standard method for site-directed mutagenesis. To this end, a 41-mer containing a site-specific TU dimer was constructed via ligation of a dimer-containing decamer that was produced by triplet-sensitized irradiation and used to prime DNA synthesis on a uracil-containing (+) strand of an M13 clone containing a double mismatch opposite the dimer. The reaction mixture was used to transfect a uracil glycosylase proficient, photoproduct repair deficient E. coli host, and all progeny phage weakly hybridizing to the parental (+) or (-) strands were sequenced. Under non-SOS conditions the TU dimer almost completely blocked replication, while under SOS conditions it directed the incorporation of two As with much higher specificity (96%) than would an abasic site. The implications of these results to the mechanism of the UV-induced TC-->TT mutation, and by extension to the CT-->TT, CC-->TC, CC-->CT, and the tandem CC-->TT mutations, are discussed.
Collapse
Affiliation(s)
- N Jiang
- Department of Chemistry, Washington University, St. Louis, Missouri 63130
| | | |
Collapse
|
14
|
Livneh Z, Cohen-Fix O, Skaliter R, Elizur T. Replication of damaged DNA and the molecular mechanism of ultraviolet light mutagenesis. Crit Rev Biochem Mol Biol 1993; 28:465-513. [PMID: 8299359 DOI: 10.3109/10409239309085136] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
On UV irradiation of Escherichia coli cells, DNA replication is transiently arrested to allow removal of DNA damage by DNA repair mechanisms. This is followed by a resumption of DNA replication, a major recovery function whose mechanism is poorly understood. During the post-UV irradiation period the SOS stress response is induced, giving rise to a multiplicity of phenomena, including UV mutagenesis. The prevailing model is that UV mutagenesis occurs by the filling in of single-stranded DNA gaps present opposite UV lesions in the irradiated chromosome. These gaps can be formed by the activity of DNA replication or repair on the damaged DNA. The gap filling involves polymerization through UV lesions (also termed bypass synthesis or error-prone repair) by DNA polymerase III. The primary source of mutations is the incorporation of incorrect nucleotides opposite lesions. UV mutagenesis is a genetically regulated process, and it requires the SOS-inducible proteins RecA, UmuD, and UmuC. It may represent a minor repair pathway or a genetic program to accelerate evolution of cells under environmental stress conditions.
Collapse
Affiliation(s)
- Z Livneh
- Department of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | |
Collapse
|
15
|
Bridges BA. Mutagenesis after exposure of bacteria to ultraviolet light and delayed photoreversal. MOLECULAR & GENERAL GENETICS : MGG 1992; 233:331-6. [PMID: 1620091 DOI: 10.1007/bf00265428] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The induction of mutations by ultraviolet light and delayed photoreversal in bacteria defective for SOS mutagenesis is discussed in terms of two models: the two-step misincorporation and bypass model, and the model involving simple deamination of cytosine-containing dimers. In phage S13 the latter appears to be the predominant mechanism. In Escherichia coli there is little evidence that the simple deamination mechanism is of any significance except in ung strains lacking uracil glycosylase where uracils left after photoreversal are not removed. Deamination might, however, occur during the operation of translesion synthesis via the two-step model and if it did, subsequent photoreversal would lead to the "mutation" being extended from one to both strands by uracil glycosylase repair rather than being removed.
Collapse
Affiliation(s)
- B A Bridges
- MRC Cell Mutation Unit, University of Sussex, Falmer, Brighton, UK
| |
Collapse
|
16
|
Ruiz-Rubio M, Bockrath R. On the possible role of cytosine deamination in delayed photoreversal mutagenesis targeted at thymine-cytosine dimers in E. coli. Mutat Res 1989; 210:93-102. [PMID: 2642603 DOI: 10.1016/0027-5107(89)90048-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
While delayed photoreversal (PR) mutagenesis has been interpreted as a measure of misincorporation step in targeted mutagenesis, the specificity to produce glutamine tRNA suppressor mutations (C to T transitions) at sites in DNA where a thymine-cytosine dimer (T = C) may target mutation suggests a deamination model: deamination T = C to T = U and trans-U DNA replication after PR. We describe here two enquires that did not support the latter model: (a) Uracil DNA glycosylase activity as estimated from the restricted plating efficiency of phage T5 containing uracil-substituted DNA showed no variation that might allow an exceptional opportunity for mutation at U in DNA, and (b). The kinetics of delayed PR mutagenesis were unaltered if UV-irradiated cells were held in buffer suspension for 2 h at 41 degrees C (a procedure known to allow deamination T = C to T = U) and then assayed. Other results with cells containing both umuC and ung (uracil DNA glycosylase) defects showed the magnitude of T = C deamination sufficient to provide T = U at the critical site of mutation to an extent greater than the mutation frequencies produced by delayed PR mutagenesis, and considerations of the kinetics led to the suggestion that the deamination model could apply if there were an optimum period 30-130 min post-UV for efficient recovery of DNA replication after PR. The results underscored the feasibility of delayed PR mutagenesis by deamination and trans-U replication, but a selection between the two models could not be determined.
Collapse
Affiliation(s)
- M Ruiz-Rubio
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis 46223
| | | |
Collapse
|
17
|
Ruiz-Rubio M, Yamamoto K, Bockrath R. An in vivo complex with DNA photolyase blocks UV mutagenesis targeted at a thymine-cytosine dimer in Escherichia coli. J Bacteriol 1988; 170:5371-4. [PMID: 3053661 PMCID: PMC211616 DOI: 10.1128/jb.170.11.5371-5374.1988] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
UV mutation frequency responses for two types of Escherichia coli prototrophic mutant were measured. Only the response associated with a mutation targeted by a thymine-cytosine pyrimidine dimer was reduced in the dark in cells with amplified DNA photolyase. This specific reduction is attributed to the interruption of mutational DNA synthesis by a photolyase complex at the targeting dimer.
Collapse
Affiliation(s)
- M Ruiz-Rubio
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis 46223
| | | | | |
Collapse
|
18
|
Bockrath R, Hodes MZ, Mosbaugh P, Valerie K, de Riel JK. UV mutagenesis in E. coli with excision repair initiated by uvrABC or denV gene products. Mutat Res 1988; 193:87-96. [PMID: 3279310 DOI: 10.1016/0167-8817(88)90039-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Mutation frequency responses produced by ultraviolet light are compared in 4 closely related strains of E. coli B/r having the same tyr(Oc) allele and different excision-repair capabilities: uvr+ (excision repair initiated by wild-type UvrABC activity), uvrA (excision repair defective), uvrA/pdenV-7 (excision repair initiated by endonuclease V of bacteriophage T4, DenV activity), and uvr+/pdenV-7 (excision repair initiated by UvrABC and DenV activities). The production of Tyr+ prototrophic mutants is classified into back-mutations and de novo or converted glutamine tRNA suppressor mutations to indicate different mutation events. Cells transformed with the plasmid pdenV-7 require larger exposures than the parent strains to produce comparable mutation frequency responses, indicating that DenV activity can repair mutagenic photoproducts. When damage reduction by UvrABC or DenV is compared for each of the specific categories of mutation, the results are consistent with the idea that pyrimidine dimers infrequently or never target back-mutations of this allele, frequently target the de novo suppressor mutations, and extensively or exclusively target the converted suppressor mutations. This analysis is based on the distinction that UvrABC-initiated excision repair recognizes dimer and non-dimer (pyrimidine (6-4) pyrimidone) photoproducts but that DenV-initiated repair recognizes only pyrimidine dimers.
Collapse
Affiliation(s)
- R Bockrath
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis 46223
| | | | | | | | | |
Collapse
|
19
|
Fix DF, Glickman BW. Thermal resistance to photoreactivation of ultraviolet light induced mutations in the lacI gene of E. coli ung. Mutat Res 1987; 179:143-9. [PMID: 3302690 DOI: 10.1016/0027-5107(87)90304-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Ultraviolet light (UV) induced mutations in the lacI gene of Escherichia coli are thought to be targeted by DNA photoproducts. A number of reports suggest that both cyclobutyl pyrimidine dimers and pyrimidine (6-4) pyrimidone photoproducts may be involved. To investigate the potential contribution of each of these DNA photoproducts to mutagenesis in the lacI gene, we held UV-irradiated cells at a temperature of 44 degrees C for 75 min and then exposed them to photoreactivating light (PR). This protocol is expected to preferentially deaminate specifically those cytosines that are contained in cyclobutyl dimers and subsequently monomerize the dimers to yield uracils in the DNA. In a strain deficient for uracil-DNA glycosylase (Ung-), these uracils would not be removed and a G:C----A:T transition would result at the site of the dimer. This protocol resulted in the enhancement of amber nonsense mutations that result from transitions at potential cytosine-containing dimer sites. The enhanced mutation frequencies resulting from this procedure were used to estimate the probability of dimer formation at the individual sites. A comparison of the dimer distribution with the mutation frequencies following UV alone suggests that both cyclobutyl dimers and (6-4) photoproducts contribute to UV-mutagenesis in the lacI gene. In addition, we conclude that the frequency of mutation at any particular site not only reflects the occurrence of DNA damage, but also the action of metabolic processes that are responsible for DNA repair and mutagenesis.
Collapse
|
20
|
|
21
|
Bockrath R, Ruiz-Rubio M, Bridges BA. Specificity of mutation by UV light and delayed photoreversal in umuC-defective Escherichia coli K-12: a targeting intermediate at pyrimidine dimers. J Bacteriol 1987; 169:1410-6. [PMID: 3031011 PMCID: PMC211961 DOI: 10.1128/jb.169.4.1410-1416.1987] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Prototrophic mutants produced by UV light in Escherichia coli K-12 strains with argE3(Oc) and hisG4(Oc) defects are distinguished as backmutations and specific nonsense suppressor mutations. In strains carrying a umuC defect, mutants are not produced unless irradiated cells are incubated and then exposed to photoreversing light (delayed photoreversal mutagenesis). The mutants thus produced are found to be specifically suppressor mutations and not backmutations. The suppressor mutations are primarily glutamine tRNA ochre suppressor mutations, which have been attributed previously to mutation targeted at T = C pyrimidine dimers. In a lexA51 recA441 strain, where the SOS mutagenesis functions are constitutive, targeting at dimers is confirmed by demonstrating that the induction of glutamine tRNA suppressor mutations is susceptible to photoreversal. In the same strain induction of backmutations is not susceptible to photoreversal. Thus delayed photoreversal mutagenesis produces suppressor mutations that can be targeted at pyrimidine dimers and does not produce backmutations that are not targeted at pyrimidine dimers. This correlation supports the idea that delayed photoreversal mutagenesis in umuC defective cells reflects a mutation process arrested at a targeting pyrimidine dimer photoproduct, which is the immediate cause of both the alteration in DNA sequence and the obstruction (unless repaired) to mutation fixation and ultimate expression.
Collapse
|
22
|
Bockrath R, Mosbaugh P. Mutation probe of gene structure in E. coli: suppressor mutations in the seven-tRNA operon. MOLECULAR & GENERAL GENETICS : MGG 1986; 204:457-62. [PMID: 3531775 DOI: 10.1007/bf00331024] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cells defective in uracil-DNA glycosylase (ung::Tn10) were used in two ways to reveal differences in select point mutations (GC to AT transitions) within the seven-tRNA operon of E. coli. The mutations were indicated as de novo or converted glutamine tRNA suppressor mutations in the genes glnU and/or glnV: the kinetics of photoenzymatic monomerization of pyrimidine dimers quantitated by ung-dependent UV mutagenesis indicated more rapid repair of dimers at sites for converted suppressor mutation than of dimers at sites for de novo suppressor mutation, and spontaneous deamination of cytosine was considerably more frequent at sites for converted suppressor mutation than at sites for de novo suppressor mutation. To explain these results we suggest the physical structure of the DNA in vivo is different at different sites in the seven-tRNA operon. The non-transcribed strand including specifically the anticodon region of the site for converted suppressor mutation may frequently be looped out in a single strand so that a T = C dimer is more accessible to DNA photolyase or a free cytosine residue of non-irradiated DNA is in an aqueous environment conducive to deamination. In addition, we analysed the spontaneous de novo suppressor mutation data to determine an estimate for the in vivo rate of cytosine deamination in double strand DNA of 3.2 X 10(-13)/sec.
Collapse
|