1
|
Pfeiffer F, Dyall‐Smith M. Genome comparison reveals that Halobacterium salinarum 63-R2 is the origin of the twin laboratory strains NRC-1 and R1. Microbiologyopen 2023; 12:e1365. [PMID: 37379421 PMCID: PMC10264941 DOI: 10.1002/mbo3.1365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 06/30/2023] Open
Abstract
The genome of Halobacterium strain 63-R2 was recently reported and provides the opportunity to resolve long-standing issues regarding the source of two widely used model strains of Halobacterium salinarum, NRC-1 and R1. Strain 63-R2 was isolated in 1934 from a salted buffalo hide (epithet "cutirubra"), along with another strain from a salted cow hide (91-R6T , epithet "salinaria," the type strain of Hbt. salinarum). Both strains belong to the same species according to genome-based taxonomy analysis (TYGS), with chromosome sequences showing 99.64% identity over 1.85 Mb. The chromosome of strain 63-R2 is 99.99% identical to the two laboratory strains NRC-1 and R1, with only five indels, excluding the mobilome. The two reported plasmids of strain 63-R2 share their architecture with plasmids of strain R1 (pHcu43/pHS4, 99.89% identity; pHcu235/pHS3, 100.0% identity). We detected and assembled additional plasmids using PacBio reads deposited at the SRA database, further corroborating that strain differences are minimal. One plasmid, pHcu190 (190,816 bp) corresponds to pHS1 (strain R1) but is even more similar in architecture to pNRC100 (strain NRC-1). Another plasmid, pHcu229, assembled partially and completed in silico (229,124 bp), shares most of its architecture with pHS2 (strain R1). In deviating regions, it corresponds to pNRC200 (strain NRC-1). Further architectural differences between the laboratory strain plasmids are not unique, but are present in strain 63-R2, which contains characteristics from both of them. Based on these observations, it is proposed that the early twentieth-century isolate 63-R2 is the immediate ancestor of the twin laboratory strains NRC-1 and R1.
Collapse
Affiliation(s)
- Friedhelm Pfeiffer
- Computational Biology GroupMax‐Planck‐Institute of BiochemistryMartinsriedGermany
| | - Mike Dyall‐Smith
- Computational Biology GroupMax‐Planck‐Institute of BiochemistryMartinsriedGermany
- Veterinary Biosciences, Melbourne Veterinary School, Faculty of ScienceUniversity of MelbourneParkvilleNew South WalesAustralia
| |
Collapse
|
2
|
Pfeiffer F, Losensky G, Marchfelder A, Habermann B, Dyall‐Smith M. Whole-genome comparison between the type strain of Halobacterium salinarum (DSM 3754 T ) and the laboratory strains R1 and NRC-1. Microbiologyopen 2020; 9:e974. [PMID: 31797576 PMCID: PMC7002104 DOI: 10.1002/mbo3.974] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 11/08/2019] [Accepted: 11/09/2019] [Indexed: 01/04/2023] Open
Abstract
Halobacterium salinarum is an extremely halophilic archaeon that is widely distributed in hypersaline environments and was originally isolated as a spoilage organism of salted fish and hides. The type strain 91-R6 (DSM 3754T ) has seldom been studied and its genome sequence has only recently been determined by our group. The exact relationship between the type strain and two widely used model strains, NRC-1 and R1, has not been described before. The genome of Hbt. salinarum strain 91-R6 consists of a chromosome (2.17 Mb) and two large plasmids (148 and 102 kb, with 39,230 bp being duplicated). Cytosine residues are methylated (m4 C) within CTAG motifs. The genomes of type and laboratory strains are closely related, their chromosomes sharing average nucleotide identity (ANIb) values of 98% and in silico DNA-DNA hybridization (DDH) values of 95%. The chromosomes are completely colinear, do not show genome rearrangement, and matching segments show <1% sequence difference. Among the strain-specific sequences are three large chromosomal replacement regions (>10 kb). The well-studied AT-rich island (61 kb) of the laboratory strains is replaced by a distinct AT-rich sequence (47 kb) in 91-R6. Another large replacement (91-R6: 78 kb, R1: 44 kb) codes for distinct homologs of proteins involved in motility and N-glycosylation. Most (107 kb) of plasmid pHSAL1 (91-R6) is very closely related to part of plasmid pHS3 (R1) and codes for essential genes (e.g. arginine-tRNA ligase and the pyrimidine biosynthesis enzyme aspartate carbamoyltransferase). Part of pHS3 (42.5 kb total) is closely related to the largest strain-specific sequence (164 kb) in the type strain chromosome. Genome sequencing unraveled the close relationship between the Hbt. salinarum type strain and two well-studied laboratory strains at the DNA and protein levels. Although an independent isolate, the type strain shows a remarkably low evolutionary difference to the laboratory strains.
Collapse
Affiliation(s)
- Friedhelm Pfeiffer
- Computational Biology GroupMax‐Planck‐Institute of BiochemistryMartinsriedGermany
| | - Gerald Losensky
- Microbiology and ArchaeaDepartment of BiologyTechnische Universität DarmstadtDarmstadtGermany
| | | | - Bianca Habermann
- Computational Biology GroupMax‐Planck‐Institute of BiochemistryMartinsriedGermany
- CNRSIBDM UMR 7288Aix Marseille UniversitéMarseilleFrance
| | - Mike Dyall‐Smith
- Computational Biology GroupMax‐Planck‐Institute of BiochemistryMartinsriedGermany
- Veterinary BiosciencesFaculty of Veterinary and Agricultural SciencesUniversity of MelbourneParkvilleVic.Australia
| |
Collapse
|
3
|
Müller WJ, Smit MS, van Heerden E, Capes MD, DasSarma S. Complex Effects of Cytochrome P450 Monooxygenase on Purple Membrane and Bacterioruberin Production in an Extremely Halophilic Archaeon: Genetic, Phenotypic, and Transcriptomic Analyses. Front Microbiol 2018; 9:2563. [PMID: 30416496 PMCID: PMC6212597 DOI: 10.3389/fmicb.2018.02563] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/08/2018] [Indexed: 12/30/2022] Open
Abstract
Halophilic archaea are known to produce a diverse array of pigments for phototrophy and photoprotection. The aim of this paper was to determine the role of a Halobacterium gene encoding the predicted cytochrome P450 monooxygenase (CYP174A1) in pigment synthesis through a combined genetic, phenotypic, and transcriptomic approach. We report on the observed phenotype changes [increased bacterioruberin levels and the loss of purple membrane (PM)] between the Halobacterium salinarum R1 and its CYP174A1-deletion mutant. In addition, we report on the whole-genome DNA microarray analysis, which supports the phenotype of PM loss. This work expands our understanding of the bop-gene regulon, and its relation to carotenoid biosynthesis, and sheds light on our broader understanding of the role (s) of CYP174A1 in archaeal pigment synthesis. To date, this is the first study in which the physiological role of any cytochrome P450 monooxygenase (CYP450) in extremely halophilic archaea has been reported.
Collapse
Affiliation(s)
- Walter J Müller
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
| | - Martha S Smit
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
| | - Esta van Heerden
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
| | - Melinda D Capes
- Department of Microbiology and Immunology, Institute of Marine and Environmental Technology, University of Maryland, Baltimore, MD, United States
| | - Shiladitya DasSarma
- Department of Microbiology and Immunology, Institute of Marine and Environmental Technology, University of Maryland, Baltimore, MD, United States
| |
Collapse
|
4
|
Baxter BK, Gunde-Cimerman N, Oren A. Salty sisters: The women of halophiles. Front Microbiol 2014; 5:192. [PMID: 24926287 PMCID: PMC4045239 DOI: 10.3389/fmicb.2014.00192] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 04/10/2014] [Indexed: 01/02/2023] Open
Abstract
A history of halophile research reveals the commitment of scientists to uncovering the secrets of the limits of life, in particular life in high salt concentration and under extreme osmotic pressure. During the last 40 years, halophile scientists have indeed made important contributions to extremophile research, and prior international halophiles congresses have documented both the historical and the current work. During this period of salty discoveries, female scientists, in general, have grown in number worldwide. But those who worked in the field when there were small numbers of women sometimes saw their important contributions overshadowed by their male counterparts. Recent studies suggest that modern female scientists experience gender bias in matters such as conference invitations and even representation among full professors. In the field of halophilic microbiology, what is the impact of gender bias? How has the participation of women changed over time? What do women uniquely contribute to this field? What are factors that impact current female scientists to a greater degree? This essay emphasizes the “her story” (not “history”) of halophile discovery.
Collapse
Affiliation(s)
- Bonnie K Baxter
- Great Salt Lake Institute, Westminster College Salt Lake City, UT, USA
| | - Nina Gunde-Cimerman
- Molecular Genetics and Microbiology, University of Ljubljana Ljubljana, Slovenia ; Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins Ljubljana, Slovenia
| | - Aharon Oren
- Department of Plant and Environmental Sciences, The Institute of Life Sciences, The Edmond J. Safra Campus, The Hebrew University of Jerusalem Givat Ram, Israel
| |
Collapse
|
5
|
Fröls S, Dyall-Smith M, Pfeifer F. Biofilm formation by haloarchaea. Environ Microbiol 2012; 14:3159-74. [DOI: 10.1111/j.1462-2920.2012.02895.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 08/10/2012] [Accepted: 08/28/2012] [Indexed: 11/29/2022]
Affiliation(s)
- Sabrina Fröls
- Department of Biology; Technische Universität Darmstadt; Schnittspahnstrasse 10; 64287; Darmstadt; Germany
| | - Mike Dyall-Smith
- School of Biomedical Sciences; Charles Sturt University; Wagga Wagga; NSW; 2678; Australia
| | - Felicitas Pfeifer
- Department of Biology; Technische Universität Darmstadt; Schnittspahnstrasse 10; 64287; Darmstadt; Germany
| |
Collapse
|
6
|
Leigh JA, Albers SV, Atomi H, Allers T. Model organisms for genetics in the domain Archaea: methanogens, halophiles, Thermococcales and Sulfolobales. FEMS Microbiol Rev 2011; 35:577-608. [PMID: 21265868 DOI: 10.1111/j.1574-6976.2011.00265.x] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The tree of life is split into three main branches: eukaryotes, bacteria, and archaea. Our knowledge of eukaryotic and bacteria cell biology has been built on a foundation of studies in model organisms, using the complementary approaches of genetics and biochemistry. Archaea have led to some exciting discoveries in the field of biochemistry, but archaeal genetics has been slow to get off the ground, not least because these organisms inhabit some of the more inhospitable places on earth and are therefore believed to be difficult to culture. In fact, many species can be cultivated with relative ease and there has been tremendous progress in the development of genetic tools for both major archaeal phyla, the Euryarchaeota and the Crenarchaeota. There are several model organisms available for methanogens, halophiles, and thermophiles; in the latter group, there are genetic systems for Sulfolobales and Thermococcales. In this review, we present the advantages and disadvantages of working with each archaeal group, give an overview of their different genetic systems, and direct the neophyte archaeologist to the most appropriate model organism.
Collapse
Affiliation(s)
- John A Leigh
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | | | | | | |
Collapse
|
7
|
Dassarma S, Halladay JT, Jones JG, Donovan JW, Giannasca PJ, de Marsac NT. High-frequency mutations in a plasmid-encoded gas vesicle gene in Halobacterium halobium. Proc Natl Acad Sci U S A 2010; 85:6861-5. [PMID: 16593983 PMCID: PMC282078 DOI: 10.1073/pnas.85.18.6861] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Gas vesicle-deficient mutants of Halobacterium halobium arise spontaneously at high frequency (about 1%). The mutants are readily detected, forming translucent colonies on agar plates in contrast to opaque wild-type colonies. To investigate the mechanism of this mutation, we recently cloned a plasmid-encoded gas vesicle protein gene, gvpA, from H. halobium. In the wild-type NRC-1 strain the gvpA gene is encoded by a multicopy plasmid of approximately 150 kilobase pairs (kb). We have now characterized 18 gas vesicle-deficient mutants and 4 revertants by phenotypic and Southern hybridization analyses. Our results indicate that the mutants fall into three major classes. Class I mutants are partially gas vesicle-deficient (Vac(delta-)) and unstable, giving rise to completely gas vesicle-deficient (Vac(-)) derivatives and Vac(+) revertants at frequencies of 1-5%. The restriction map of the gvpA gene region in class I mutants is unchanged but the gene copy number is reduced compared to the Vac(+) strains. Class II mutants can be either Vac(delta-) or completely Vac(-) but are relatively stable. They contain insertion sequences within or upstream of the gvpA gene. A Vac(-) class II mutant, R1, contains the 1.3-kb insertion sequence, ISH3, within the gvpA gene, whereas four Vac(delta-) class II mutants contain other insertion sequences upstream of the gene. Class III mutants are stable Vac(-) derivatives of either the wild-type or class I mutants and have no detectable copies of the gvpA gene. Based on these results, we discuss the mechanisms of gas vesicle mutations in H. halobium.
Collapse
Affiliation(s)
- S Dassarma
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003
| | | | | | | | | | | |
Collapse
|
8
|
Kamekura M, Oesterhelt D, Wallace R, Anderson P, Kushner DJ. Lysis of halobacteria in bacto-peptone by bile acids. Appl Environ Microbiol 2010; 54:990-5. [PMID: 16347619 PMCID: PMC202585 DOI: 10.1128/aem.54.4.990-995.1988] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
All tested strains of halophilic archaebacteria of the genera Halobacterium, Haloarcula, Haloferax, and Natronobacterium lysed in 1% Bacto-Peptone (Difco) containing 25% NaCl, whereas no lysis was observed with other strains belonging to archaebacteria of the genera Halococcus, Natronococcus, and Sulfolobus, methanogenic bacteria, and moderately halophilic eubacteria. Substances in Bacto-Peptone which caused lysis of halobacteria were purified and identified as taurocholic acid and glycocholic acid. High-performance liquid chromatography analyses of peptones revealed that Bacto-Peptone contained nine different bile acids, with a total content of 9.53 mg/g, whereas much lower amounts were found in Peptone Bacteriological Technical (Difco) and Oxoid Peptone. Different kinds of peptones can be used to distinguish halophilic eubacteria and archaebacteria in mixed cultures from hypersaline environments.
Collapse
Affiliation(s)
- M Kamekura
- Noda Institute for Scientific Research, Noda, Chiba 278, Japan; Max Planck Institut für Biochemie, 8033 Martinsried bei München, Federal Republic of Germany ; and Department of Biology and Department of Biochemistry, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
| | | | | | | | | |
Collapse
|
9
|
Hahn M, Hennecke H. Mapping of a Bradyrhizobium japonicum DNA Region Carrying Genes for Symbiosis and an Asymmetric Accumulation of Reiterated Sequences. Appl Environ Microbiol 2010; 53:2247-52. [PMID: 16347445 PMCID: PMC204089 DOI: 10.1128/aem.53.9.2247-2252.1987] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Spontaneous kanamycin-sensitive derivatives were obtained from Bradyrhizobium japonicum (strain 110) carrying Tn5 insertions in symbiotic gene cluster I; the derivatives were shown to have deletions of cluster I plus flanking DNA which was indicated by the absence of different copies of the repeated sequences RSalpha and RSbeta. The deletion endpoints were mapped using cloned wild-type DNA fragments containing RSalpha copies which also served as origins for overlapped cosmid cloning. The majority of the deletions resulted from recombinational fusion of two remote RSalpha copies. Novel types of repeated sequences (RSgamma, RSdelta, and RSepsilon) occurring in 12, 10, and 4 copies per genome were detected. Seven, nine, and three copies of RSgamma, RSdelta, and RSepsilon, respectively, were located near cluster I. It is concluded that the B. japonicum genome has an unusual DNA segment of >230 kilobase pairs characterized by the presence of repeated sequences and genes for symbiotic N(2) fixation.
Collapse
Affiliation(s)
- M Hahn
- Mikrobiologisches Institut, Eidgenössische Technische Hochschule, ETH-Zentrum, CH-8092 Zurich, Switzerland
| | | |
Collapse
|
10
|
Hartman AL, Norais C, Badger JH, Delmas S, Haldenby S, Madupu R, Robinson J, Khouri H, Ren Q, Lowe TM, Maupin-Furlow J, Pohlschroder M, Daniels C, Pfeiffer F, Allers T, Eisen JA. The complete genome sequence of Haloferax volcanii DS2, a model archaeon. PLoS One 2010; 5:e9605. [PMID: 20333302 PMCID: PMC2841640 DOI: 10.1371/journal.pone.0009605] [Citation(s) in RCA: 199] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Accepted: 02/11/2010] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Haloferax volcanii is an easily culturable moderate halophile that grows on simple defined media, is readily transformable, and has a relatively stable genome. This, in combination with its biochemical and genetic tractability, has made Hfx. volcanii a key model organism, not only for the study of halophilicity, but also for archaeal biology in general. METHODOLOGY/PRINCIPAL FINDINGS We report here the sequencing and analysis of the genome of Hfx. volcanii DS2, the type strain of this species. The genome contains a main 2.848 Mb chromosome, three smaller chromosomes pHV1, 3, 4 (85, 438, 636 kb, respectively) and the pHV2 plasmid (6.4 kb). CONCLUSIONS/SIGNIFICANCE The completed genome sequence, presented here, provides an invaluable tool for further in vivo and in vitro studies of Hfx. volcanii.
Collapse
Affiliation(s)
- Amber L. Hartman
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
- The Institute for Genomic Research (J. Craig Venter Institute), Rockville, Maryland, United States of America
- UC Davis Genome Center, University of California Davis, Davis, California, United States of America
| | - Cédric Norais
- Institut de Génétique et Microbiologie, Université Paris-Sud, Paris, France
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jonathan H. Badger
- The Institute for Genomic Research (J. Craig Venter Institute), Rockville, Maryland, United States of America
| | - Stéphane Delmas
- Institute of Genetics, University of Nottingham, Nottingham, United Kingdom
| | - Sam Haldenby
- Institute of Genetics, University of Nottingham, Nottingham, United Kingdom
| | - Ramana Madupu
- The Institute for Genomic Research (J. Craig Venter Institute), Rockville, Maryland, United States of America
| | - Jeffrey Robinson
- The Institute for Genomic Research (J. Craig Venter Institute), Rockville, Maryland, United States of America
| | - Hoda Khouri
- The Institute for Genomic Research (J. Craig Venter Institute), Rockville, Maryland, United States of America
| | - Qinghu Ren
- The Institute for Genomic Research (J. Craig Venter Institute), Rockville, Maryland, United States of America
| | - Todd M. Lowe
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Julie Maupin-Furlow
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, United States of America
| | - Mecky Pohlschroder
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Charles Daniels
- Department of Microbiology, Ohio State University, Columbus, Ohio, United States of America
| | - Friedhelm Pfeiffer
- Department of Membrane Biochemistry, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Thorsten Allers
- Institute of Genetics, University of Nottingham, Nottingham, United Kingdom
| | - Jonathan A. Eisen
- The Institute for Genomic Research (J. Craig Venter Institute), Rockville, Maryland, United States of America
- UC Davis Genome Center, University of California Davis, Davis, California, United States of America
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, California, United States of America
- Department of Evolution and Ecology, University of California Davis, Davis, California, United States of America
| |
Collapse
|
11
|
Variations in the multiple tbp genes in different Halobacterium salinarum strains and their expression during growth. Arch Microbiol 2008; 190:309-18. [DOI: 10.1007/s00203-008-0383-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Revised: 04/23/2008] [Accepted: 04/29/2008] [Indexed: 11/26/2022]
|
12
|
Evolution in the laboratory: the genome of Halobacterium salinarum strain R1 compared to that of strain NRC-1. Genomics 2008; 91:335-46. [PMID: 18313895 DOI: 10.1016/j.ygeno.2008.01.001] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Revised: 12/12/2007] [Accepted: 01/02/2008] [Indexed: 01/23/2023]
Abstract
We report the sequence of the Halobacterium salinarum strain R1 chromosome and its four megaplasmids. Our set of protein-coding genes is supported by extensive proteomic and sequence homology data. The structures of the plasmids, which show three large-scale duplications (adding up to 100 kb), were unequivocally confirmed by cosmid analysis. The chromosome of strain R1 is completely colinear and virtually identical to that of strain NRC-1. Correlation of the plasmid sequences revealed 210 kb of sequence that occurs only in strain R1. The remaining 350 kb shows virtual sequence identity in the two strains. Nevertheless, the number and overall structure of the plasmids are largely incompatible. Also, 20% of the protein sequences differ despite the near identity at the DNA sequence level. Finally, we report genome-wide mobility data for insertion sequences from which we conclude that strains R1 and NRC-1 originate from the same natural isolate. This exemplifies evolution in the laboratory.
Collapse
|
13
|
Abstract
Insertion sequences (ISs) can constitute an important component of prokaryotic (bacterial and archaeal) genomes. Over 1,500 individual ISs are included at present in the ISfinder database (www-is.biotoul.fr), and these represent only a small portion of those in the available prokaryotic genome sequences and those that are being discovered in ongoing sequencing projects. In spite of this diversity, the transposition mechanisms of only a few of these ubiquitous mobile genetic elements are known, and these are all restricted to those present in bacteria. This review presents an overview of ISs within the archaeal kingdom. We first provide a general historical summary of the known properties and behaviors of archaeal ISs. We then consider how transposition might be regulated in some cases by small antisense RNAs and by termination codon readthrough. This is followed by an extensive analysis of the IS content in the sequenced archaeal genomes present in the public databases as of June 2006, which provides an overview of their distribution among the major archaeal classes and species. We show that the diversity of archaeal ISs is very great and comparable to that of bacteria. We compare archaeal ISs to known bacterial ISs and find that most are clearly members of families first described for bacteria. Several cases of lateral gene transfer between bacteria and archaea are clearly documented, notably for methanogenic archaea. However, several archaeal ISs do not have bacterial equivalents but can be grouped into Archaea-specific groups or families. In addition to ISs, we identify and list nonautonomous IS-derived elements, such as miniature inverted-repeat transposable elements. Finally, we present a possible scenario for the evolutionary history of ISs in the Archaea.
Collapse
Affiliation(s)
- J Filée
- Laboratoire de Microbiologie et Génétique Moléculaires (UMR5100 CNRS), Campus Université Paul Sabatier, 118 Route de Narbonne, F-31062 Toulouse Cedex, France
| | | | | |
Collapse
|
14
|
|
15
|
Tebbe A, Klein C, Bisle B, Siedler F, Scheffer B, Garcia-Rizo C, Wolfertz J, Hickmann V, Pfeiffer F, Oesterhelt D. Analysis of the cytosolic proteome of Halobacterium salinarum and its implication for genome annotation. Proteomics 2005; 5:168-79. [PMID: 15619297 DOI: 10.1002/pmic.200400910] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The halophilic archaeon Halobacterium salinarum (strain R1, DSM 671) contains 2784 protein-coding genes as derived from the genome sequence. The cytosolic proteome containing 2042 proteins was separated by two-dimensional gel electrophoresis (2-DE) and systematically analyzed by a semi-automatic procedure. A reference map was established taking into account the narrow isoelectric point (pI) distribution of halophilic proteins between 3.5 and 5.5. Proteins were separated on overlapping gels covering the essential areas of pI and molecular weight. Every silver-stained spot was analyzed resulting in 661 identified proteins out of about 1800 different protein spots using matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) peptide mass fingerprinting (PMF). There were 94 proteins that were found in multiple spots, indicating post-translational modification. An additional 141 soluble proteins were identified on 2-D gels not corresponding to the reference map. Thus about 40% of the cytosolic proteome was identified. In addition to the 2784 protein-coding genes, the H. salinarum genome contains more than 6000 spurious open reading frames longer than 100 codons. Proteomic information permitted an improvement in genome annotation by validating and correcting gene assignments. The correlation between theoretical pI and gel position is exceedingly good and was used as a tool to improve start codon assignments. The fraction of identified chromosomal proteins was much higher than that of those encoded on the plasmids. In combination with analysis of the GC content this observation permitted an unambiguous identification of an episomal insert of 60 kbp ("AT-rich island") in the chromosome, as well as a 70 kbp region from the chromosome that has integrated into one of the megaplasmids and carries a series of essential genes. About 63% of the chromosomally encoded proteins larger than 25 kDa were identified, proving the efficacy of 2-DE MALDI-TOF MS PMF technology. The analysis of the integral membrane proteome by tandem mass spectrometric techniques added another 141 identified proteins not identified by the 2-DE approach (see following paper).
Collapse
Affiliation(s)
- Andreas Tebbe
- Abteilung für Membranbiochemie, Max-Planck Institut für Biochemie, D-82152 Martinsried, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Kennedy SP, Ng WV, Salzberg SL, Hood L, DasSarma S. Understanding the adaptation of Halobacterium species NRC-1 to its extreme environment through computational analysis of its genome sequence. Genome Res 2001; 11:1641-50. [PMID: 11591641 PMCID: PMC311145 DOI: 10.1101/gr.190201] [Citation(s) in RCA: 239] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The genome of the halophilic archaeon Halobacterium sp. NRC-1 and predicted proteome have been analyzed by computational methods and reveal characteristics relevant to life in an extreme environment distinguished by hypersalinity and high solar radiation: (1) The proteome is highly acidic, with a median pI of 4.9 and mostly lacking basic proteins. This characteristic correlates with high surface negative charge, determined through homology modeling, as the major adaptive mechanism of halophilic proteins to function in nearly saturating salinity. (2) Codon usage displays the expected GC bias in the wobble position and is consistent with a highly acidic proteome. (3) Distinct genomic domains of NRC-1 with bacterial character are apparent by whole proteome BLAST analysis, including two gene clusters coding for a bacterial-type aerobic respiratory chain. This result indicates that the capacity of halophiles for aerobic respiration may have been acquired through lateral gene transfer. (4) Two regions of the large chromosome were found with relatively lower GC composition and overrepresentation of IS elements, similar to the minichromosomes. These IS-element-rich regions of the genome may serve to exchange DNA between the three replicons and promote genome evolution. (5) GC-skew analysis showed evidence for the existence of two replication origins in the large chromosome. This finding and the occurrence of multiple chromosomes indicate a dynamic genome organization with eukaryotic character.
Collapse
Affiliation(s)
- S P Kennedy
- Center of Marine Biotechnology, University of Maryland Biotechnology Institute, Baltimore, Maryland 21202, USA
| | | | | | | | | |
Collapse
|
17
|
Abstract
Halocin S8 is a hydrophobic microhalocin of 36 amino acids (3,580 Da) and is the first microhalocin to be described. This peptide antibiotic is unique since it is processed from inside a much larger, 33,962-Da pro-protein. Halocin S8 is quite robust, as it can be desalted, boiled, subjected to organic solvents, and stored at 4 degrees C for extended periods without losing activity. The complete amino acid sequence of halocin S8 was obtained first by Edman degradation of the purified protein and verified from the halS8 gene: H(2)N-S-D-C-N-I-N-S-N-T-A-A-D-V-I-L-C-F-N-Q-V-G-S-C-A-L-C-S-P-T-L-V-G -G-P-V-P-COOH. The halS8 gene is encoded on an approximately 200-kbp megaplasmid and contains a 933-bp open reading frame, of which 108 bp are occupied by halocin S8. Both the halS8 promoter and the "leaderless" halS8 transcript are typically haloarchaeal. Northern blot analysis revealed three halS8 transcripts: two abundant and one minor. Inspection of the 3' end of the gene showed only a single, weak termination site (5'-TTTAT-3'), suggesting that some processing of the larger transcripts may be involved. Expression of the halS8 gene is growth stage dependent: basal halS8 transcript levels are present in low concentrations during exponential growth but increase ninefold during the transition to stationary phase. Initially, halocin activity parallels halS8 transcript levels very closely. However, when halocin activity plateaus, transcripts remain abundant, suggesting inhibition of translation at this point. Once the culture enters stationary phase, transcripts rapidly return to basal levels.
Collapse
Affiliation(s)
- L B Price
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona 86011-5640, USA
| | | |
Collapse
|
18
|
Romero D, Martínez-Salazar J, Ortiz E, Rodríguez C, Valencia-Morales E. Repeated sequences in bacterial chromosomes and plasmids: a glimpse from sequenced genomes. Res Microbiol 1999; 150:735-43. [PMID: 10673011 DOI: 10.1016/s0923-2508(99)00119-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
To gain insight into the extent of exact DNA repeats in sequenced bacterial genomes and their plasmids, we analyzed the collection of completely sequenced bacterial genomes available at GenBank using the program Miropeats. This program draws graphical representations of exact DNA repeats in whole genomes. In this work, we present maps showing the extent and type (inverted or direct) of exact DNA repeats longer than 300 bp for the whole collection. These repeats may participate in a variety of events relevant for bacterial genome plasticity, such as amplifications, deletions, inversions, and translocations (via homologous recombination), as well as transposition. Additionally, we review recent data showing that high-frequency architectural variations in genomic structure occur at both the interspecies and interstrain levels.
Collapse
Affiliation(s)
- D Romero
- Programa de Genética Molecular de Plásmidos Bacterianos, Centro de Investigación sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, Morelos, Mexico.
| | | | | | | | | |
Collapse
|
19
|
Abstract
Gene amplification is a common feature of the genome of prokaryotic organisms. In this review, we analyze different instances of gene amplification in a variety of prokaryotes, including their mechanisms of generation and biological role. Growing evidence supports the concept that gene amplification be considered not as a mutation but rather as a dynamic genomic state related to the adaptation of bacterial populations to changing environmental conditions or biological interactions. In this context, the potentially amplifiable DNA regions impose a defined dynamic structure on the genome. If such structure has indeed been selected during evolution, it is a particularly challenging hypothesis.
Collapse
Affiliation(s)
- D Romero
- Department of Molecular Genetics, National University of Mexico, Cuernavaca, Morelos, Mexico.
| | | |
Collapse
|
20
|
St Jean A, Charlebois RL. Comparative genomic analysis of the Haloferax volcanii DS2 and Halobacterium salinarium GRB contig maps reveals extensive rearrangement. J Bacteriol 1996; 178:3860-8. [PMID: 8682791 PMCID: PMC232647 DOI: 10.1128/jb.178.13.3860-3868.1996] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Anonymous probes from the genome of Halobacterium salinarium GRB and 12 gene probes were hybridized to the cosmid clones representing the chromosome and plasmids of Halobacterium salinarium GRB and Haloferax volcanii DS2. The order of and pairwise distances between 35 loci uniquely cross-hybridizing to both chromosomes were analyzed in a search for conservation. No conservation between the genomes could be detected at the 15-kbp resolution used in this study. We found distinct sets of low-copy-number repeated sequences in the chromosome and plasmids of Halobacterium salinarium GRB, indicating some degree of partitioning between these replicons. We propose alternative courses for the evolution of the haloarchaeal genome: (i) that the majority of genomic differences that exist between genera came about at the inception of this group or (ii) that the differences have accumulated over the lifetime of the lineage. The strengths and limitations of investigating these models through comparative genomic studies are discussed.
Collapse
Affiliation(s)
- A St Jean
- Department of Biology, University of Ottawa, Canada
| | | |
Collapse
|
21
|
López-García P, St Jean A, Amils R, Charlebois RL. Genomic stability in the archaeae Haloferax volcanii and Haloferax mediterranei. J Bacteriol 1995; 177:1405-8. [PMID: 7868620 PMCID: PMC176752 DOI: 10.1128/jb.177.5.1405-1408.1995] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Through hybridization of available probes, we have added nine genes to the macrorestriction map of the Haloferax mediterranei chromosome and five genes to the contig map of Haloferax volcanii. Additionally, we hybridized 17 of the mapped cosmid clones from H. volcanii to the H. mediterranei genome. The resulting 35-point chromosomal comparison revealed only two inversions and a few translocations. Forces known to promote rearrangement, common in the haloarchaea, have been ineffective in changing global gene order throughout the nearly 10(7) years of these species' divergent evolution.
Collapse
Affiliation(s)
- P López-García
- Centro de Biología Molecular, Universidad Autónoma de Madrid, Spain
| | | | | | | |
Collapse
|
22
|
Hackett NR, Bobovnikova Y, Heyrovska N. Conservation of chromosomal arrangement among three strains of the genetically unstable archaeon Halobacterium salinarium. J Bacteriol 1994; 176:7711-8. [PMID: 8002597 PMCID: PMC197230 DOI: 10.1128/jb.176.24.7711-7718.1994] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Phenotypic variants of Halobacterium salinarium NRC-1 arise at a frequency of 10(-2). These result from transpositions of halobacterial insertion sequences and rearrangements mediated by halobacterial insertion sequences. We have tested the hypothesis that such mutations are confined to only a portion of the genome by comparing the chromosomal restriction map of H. salinarium NRC-1 and that of the derivative S9, which was made in 1969. The two chromosomes were mapped by using two-dimensional pulsed-field gel electrophoresis and the restriction enzymes AflII, AseI, and DraI. A comparison of the two deduced maps showed a domain of about 210 kbp to be subject to many rearrangements, including an inversion in S9 relative to NRC-1. However, the rest of the chromosome was conserved among NRC-1, S9, and an independent Halobacterium isolate, GRB, previously mapped by St. Jean et al. (A. St. Jean, B. A. Trieselmann, and R. L. Charlebois, Nucleic Acids Res. 22:1476-1483, 1994). This concurs with data from eubacteria suggesting strong selective forces maintaining gene order even in the face of rearrangement events occurring at a high frequency.
Collapse
Affiliation(s)
- N R Hackett
- Department of Microbiology, Cornell University Medical College, New York, New York 10021
| | | | | |
Collapse
|
23
|
St Jean A, Trieselmann BA, Charlebois RL. Physical map and set of overlapping cosmid clones representing the genome of the archaeon Halobacterium sp. GRB. Nucleic Acids Res 1994; 22:1476-83. [PMID: 8190640 PMCID: PMC308008 DOI: 10.1093/nar/22.8.1476] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We have constructed a complete, five-enzyme restriction map of the genome of the archaeon Halobacterium sp. GRB, based on a set of 84 overlapping cosmid clones. Fewer than 30 kbp, in three gaps, remain uncloned. The genome consists of five replicons: a chromosome (2038 kbp) and four plasmids (305, 90, 37, and 1.8 kbp). The genome of Halobacterium sp. GRB is similar in style to other halobacterial genomes by being partitioned among multiple replicons and by being mosaic in terms of nucleotide composition. It is unlike other halobacterial genomes, however, in lacking multicopy families of insertion sequences.
Collapse
Affiliation(s)
- A St Jean
- Department of Biology, University of Ottawa, Ontario, Canada
| | | | | |
Collapse
|
24
|
Abstract
We have identified the replication origin of pNRC100, a 200-kb plasmid of Halobacterium halobium, by assaying for replication ability of miniplasmids containing cloned fragments of pNRC100 and the mevinolin resistance selectable marker of Haloferax volcanii. First, we showed the replication ability of plasmid pNGHCMEV1, which contains the 19-kb HindIII-C fragment of pNRC100, by recovery of plasmid DNA from mevinolin-resistant transformants of H. halobium. The minimal replication origin of approximately 3.9 kb was defined by subcloning successively smaller regions of pNGHCMEV1 and assaying for plasmid replication in either H. halobium or H. volcanii. The same replication origin was also recovered after transformation of H. volcanii with a library of partial Sau3AI fragments of pNRC100. The nucleotide sequence of the minimal replication origin was determined and found to contain a long open reading frame, named repH, transcribed away from a highly A+T-rich region. The transcription start site was identified by primer extension analysis to be 17 to 18 nucleotides 5' to a putative repH start codon. The predicted product of the repH gene, an acidic protein with a molecular weight of 113,442, showed 24 to 27% identity with predicted gene products of H. volcanii plasmid pHV2 and H. halobium plasmid p phi HL, suggesting that each is involved in plasmid replication. One pNRC100 minireplicon, pNG11 delta 12, was analyzed by linker scanning mutagenesis, which showed the requirement of repH for replication. Restoration of the repH reading frame of one replication-defective pNG11 delta 12 derivative by introduction of a second small insertion resulted in reversion to replication proficiency. The replication ability of pNG11delta12 was lost when the entire A+T-rich region, about 550 bp long, was deleted but not when small insertions or deletions were introduced into this region. The presence of only 52 bp of the A+T-rich segment was sufficient to permit replication. The pNG11delta12 minireplicon was lost at high frequency from cells grown without mevinolin selection, suggesting that the plasmid partitioning locus of pNRC100 is absent in the minimal replication origin region. We discuss the possible roles of the repH gene and the A+T-rich region in replication of pNRC100.
Collapse
Affiliation(s)
- W L Ng
- Department of Microbiology, University of Massachusetts, Amherst 01003
| | | |
Collapse
|
25
|
Pfeifer F, Griffig J, Oesterhelt D. The fdx gene encoding the [2Fe--2S] ferredoxin of Halobacterium salinarium (H. halobium). MOLECULAR & GENERAL GENETICS : MGG 1993; 239:66-71. [PMID: 8510664 DOI: 10.1007/bf00281602] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Abstract
The gene encoding the [2Fe--2S] ferredoxin (fdx gene) was isolated from Halobacterium salinarium using two oligonucleotides deduced from the ferredoxin sequence as probes. Cosmid DNAs exhibiting hybridization were isolated, the fdx gene was localized to smaller subfragments and the nucleotide sequence determined. The 390 bp coding sequence is located in the halobacterial FI-DNA and transcribed as a 440 nucleotide mRNA. S1 mapping indicated that the 5' terminus of the mRNA maps immediately upstream of the ATG start codon. The promoter box A, centred around position -25 (5' AC-TATG 3'), and box B (TG) elements at the start of the transcript resemble the sequences of a typical archaeal promoter. The restriction pattern of an approximately 50 kb region surrounding the fdx gene is conserved in various Halobacterium species. The halobacterial ferredoxin and the major gas vesicle protein GvpA exhibit up to 70% similarity to their respective counterparts in cyanobacteria suggesting lateral gene transfer between the organisms. These similarities prompted a more detailed investigation of the relative positions of the genes in the halobacterial genome.
Collapse
Affiliation(s)
- F Pfeifer
- Max-Planck-Institut für Biochemie, Martinsried, Germany
| | | | | |
Collapse
|
26
|
Pfeifer F, Ghahraman P. Plasmid pHH1 of Halobacterium salinarium: characterization of the replicon region, the gas vesicle gene cluster and insertion elements. MOLECULAR & GENERAL GENETICS : MGG 1993; 238:193-200. [PMID: 8386798 DOI: 10.1007/bf00279547] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The DNA sequence of the 5.7 kb plasmid pHH9 containing the replicon region of the 150 kb plasmid pHH1 from Halobacterium salinarium was determined. The minimal region necessary for stable plasmid maintenance lies within a 2.9 kb fragment, as defined by transformation experiments. The DNA sequence contained two open reading frames arranged in opposite orientations, separated by an unusually high AT-rich (60-70% A+T) sequence of 350 bp. All H. salinarium strains (H. halobium, H. cutirubrum) investigated harbour endogenous plasmids containing the pHH1 replicon; however, these pHH1-type plasmids differ by insertions and deletions. Adjacent to the replicon, and separated by a copy of each of the insertion elements ISH27 and ISH26, is the 9 kb p-vac region required for gas vesicle synthesis. Analysis of these and other ISH element copies in pHH1 revealed that most of them lack the target DNA duplication usually found with recently transposed ISH elements. These results underline the plasticity of plasmid pHH1.
Collapse
Affiliation(s)
- F Pfeifer
- Max-Planck-Institut für Biochemie, Martinsried, FRG
| | | |
Collapse
|
27
|
Bobovnikova Y, Ng WL, DasSarma S, Hackett NR. Restriction Mapping the Genome of Halobacterium halobium Strain NRC-1. Syst Appl Microbiol 1993. [DOI: 10.1016/s0723-2020(11)80331-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
28
|
Stable Maintenance in Halobacteria of Plasmids Harboring rDNA. Syst Appl Microbiol 1993. [DOI: 10.1016/s0723-2020(11)80339-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Chapter 15 Halobacterial genes and genomes. ACTA ACUST UNITED AC 1993. [DOI: 10.1016/s0167-7306(08)60264-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
30
|
Cohen A, Lam WL, Charlebois RL, Doolittle WF, Schalkwyk LC. Localizing genes on the map of the genome of Haloferax volcanii, one of the Archaea. Proc Natl Acad Sci U S A 1992; 89:1602-6. [PMID: 1311844 PMCID: PMC48500 DOI: 10.1073/pnas.89.5.1602] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We have assigned genetic markers to locations on the physical map of the genome of the archaeon Haloferax volcanii, using both a physical method (hybridization) and a more specific genetic technique (transformation with cosmids). Hybridizations were against restriction digests of each of 151 cosmids making up a minimally overlapping set and covering 96% of the genome. Results with a cloned insertion sequence and a tRNA probe indicated that transposable elements are concentrated on two of the four plasmids of this species, whereas regions complementary to tRNA are largely chromosomal. For a genetic analysis of genes involved in the biosynthesis of amino acids, purines, and pyrimidines, we used cosmid transformation to assign 139 of 243 ethyl methanesulfonate-induced auxotrophic mutations, generated and characterized for this study, to single cosmids or pairs of cosmids from the minimal set. Mutations affecting the biosynthesis of uracil, adenine, guanine, and 14 amino acids have been mapped in this way. All mutations mapped to the 2920-kilobase-pair chromosome of Hf. volcanii and seemed uniformly distributed around this circular replicon. In some cases, many mutations affecting a single pathway map to the same or overlapping cosmids, as would be expected were genes for the pathway linked. For other biosynthetic pathways, several unlinked genetic loci can be identified.
Collapse
Affiliation(s)
- A Cohen
- Department of Biochemistry, Dalhousie University, Halifax, NS, Canada
| | | | | | | | | |
Collapse
|
31
|
Eisenberg H, Mevarech M, Zaccai G. Biochemical, structural, and molecular genetic aspects of halophilism. ADVANCES IN PROTEIN CHEMISTRY 1992; 43:1-62. [PMID: 1442321 DOI: 10.1016/s0065-3233(08)60553-7] [Citation(s) in RCA: 90] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- H Eisenberg
- Structural Biology Department, Weizmann Institute of Science, Rehovot, Israel
| | | | | |
Collapse
|
32
|
Charlebois RL, Schalkwyk LC, Hofman JD, Doolittle WF. Detailed physical map and set of overlapping clones covering the genome of the archaebacterium Haloferax volcanii DS2. J Mol Biol 1991; 222:509-24. [PMID: 1748993 DOI: 10.1016/0022-2836(91)90493-p] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
An integrated approach of "bottom up" and "top down" mapping has produced a minimal set of overlapping cosmid clones covering 96% of the 4140 kilobase-pairs (kbp) Haloferax volcanii DS2 genome and a completely closed physical map. This genome is partitioned into five replicons: a 2920 kbp chromosome and four plasmids, of 690 kbp (pHV4), 442 kbp (pHV3), 86 kbp(pHV1) and 6.4 kbp (pHV2). A restriction map for six infrequently-cutting restriction enzymes was constructed, representing a total of 903 sites in the cloned DNA. We have placed the two ribosomal RNA operons, the genes for 7 S RNA and for RNaseP RNA and 22 protein-coding genes on the map. Restriction site frequencies show significant variation in different portions of the genome. The regions of high site density correspond to halobacterial satellite or FII DNA which includes two small regions of the chromosome, the plasmids pHV1 and pHV2, and half of pHV4, but not pHV3.
Collapse
|
33
|
Physical map of a 257 kilobase-pairs region from the genome of the archaebacteriumHalococcus saccharolyticus. Curr Microbiol 1991. [DOI: 10.1007/bf02104129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
34
|
Abstract
Three strains of Xenorhabdus nematophilus (A24, F1, NC116) and strain Dan of Xenorhabdus bovienii were tested to evaluate whether the phase variation observed in these bacteria was in any way connected with plasmids. The plasmid patterns of both phases of A24 and F1 strains were the same, whereas the two NC116 phases had only one band each. No difference was observed between the undigested or digested plasmid patterns of the two phases from the three strains. No plasmid was detected in either phase of strain Dan. The plasmid probes were prepared from the six bands of A24 phase 1. By hybridization studies, three plasmids in two forms (open circular and supercoiled) were detected in the strain A24. Two were estimated at 12 kb, and the smallest was about 4 kb. Attempts to hybridize plasmid probes with either undigested or digested chromosomal DNA of the two phases of strain A24 were unsuccessful. The results suggest that neither a difference in plasmid content nor a plasmid recombination with the chromosome is involved in phase variation. The hybridizations revealed homologous DNA sequences among the three plasmids of strain A24 and among the plasmids of strains such as A24 and NC116, which were isolated from geographically distant countries, suggesting that plasmids may encode similar proteins.
Collapse
Affiliation(s)
- M C Leclerc
- Université Montpellier II, Institut National de la Recherche Agronomique-Centre National de la Recherche Scientifique (URA no. 1184), France
| | | |
Collapse
|
35
|
Ng WL, Kothakota S, DasSarma S. Structure of the gas vesicle plasmid in Halobacterium halobium: inversion isomers, inverted repeats, and insertion sequences. J Bacteriol 1991; 173:1958-64. [PMID: 1848217 PMCID: PMC207727 DOI: 10.1128/jb.173.6.1958-1964.1991] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Halobacterium-halobium NRC-1 harbors a 200-kb plasmid, pNRC100, which contains a cluster of genes for synthesis of buoyant gas-filled vesicles. Physical mapping of pNRC100 by using pulsed-field gel electrophoresis showed the presence of a large (35 to 38-kb) inverted repeat (IR) sequence. Inversion isomers of pNRC100 were demonstrated by Southern hybridization analysis using two restriction enzymes, AflII and SfiI, that cut asymmetrically within the intervening small single-copy region and the large single-copy region, respectively, but not within the large IRs. No inversion isomers were observed for a deletion derivative of pNRC100 lacking one IR, which suggests that both copies are required for inversion to occur. Additionally, the identities and approximate positions of 17 insertion sequences (IS) in pNRC100 were determined by Southern hybridization and limited nucleotide sequence analysis across the IS element-target site junctions: ISH2, a 0.5-kb element, was found in four copies; ISH3, a 1.4-kb heterogeneous family of elements, was present in seven copies; ISH8, a 1.4-kb element, was found in five copies; and ISH50, a 1.0-kb element, was present in a single copy. The large IRs terminated at an ISH2 element at one end and an ISH3 element at the other end. pNRC100 is similar in structure to chloroplast and mitochondrial genomes, which contain large IRs and other large halobacterial and prokaryotic plasmids that are reservoirs of IS elements but lack the large IRs.
Collapse
Affiliation(s)
- W L Ng
- Department of Microbiology, University of Massachusetts, Amherst 01003
| | | | | |
Collapse
|
36
|
Pfeifer F, Blaseio U. Transposition burst of the ISH27 insertion element family in Halobacterium halobium. Nucleic Acids Res 1990; 18:6921-5. [PMID: 2175883 PMCID: PMC332751 DOI: 10.1093/nar/18.23.6921] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Investigation of the plasmid pHH4 in single colonies of Halobacterium halobium PHH4 indicated transposition of insertion elements in 20% of the colonies. Seven ISH27 insertions were observed as well as one ISH23 insertion. The various copies of ISH27 were compared to the two ISH27 elements already present in pHH4, and to the ISH27 element that was identified in the bacteriopsin (bop) gene of a Bop mutant. These ten copies of ISH27 constitute three types on the basis of DNA sequence identity: ISH27-1 (1398 bp), ISH27-2, and ISH27-3 (1389 bp each). The DNA sequence comparison between the three types indicates a region of 1200 bp where the identity between ISH27-1 and ISH27-2 or ISH27-3 is 82-83%. ISH27-2 and ISH27-3 are 95% identical in this region. The remaining region exhibits a lower DNA similarity (64-74% identity) between the different copies. An open reading frame of 1167 nucleotides spans the more conserved region, and a corresponding transcript could be detected in H. halobium PHH4, but not in H. halobium wild-type. ISH27-1 is 91% identical to members of the insertion sequence-like elements ISH51 of Haloferax volcanii, whereas the other two ISH27 element types are 82-83% identical to ISH51. The transposition 'burst' of ISH27 was only seen after storage of the cells for more than two years at 4 degrees C. Upon continuous cultivation at 37 degrees C no transposition event could be observed, suggesting that stress factor(s) might have caused the high transposition rate.
Collapse
Affiliation(s)
- F Pfeifer
- Max-Planck-Institut für Biochemie, Martinsried, FRG
| | | |
Collapse
|
37
|
Evidence for salt-associated restriction pattern modifications in the archaeobacterium Haloferax mediterranei. J Bacteriol 1990; 172:7278-81. [PMID: 1979325 PMCID: PMC210857 DOI: 10.1128/jb.172.12.7278-7281.1990] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
DNA restriction pattern modifications were detected when Haloferax mediterranei was grown in low (10%) salt concentrations. After cells were grown again in optimal (25%) salt concentrations, the original pattern was recovered. These salt-associated DNA modifications were revealed with 5% of the 160 DNA fragments cloned and used as probes in hybridization experiments. Patterns obtained when genomic DNA was digested with different restriction enzymes showed that these modifications are related not to insertions or deletions in genome but to modifications of some specific sequences.
Collapse
|
38
|
Blaseio U, Pfeifer F. Transformation of Halobacterium halobium: development of vectors and investigation of gas vesicle synthesis. Proc Natl Acad Sci U S A 1990; 87:6772-6. [PMID: 11607099 PMCID: PMC54619 DOI: 10.1073/pnas.87.17.6772] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We developed vector plasmids for the transformation of Halobacterium halobium, using the replicon region from the halobacterial phage H or from the plasmid pHH1 together with a DNA fragment conferring resistance to mevinolin. H. halobium P03, a strain lacking pHH1 as well as the restriction endonuclease activity found in wild-type H. halobium, was used as the recipient strain. All H. halobium fragments tested for autonomous replication as well as the Haloferax volcanii vector pWL102 enabled stable plasmid maintenance in this strain. A frequent loss of all vectors (including pWL102) was observed in Hf. volcanii, where >90% of the mevinolin-resistant colonies obtained after transformation had lost the vector, presumably because of restriction endonuclease activity and concomitant recombination of the mevinolin resistance marker with the chromosome. The expression of gas vesicle-encoding genes (vac) was analyzed by using a 4.5-kilobase-pair (kbp) fragment containing the plasmid-encoded p-vac gene from H. halobium or an 11-kbp fragment containing the mc-vac chromosomal gene from Haloferax mediterranei for transformation experiments with H. halobium and Hf. volcanii. These experiments indicated that the mc-vac fragment contains all information necessary to synthesize gas vesicles, whereas in the case of the smaller p-vac fragment, complementation by other genes was required for a Vac+ phenotype.
Collapse
Affiliation(s)
- U Blaseio
- Max-Planck-Institut für Biochemie, Martinsried, Federal Republic of Germany
| | | |
Collapse
|
39
|
Horne M, Pfeifer F. Expression of two gas vacuole protein genes in Halobacterium halobium and other related species. MOLECULAR & GENERAL GENETICS : MGG 1989; 218:437-44. [PMID: 2586485 DOI: 10.1007/bf00332407] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The archaebacterium Halobacterium halobium contains two genes encoding gas vacuole proteins (vac). One resides on a large naturally occurring plasmid and encodes a protein of 76 amino acids (p-vac), while the other is a chromosomal gene that encodes a highly similar protein of 79 amino acids (c-vac). Northern analysis determined the c-vac and p-vac mRNA to be approximately 340 nucleotides in length, and S1 mapping of both transcripts indicated that the 5' terminus for each starts at the same relative nucleotide. Three other Halobacterium species producing gas vacuoles were investigated, H. spec. GN101, YC819-9, and SB3. All three contain only a chromosomal c-vac gene, and the 5' terminus of the 340 nucleotide mRNA starts at the same nucleotide as found for H. halobium. The c-vac gene region of H. spec. GN101 contains nine nucleotide exchanges, three of which occur in the coding region with no effect on the amino acid sequence. In contrast, the c-vac gene of H. spec. SB3 has an identical nucleotide sequence to the H. halobium c-vac gene. Gas vacuole production in each of these species was monitored during culture growth by phase contrast microscopy, and the vac mRNA level was determined for each time point. H. halobium p-vac deletion mutants, as well as the halobacterial species GN101 and YC819-9, start to synthesize gas vacuoles in early stationary growth phase with a maximal mRNA content in stationary phase. In contrast, H. halobium wild-type synthesizes gas vacuoles exclusively due to p-vac gene expression with a maximal mRNA level during logarithmic growth, and transcripts of the c-vac gene were not detectable.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- M Horne
- Max-Planck-Institut für Biochemie, Martinsried, Federal Republic of Germany
| | | |
Collapse
|
40
|
Leffers H, Gropp F, Lottspeich F, Zillig W, Garrett RA. Sequence, organization, transcription and evolution of RNA polymerase subunit genes from the archaebacterial extreme halophiles Halobacterium halobium and Halococcus morrhuae. J Mol Biol 1989; 206:1-17. [PMID: 2495365 DOI: 10.1016/0022-2836(89)90519-6] [Citation(s) in RCA: 126] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The genes for the four largest subunits, A, B', B" and C, of the DNA-dependent RNA polymerase were cloned from the extreme halophile Halobacterium halobium and sequenced and their transcription was analyzed. The downstream half of this gene cluster from another extreme halophile Halococcus morrhuae was also cloned, sequenced and its transcription products characterized. The H. halobium genes were transcribed into a common transcript from an upstream promoter in the order B", B', A and C. They are flanked by, and co-transcribed with, two smaller genes coding for 75 and 139 amino acid residues, respectively. Immediately downstream from these genes were two open reading frames that are homologous to ribosomal proteins S12 and S7 from Escherichia coli. In both extreme halophiles these genes were transcribed from their own promoter, but in Hc. morrhuae there was also considerable read-through from the RNA polymerase genes. Sequence alignment studies showed that the combined B" + B' subunits are equivalent to the B subunits of the eukaryotic polymerases I and II and to the eubacterial beta subunit, while the combined A + C subunits correspond to the A subunits of eukaryotic RNA polymerases I, II and III and to the eubacterial beta' subunit. The sequence similarity to the eukaryotic subunits was always much higher than to the eubacterial subunits. Conserved sequence regions within the individual subunits were located which are likely to constitute functionally important domains; they include sites associated with rifampicin and alpha-amanitin binding and two possible zinc binding fingers. Phylogenetic analyses based on sequence alignments confirmed that the extreme halophiles belong to the archaebacterial kingdom.
Collapse
Affiliation(s)
- H Leffers
- Kemisk Institut, Aarhus Universitet, Denmark
| | | | | | | | | |
Collapse
|
41
|
Brown JW, Daniels CJ, Reeve JN. Gene structure, organization, and expression in archaebacteria. Crit Rev Microbiol 1989; 16:287-338. [PMID: 2467783 DOI: 10.3109/10408418909105479] [Citation(s) in RCA: 216] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Major advances have recently been made in understanding the molecular biology of the archaebacteria. In this review, we compare the structure of protein and stable RNA-encoding genes cloned and sequenced from each of the major classes of archaebacteria: the methanogens, extreme halophiles, and acid thermophiles. Protein-encoding genes, including some encoding proteins directly involved in methanogenesis and photoautotrophy, are analyzed on the basis of gene organization and structure, transcriptional control signals, codon usage, and evolutionary conservation. Stable RNA-encoding genes are compared for gene organization and structure, transcriptional signals, and processing events involved in RNA maturation, including intron removal. Comparisons of archaebacterial structures and regulatory systems are made with their eubacterial and eukaryotic homologs.
Collapse
Affiliation(s)
- J W Brown
- Department of Biology, Indiana University, Bloomington
| | | | | |
Collapse
|
42
|
Leong D, Pfeifer F, Boyer H, Betlach M. Characterization of a second gene involved in bacterio-opsin gene expression in a halophilic archaebacterium. J Bacteriol 1988; 170:4903-9. [PMID: 3170488 PMCID: PMC211536 DOI: 10.1128/jb.170.10.4903-4909.1988] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Southern blot analysis and nucleotide sequencing of DNA from three bacterio-opsin-deficient mutants of the archaebacterium Halobacterium halobium (M86, W105, and W109) revealed that they each contain an alteration in a region 2,000 to 3,800 base pairs (bp) upstream of the bacterio-opsin gene (bop). Nucleotide sequence analysis of this region, which is also located downstream of the previously characterized brp gene, revealed that it contains an open reading frame (ORF) of 2,022 bp. This 2,022-bp ORF has a start codon which overlaps the stop codon of the brp gene and is read in the same direction. The ORF could encode an acidic protein of 73,334 daltons (674 amino acids) with a predicted secondary structure typical of a soluble protein. Bop mutant M86 contains a 1,883-bp deletion extending from bp 351 of the ORF, to 197 bp beyond the stop codon. Mutant W105 has an ISH2 element integrated at bp 1239 of the ORF, and mutant W109 has an ISH26 element integrated at bp 1889. Our results suggest that the ORF is a gene (designated bat for bacterio-opsin activator gene) involved in bop gene expression.
Collapse
Affiliation(s)
- D Leong
- Department of Biochemistry and Biophysics, University of California, San Francisco 94143
| | | | | | | |
Collapse
|
43
|
Abstract
Deletion events occurring in the major 150-kilobase-pair (kb) plasmid pHH1 of the archaebacterium Halobacterium halobium were investigated. We found four deletion derivatives of pHH1 in gas-vacuole-negative mutants, two of which (pHH23) [65 kb] and pHH4 [36 kb]) we analyzed. Both plasmids incurred more than one deletion, leading to the fusion of noncontiguous pHH1 sequences. pHH23 and pHH4 overlapped by only 4 kb of DNA sequence. A DNA fragment derived from this region was used to monitor the production of further deletion variants of pHH4. A total of 25 single colonies were characterized, 23 of which contained various smaller pHH4 derivatives. Of the 25 colonies investigated, 2 had lost pHH4 entirely and contained only large (greater than or equal to 100-kb) minor covalently closed circular DNAs. One colony contained the 17-kb deletion derivative pHH6 without any residual pHH4. The sizes of the pHH4 deletion derivatives, produced during the development of a single colony, ranged from 5 to 20 kb. In five colonies, pHH4 was altered by the integration of an additional insertion element. These insertions, as well as copies of the various insertion elements already present in pHH4, presumably serve as hot spots for recombination events which result in deletions. A second enrichment procedure led to the identification of colonies containing either a 16-kb (pHH7) or a 5-kb (pHH8) deletion derivative of pHH4 as the major plasmid. pHH8, the smallest plasmid found, contained the 4 kb of unique DNA sequence shared by pHH23 and pHH4, as well as some flanking pHH4 sequences. This result indicates that the 4-kb region contains the necessary sequences for plasmid maintenance and replication.
Collapse
Affiliation(s)
- F Pfeifer
- Max-Planck-Institut für Biochemie, Martinsried, Federal Republic of Germany
| | | | | |
Collapse
|
44
|
Horne M, Englert C, Pfeifer F. Two genes encoding gas vacuole proteins in Halobacterium halobium. MOLECULAR & GENERAL GENETICS : MGG 1988; 213:459-64. [PMID: 3185512 DOI: 10.1007/bf00339616] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The archaebacterium Halobacterium halobium contains two related gas vacuole protein-encoding genes (vac). One of these genes encodes a protein of 76 amino acids and resides on the major plasmid. The second gene is located on the chromosome in a (G + C)-rich DNA fraction and encodes a slightly larger but highly homologous protein consisting of 79 amino acids. The plasmid encoded vac gene is transcribed constitutively throughout the growth cycle while the chromosomal vac gene is expressed during the stationary phase of growth. Comparison of the nucleotide sequences of the two genes indicates differences in the putative promoter regions as well as 35 single base-pair exchanges within the coding regions of the two genes. The majority of the nucleotide exchanges in the coding region occur in the third position of a codon triplet generating the codon synonym. The only differences between the two encoded proteins are the exchange of 2 amino acids (positions 8 and 29) and a deletion of 3 amino acids near the carboxy-terminus of the plasmid encoded vac protein. The genomic DNAs from other halobacterial isolates (Halobacterium sp. SB3, GN101 and YC819-9) were found to contain only a chromosomal vac gene copy. There is a high conservation of the chromosomal vac gene and the genomic region surrounding it among the halobacterial strains investigated.
Collapse
Affiliation(s)
- M Horne
- Max-Planck-Institut für Biochemie, Martinsried, Federal Republic of Germany
| | | | | |
Collapse
|
45
|
Flores M, González V, Pardo MA, Leija A, Martínez E, Romero D, Piñero D, Dávila G, Palacios R. Genomic instability in Rhizobium phaseoli. J Bacteriol 1988; 170:1191-6. [PMID: 3343217 PMCID: PMC210891 DOI: 10.1128/jb.170.3.1191-1196.1988] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Experience from different laboratories indicates that Rhizobium strains can generate variability in regard to some phenotypic characteristics such as colony morphology or symbiotic properties. On the other hand, several reports suggest that under certain stress conditions or genetic manipulations Rhizobium cells can present genomic rearrangements. In search of frequent genomic rearrangements, we analyzed three Rhizobium strains under laboratory conditions that are not considered to cause stress in bacterial populations. DNAs from direct descendants of a single cell were analyzed in regard to the hybridization patterns obtained, using as probes different recombinant plasmids or cosmids; while most of the probes utilized did not show differences in the hybridization patterns, some of them revealed the occurrence of frequent genomic rearrangements. The implications and possible biological significance of these observations are discussed.
Collapse
Affiliation(s)
- M Flores
- Centro de Investigación sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, Cuernavaca, Morelos
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Affiliation(s)
- W D Reiter
- Max-Planck-Institut für Biochemie, Martinsried bei München, Federal Republic of Germany
| | | | | |
Collapse
|
47
|
|
48
|
Ebert K, Hanke C, Delius H, Goebel W, Pfeifer F. A new insertion element, ISH26, from Halobacterium halobium. ACTA ACUST UNITED AC 1987. [DOI: 10.1007/bf00326540] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
49
|
|
50
|
Hofman JD, Schalkwyk LC, Doolittle WF. ISH51: a large, degenerate family of insertion sequence-like elements in the genome of the archaebacterium, Halobacterium volcanii. Nucleic Acids Res 1986; 14:6983-7000. [PMID: 3020501 PMCID: PMC311712 DOI: 10.1093/nar/14.17.6983] [Citation(s) in RCA: 36] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We describe a new family of repetitive elements in the genome of the archaebacterium Halobacterium volcanii. There are some 20-30 copies of this element, which we designate ISH51. Sequenced copies show typical insertion sequence characteristics (terminal inverted repeats, direct flanking repeats of "target site" DNA). However, members of the ISH51 family are highly heterogeneous, showing on average only 85% primary sequence homology; and some genomic copies appear to be severely truncated. Some ISH51 elements are clustered together in regions of relatively AT-rich DNA. There are at least five such AT-rich "islands" in the H. volcanii genome. Repetitive sequences homologous to ISH51 are found in the genomes of most Halobacterium and Halococcus species.
Collapse
|