1
|
Mercier A, Bertolla F, Passelègue-Robe E, Simonet P. Influence of DNA conformation and role of comA and recA on natural transformation in Ralstonia solanacearum. Can J Microbiol 2009; 55:762-70. [PMID: 19767847 DOI: 10.1139/w09-025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Naturally competent bacteria such as the plant pathogen Ralstonia solanacearum are characterized by their ability to take up free DNA from their surroundings. In this study, we investigated the efficiency of various DNA types including chromosomal linear DNA and circular or linearized integrative and (or) replicative plasmids to naturally transform R. solanacearum. To study the respective regulatory role of DNA transport and maintenance in the definite acquisition of new DNA by bacteria, the natural transformation frequencies were compared with those obtained when the bacterial strain was transformed by electroporation. An additional round of electrotransformation and natural transformation was carried out with the same set of donor DNAs and with R. solanacearum disrupted mutants that were potentially affected in competence (comA gene) and recombination (recA gene) functions. Our results confirmed the critical role of the comA gene for natural transformation and that of recA for recombination and, more surprisingly, for the maintenance of an autonomous plasmid in the host cell. Finally, our results showed that homologous recombination of chromosomal linear DNA fragments taken up by natural transformation was the most efficient way for R. solanacearum to acquire new DNA, in agreement with previous data showing competence development and natural transformation between R. solanacearum cells in plant tissues.
Collapse
|
2
|
Abstract
The ability of some bacteria to take up and recombine DNA from the environment is an important evolutionary problem because its function is controversial; although populations may benefit in the long-term from the introduction of new alleles, cells also reap immediate benefits from the contribution of DNA to metabolism. To clarify how selection has acted, we have characterized competence in natural isolates of H. influenzae by measuring DNA uptake and transformation. Most of the 34 strains we tested became competent, but the amounts of DNA they took up and recombined varied more than 1000-fold. Differences in recombination were not due to sequence divergence and were only partly explained by differences in the amounts of DNA taken up. One strain was highly competent during log phase growth, unlike the reference strain Rd, but several strains did not develop competence under any of the tested conditions. Analysis of competence genes identified genetic defects in two poorly transformable strains. These results show that strains can differ considerably in the amount of DNA they take up and recombine, indicating that the benefit associated with competence is likely to vary in space and/or time.
Collapse
Affiliation(s)
- Heather Maughan
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada.
| | | |
Collapse
|
3
|
Kok M, Bron G, Erni B, Mukhija S. Effect of enzyme I of the bacterial phosphoenolpyruvate : sugar phosphotransferase system (PTS) on virulence in a murine model. MICROBIOLOGY (READING, ENGLAND) 2003; 149:2645-2652. [PMID: 12949188 DOI: 10.1099/mic.0.26406-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The phosphoenolpyruvate : sugar phosphotransferase system (PTS) catalyses translocation with concomitant phosphorylation of sugars and hexitols and it regulates metabolism in response to the availability of carbohydrates. The PTS forms an interface between energy and signal transduction and its inhibition is likely to have pleiotropic effects. It is present in about one-third of bacteria with fully sequenced genomes, including many common pathogens, but does not occur in eukaryotes. Enzyme I (ptsI) is the first component of the divergent protein phosphorylation cascade. ptsI deletions were constructed in Salmonella typhimurium, Staphylococcus aureus and Haemophilus influenzae and virulence of the mutants was characterized in an intraperitoneal mouse model. The log(attenuation) values were 2.3, 1.4 and 0.9 for the Sal. typhimurium, Sta. aureus and H. influenzae ptsI mutants, respectively. The degree of attenuation is correlated with the complexity of the respective PTS, which comprises approximately 40 components in Sal. typhimurium, but only 5 in H. influenzae.
Collapse
Affiliation(s)
- Menno Kok
- Département de Génétique et Microbiologie, CMU, 9, Avenue de Champel, CH-1211 Genève, Switzerland
| | - Guillaume Bron
- Département de Génétique et Microbiologie, CMU, 9, Avenue de Champel, CH-1211 Genève, Switzerland
| | - Bernhard Erni
- Departement für Chemie und Biochemie, Freiestrasse 3, Universität Bern, CH-3012, Bern, Switzerland
| | - Seema Mukhija
- Arpida AG, Dammstrasse 36, CH-4142, Münchenstein, Switzerland
| |
Collapse
|
4
|
Tsen SD, Fang SS, Chen MJ, Chien JY, Lee CC, Tsen DHL. Natural plasmid transformation in Escherichia coli. J Biomed Sci 2002; 9:246-52. [PMID: 12065899 DOI: 10.1007/bf02256071] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Although Escherichia coli does not have a natural transformation process, strains of E. coli can incorporate extracellular plasmids into cytoplasm 'naturally' at low frequencies. A standard method was developed in which stationary phase cells were concentrated, mixed with plasmids, and then plated on agar plates with nutrients which allowed cells to grow. Transformed cells could then be selected by harvesting cells and plating again on selective agar plates. Competence developed in the lag phase, but disappeared during exponential growth. As more plasmids were added to the cell suspension, the number of transformants increased, eventually reaching a plateau. Supercoiled monomeric or linear concatemeric DNA could transform cells, while linear monomeric DNA could not. Plasmid transformation was not related to conjugation and was recA-independent. Most of the E. coli strains surveyed had this process. All tested plasmids, except pACYC184, could transform E. coli. Insertion of a DNA fragment containing the ampicillin resistance gene into pACYC184 made the plasmid transformable. By inserting random 20-base-pair oligonucleotides into pACYC184 and selecting for transformable plasmids, a most frequent sequence was identified. This sequence resembled the bacterial interspersed medium repetitive sequence of E. coli, suggesting the existence of a recognition sequence. We conclude that plasmid natural transformation exists in E. coli.
Collapse
Affiliation(s)
- Suh-Der Tsen
- Department of Microbiology, Graduate Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan, ROC.
| | | | | | | | | | | |
Collapse
|
5
|
Segada LM, Lesse AJ. Creation of an isogenic P1-deficient mutant of Haemophilus influenzae biogroup aegyptius. Gene X 1997; 204:185-94. [PMID: 9434183 DOI: 10.1016/s0378-1119(97)00545-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Haemophilus influenzae biogroup aegyptius, the causative agent of Brazilian purpuric fever (BPF), expresses a heat-modifiable 48 kDa outer membrane protein, P1, which is conserved in most Brazilian case-clone isolates. To study the role of P1 in pathogenesis of BPF we constructed via homologous recombination an isogenic P1-deficient mutant of H. influenzae biogroup aegyptius. The procedure involved a modification of Hererot's method for development of competence. Modifications included variations in the growth conditions, use of cAMP, specific characteristics of the donor DNA, and antibiotic selection. P1-deficient mutants were confirmed by SDS-PAGE, loss of reactivity with a specific monoclonal antibody on Western blot, restriction analysis and Southern blot. Our results establish the first successful transformation of homologous DNA into H. influenzae biogroup aegyptius.
Collapse
Affiliation(s)
- L M Segada
- Department of Microbiology, State University of New York at Buffalo, New York, USA
| | | |
Collapse
|
6
|
Karudapuram S, Zhao X, Barcak GJ. DNA sequence and characterization of Haemophilus influenzae dprA+, a gene required for chromosomal but not plasmid DNA transformation. J Bacteriol 1995; 177:3235-40. [PMID: 7768823 PMCID: PMC177016 DOI: 10.1128/jb.177.11.3235-3240.1995] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Natural genetic transformation in Haemophilus influenzae involves DNA binding, uptake, translocation, and recombination. In this study, we cloned and sequenced a 3.8-kbp H. influenzae DNA segment capable of complementing in trans the transformation defect of an H. influenzae strain carrying the tfo-37 mutation. We used subcloning, deletion analysis, and in vivo protein labeling experiments to more precisely define the gene required for efficient DNA transformation on the cloned DNA. A novel gene, which we called dprA+, was shown to encode a 41.6-kDa polypeptide that was required for efficient chromosomal but not plasmid DNA transformation. Analysis of the deduced amino acid sequence of DprA suggested that it may be an inner membrane protein, which is consistent with its apparent role in DNA processing during transformation. Four other open reading frames (ORFs) on the cloned DNA segment were identified. Two ORFs were homologous to the phosphofructokinase A (pfkA) and alpha-isopropyl malate synthase (leuA) genes of Escherichia coli and Salmonella typhimurium, respectively. Homologs for the two other ORFs could not be identified.
Collapse
Affiliation(s)
- S Karudapuram
- Department of Biological Chemistry, University of Maryland School of Medicine, Baltimore 21201, USA
| | | | | |
Collapse
|
7
|
Lorenz MG, Wackernagel W. Bacterial gene transfer by natural genetic transformation in the environment. Microbiol Rev 1994; 58:563-602. [PMID: 7968924 PMCID: PMC372978 DOI: 10.1128/mr.58.3.563-602.1994] [Citation(s) in RCA: 462] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Natural genetic transformation is the active uptake of free DNA by bacterial cells and the heritable incorporation of its genetic information. Since the famous discovery of transformation in Streptococcus pneumoniae by Griffith in 1928 and the demonstration of DNA as the transforming principle by Avery and coworkers in 1944, cellular processes involved in transformation have been studied extensively by in vitro experimentation with a few transformable species. Only more recently has it been considered that transformation may be a powerful mechanism of horizontal gene transfer in natural bacterial populations. In this review the current understanding of the biology of transformation is summarized to provide the platform on which aspects of bacterial transformation in water, soil, and sediments and the habitat of pathogens are discussed. Direct and indirect evidence for gene transfer routes by transformation within species and between different species will be presented, along with data suggesting that plasmids as well as chromosomal DNA are subject to genetic exchange via transformation. Experiments exploring the prerequisites for transformation in the environment, including the production and persistence of free DNA and factors important for the uptake of DNA by cells, will be compiled, as well as possible natural barriers to transformation. The efficiency of gene transfer by transformation in bacterial habitats is possibly genetically adjusted to submaximal levels. The fact that natural transformation has been detected among bacteria from all trophic and taxonomic groups including archaebacteria suggests that transformability evolved early in phylogeny. Probable functions of DNA uptake other than gene acquisition will be discussed. The body of information presently available suggests that transformation has a great impact on bacterial population dynamics as well as on bacterial evolution and speciation.
Collapse
Affiliation(s)
- M G Lorenz
- Genetik, Fachbereich Biologie, Carl-von-Ossietzky Universität Oldenburg, Germany
| | | |
Collapse
|
8
|
Walter RB, Morton KA, Stuy JH. The sequence of the Haemophilus influenzae mutB gene indicates it encodes a DNA helicase II-like protein. Gene 1993; 136:35-40. [PMID: 8294031 DOI: 10.1016/0378-1119(93)90444-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A 6.2-kb Haemophilus influenzae genomic DNA fragment which partially complemented both the mutator and ultraviolet light sensitive (UVs) phenotypes of the H. influenzae mutB1 mutant was isolated. This fragment was also able to complement the UVs phenotype of Escherichia coli uvrD mutant hosts. The uvrD+ gene complemented the mutator phenotype of mutB1 hosts. The nucleotide (nt) sequence of the 6.2-kb fragment revealed an open reading frame (ORF) of 2184 bp. This ORF shows similarity at both the nt and amino acid (aa) levels with the uvrD gene of E. coli. Comparison of the sequences revealed eight regions of aa conservation in addition to seven previously identified helicase superfamily domains. The nt sequence 5' to the mutB ORF contains several potential regulatory motifs, including a LexA-binding site. Based upon these observations, we are confident that the mutB gene of H. influenzae encodes an ATP-dependent DNA helicase-like activity.
Collapse
Affiliation(s)
- R B Walter
- Department of Biology, Southwest Texas State University, San Marcos 78666
| | | | | |
Collapse
|
9
|
Abstract
The Haemophilus influenzae mutB+ gene complements Escherichia coli uvrD mutants. The E. coli uvrD+ gene complements H. influenzae mutB1 mutants.
Collapse
Affiliation(s)
- J H Stuy
- Department of Biological Sciences, Florida State University, Tallahassee 32306
| | | |
Collapse
|
10
|
Stuy JH, Walter RB. Cloning, characterization, and DNA base sequence of the high-level streptomycin resistance gene strA1 of Haemophilus influenzae Rd. J Bacteriol 1992; 174:5604-8. [PMID: 1512195 PMCID: PMC206505 DOI: 10.1128/jb.174.17.5604-5608.1992] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The high-level streptomycin resistance strA1 gene of Haemophilus influenzae Rd was cloned in plasmid pAT4 as a 2.1-kbp EcoRI insert. It was later replaced in pAT4 by the wild-type strA+ gene. Plasmid pAT4 carrying the strA+ gene is highly unstable and renders chromosomally resistant recipients sensitive to streptomycin. The strA+ gene and the instability factor both reside on a 500-base HindIII-EcoRI subfragment. The two biological activities are also expressed in Escherichia coli. Both wild-type (strA+) and mutant (strA1) genes were sequenced. They show considerable nucleotide homology with the E. coli strA+ gene and its product.
Collapse
Affiliation(s)
- J H Stuy
- Department of Biological Science, Florida State University, Tallahassee 32306
| | | |
Collapse
|
11
|
Chandler MS. New shuttle vectors for Haemophilus influenzae and Escherichia coli: P15A-derived plasmids replicate in H. influenzae Rd. Plasmid 1991; 25:221-4. [PMID: 1924559 DOI: 10.1016/0147-619x(91)90016-p] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
With the aim of identifying new plasmids useful for molecular cloning in Haemophilus influenzae, several P15A-derived plasmids were tested for their ability to transform H. influenzae Rd. The four plasmids tested, pACYC177, pACYC184, pSU2718, and pSU2719 were all able to establish in H. influenzae Rd. The plasmids were stable, could be purified by standard protocols, and were compatible with a plasmid carrying the RSF0885 origin of replication.
Collapse
Affiliation(s)
- M S Chandler
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
12
|
|
13
|
Abstract
The Haemophilus influenzae Rd rec-1+ gene was cloned from a partial chromosomal digest into a plasmid vector as a 20-kilobase-pair (kbp) BstEII fragment and then subcloned. The smallest subclone with rec-1+ activity carried a 3.1-kbp EcoRI fragment. The identity of the rec-I gene in these clones was confirmed by transforming an Rd strain carrying a leaky rec-1 mutation (recA4) to resistance to methyl methanesulfonate (MMS) by using whole or digested plasmids. It was demonstrated that the Rec+ phenotype of the MMSr transformants was linked to the strA, novAB, and mmsA loci, as expected if the recA4 allele had been replaced by rec-1+. In growing cultures (rec-1 or rec+), all rec-1+-carrying plasmids induced near-maximal levels of transformability when their hosts reached stationary phase; these levels are 100 to 1,000 times higher than the values seen with strains not carrying a Rec plasmid. Transfer of the 3.1-kbp subclone was greatly reduced compared with transfer of similarly sized vector plasmids, and the resulting transformants grew slowly; this suggests an explanation of my failure to directly clone this fragment from chromosomal DNA digests. Transfer of a rec-1+ plasmid to a very poorly genetically transformable H. influenzae Rb strain resulted in greatly increased transformability. Transfer of such plasmids to a noncompetent H. influenzae Rc strain did not render this strain competent. It is suggested that transformability of Rd and Rb strains is limited by rec-1 expression but that the noncompetence of Rc has some other basis.
Collapse
Affiliation(s)
- J H Stuy
- Department of Biological Science, Florida State University, Tallahassee 32306
| |
Collapse
|
14
|
Bingle WH. Transformation of Azotobacter vinelandii OP with a broad host range plasmid containing a cloned chromosomal nif-DNA marker. Plasmid 1988; 19:242-50. [PMID: 3231689 DOI: 10.1016/0147-619x(88)90042-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The non-nitrogen-fixing (Nif-) strain UW10 of Azotobacter vinelandii OP (UW) was naturally induced to competence and transformed with broad host range plasmid pKT210 containing the cloned wild-type nif-10 locus from A. vinelandii UW (Nif+); this marker was unable to complement the nif-10 mutation in trans, but could through recombination with the chromosome. The most frequent type of transformation event observed was recombination between the homologous regions of the plasmid and chromosome (producing Nif+ transformants) with loss of the plasmid vector. At a substantially lower frequency, transformants expressing the plasmid-encoded antibiotic resistance determinants were isolated which were phenotypically Nif-. Agarose gel electrophoresis showed that these transformants contained a plasmid migrating with the same mobility as the original donor plasmid. During culture these transformants acquired a Nif+ phenotype without the loss of the plasmid, as judged by the use of a hybridization probe specific for the cloned nif-DNA fragment. These data indicate that plasmids carrying sequences homologous to chromosomal sequences could be maintained in recombination-proficient A. vinelandii UW. The introduction of plasmids containing sequences homologous to chromosomal sequences was facilitated by prelinearization of the plasmid using a restriction endonuclease generating cohesive ends. Because the site of linearization could be chosen outside the region of shared homology, it was unlikely that the route of plasmid establishment occurred via a homology-facilitated transformation mechanism. The data also indicated that A. vinelandii UW could harbor broad host range cloning vectors based on plasmid RSF1010 without significant impairment of its nitrogen-fixation ability.
Collapse
Affiliation(s)
- W H Bingle
- Department of Microbiology, University of Alberta, Edmonton, Canada
| |
Collapse
|
15
|
Grundy FJ, Plaut A, Wright A. Haemophilus influenzae immunoglobulin A1 protease genes: cloning by plasmid integration-excision, comparative analyses, and localization of secretion determinants. J Bacteriol 1987; 169:4442-50. [PMID: 2820926 PMCID: PMC213806 DOI: 10.1128/jb.169.10.4442-4450.1987] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Many bacteria which establish infections after invasion at human mucosal surfaces produce enzymes which cleave immunoglobulin A (IgA), the primary immunoglobulin involved with protection at these sites. Bacterial species such as Haemophilus influenzae which produce IgA1 proteases secrete this enzyme into their environment. However, when the gene encoding this protein was isolated from H. influenzae serotype d and introduced into Escherichia coli, the activity was not secreted into the medium but was localized in the periplasmic space. In this study, the IgA1 protease gene (iga) from an H. influenzae serotype c strain was isolated and the gene from the serotype d strain was reisolated. The IgA1 proteases produced in E. coli from these genes were secreted into the growth medium. A sequence linked to the carboxyl terminus of the iga gene but not present in the original clone was shown to be necessary to achieve normal secretion. Tn5 mutagenesis of the additional carboxyl-terminal region was used to define a 75- to 100-kilodalton coding region required for complete secretion of IgA1 protease but nonessential for protease activity. The iga genes were isolated by a plasmid integration-excision procedure. In this method a derivative of plasmid pBR322 containing a portion of the protease gene and the kanamycin resistance determinant of Tn5 was introduced into H. influenzae by transformation. The kanamycin resistance gene was expressed in H. influenzae, but since pBR322 derivatives are unable to replicate in this organism, kanamycin-resistant transformants arose by integration of the plasmid into the Haemophilus chromosome by homologous recombination. The plasmid, together with the adjoining DNA encoding IgA1 protease, was then excised from the chromosome with DNA restriction enzymes, religated, and reintroduced into E. coli. Comparisons between the H. influenzae protease genes were initiated which are useful in locating functional domains of these enzymes.
Collapse
Affiliation(s)
- F J Grundy
- Department of Molecular Biology and Microbiology, Tufts University Health Sciences Campus, Boston, Massachusetts
| | | | | |
Collapse
|
16
|
Stuy JH, Walter RB. Effect of glycerol on plasmid transfer in genetically competent Haemophilus influenzae. MOLECULAR & GENERAL GENETICS : MGG 1986; 203:296-9. [PMID: 3488489 DOI: 10.1007/bf00333969] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The small plasmid pAT4 transformed at characteristically low frequencies those competent Haemophilus influenzae Rd strains that had no DNA homology with this plasmid. Transformation was increased up to 100 times, however, when the recipient cells were exposed to 30% glycerol before plating for transformants. Expression of plasmid resistance markers was then immediate. Ultraviolet irradiation experiments indicated that this large increase was due to release by the glycerol of double-stranded plasmid molecules, presumably from transformasomes. Several other plasmids exhibited the same phenomenon. Dimethylsulfoxide also stimulated plasmid transformation but lysolecithin and high concentrations of NaCl or glucose were ineffective. Glycerol did not increase the efficiency of transformation by either chromosomal DNA or linearized plasmid DNA.
Collapse
|