1
|
|
2
|
Hauser F, Pessi G, Friberg M, Weber C, Rusca N, Lindemann A, Fischer HM, Hennecke H. Dissection of the Bradyrhizobium japonicum NifA+sigma54 regulon, and identification of a ferredoxin gene (fdxN) for symbiotic nitrogen fixation. Mol Genet Genomics 2007; 278:255-71. [PMID: 17569992 DOI: 10.1007/s00438-007-0246-9] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Accepted: 05/07/2007] [Indexed: 10/23/2022]
Abstract
Hierarchically organized regulatory proteins form a complex network for expression control of symbiotic and accessory genes in the nitrogen-fixing soybean symbiont Bradyrhizobium japonicum. A genome-wide survey of regulatory interactions was made possible with the design of a custom-made gene chip. Here, we report the first use of the microarray in a comprehensive and complete characterization of the B. japonicum NifA+sigma(54) regulon which forms an important node in the entire network. Comparative transcript profiles of anaerobically grown wild-type, nifA, and rpoN (1/2) mutant cells were complemented with a position-specific frequency matrix-based search for NifA- and sigma(54)-binding sites plus a simple operon definition. One of the newly identified NifA+sigma(54)-dependent genes, fdxN, encodes a ferredoxin required for efficient symbiotic nitrogen fixation, which makes it a candidate for being a direct electron donor to nitrogenase. The fdxN gene has an unconventional, albeit functional sigma(54 )promoter with the dinucleotide GA instead of the consensus GC motif at position -12. A GC-containing mutant promoter and the atypical GA-containing promoter of the wild type were disparately activated. Expression analyses were also carried out with two other NifA+sigma(54) targets (ectC; ahpC). Incidentally, the tiling-like design of the microarray has helped to arrive at completely revised annotations of the ectC- and ahpC-upstream DNA regions, which are now compatible with promoter locations. Taken together, the approaches used here led to a substantial expansion of the NifA+sigma(54 )regulon size, culminating in a total of 65 genes for nitrogen fixation and diverse other processes.
Collapse
Affiliation(s)
- Felix Hauser
- Institute of Microbiology, Eidgenössische Technische Hochschule, Wolfgang-Pauli-Strasse 10, 8093 Zürich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Mortenson LE, Seefeldt LC, Morgan TV, Bolin JT. The role of metal clusters and MgATP in nitrogenase catalysis. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 67:299-374. [PMID: 8322617 DOI: 10.1002/9780470123133.ch4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- L E Mortenson
- Center for Metalloenzyme Studies, University of Georgia, Athens
| | | | | | | |
Collapse
|
4
|
|
5
|
Nienaber A, Huber A, Göttfert M, Hennecke H, Fischer HM. Three new NifA-regulated genes in the Bradyrhizobium japonicum symbiotic gene region discovered by competitive DNA-RNA hybridization. J Bacteriol 2000; 182:1472-80. [PMID: 10692350 PMCID: PMC94442 DOI: 10.1128/jb.182.6.1472-1480.2000] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The so-called symbiotic region of the Bradyrhizobium japonicum chromosome (C. Kündig, H. Hennecke, and M. Göttfert, J. Bacteriol. 175:613-622, 1993) was screened for the presence of genes controlled by the nitrogen fixation regulatory protein NifA. Southern blots of restriction enzyme-digested cosmids that represent an ordered, overlapping library of the symbiotic region were competitively hybridized with in vitro-labeled RNA from anaerobically grown wild-type cells and an excess of RNA isolated either from anaerobically grown nifA and rpoN mutant cells or from aerobically grown wild-type cells. In addition to the previously characterized nif and fix gene clusters, we identified three new NifA-regulated genes that were named nrgA, nrgB, and nrgC (nrg stands for NifA-regulated gene). The latter two probably form an operon, nrgBC. The proteins encoded by nrgC and nrgA exhibited amino acid sequence similarity to bacterial hydroxylases and N-acetyltransferases, respectively. The product of nrgB showed no significant similarity to any protein with a database entry. Primer extension experiments and expression studies with translational lacZ fusions revealed the presence of a functional -24/-12-type promoter upstream of nrgA and nrgBC and proved the NifA- and RpoN (sigma(54))-dependent transcription of the respective genes. Null mutations introduced into nrgA and nrgBC resulted in mutant strains that exhibited wild-type-like symbiotic properties, including nitrogen fixation, when tested on soybean, cowpea, or mung bean host plants. Thus, the discovery of nrgA and nrgBC further emphasizes the previously suggested role of NifA as an activator of anaerobically induced genes other than the classical nitrogen fixation genes.
Collapse
Affiliation(s)
- A Nienaber
- Institut für Mikrobiologie, Eidgenössische Hochschule, CH-8092 Zürich, Switzerland
| | | | | | | | | |
Collapse
|
6
|
Colón-López MS, Tang H, Tucker DL, Sherman LA. Analysis of the nifHDK operon and structure of the NifH protein from the unicellular, diazotrophic cyanobacterium, Cyanothece strain sp. ATCC 51142(1). BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1473:363-75. [PMID: 10594374 DOI: 10.1016/s0304-4165(99)00196-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Cyanothece sp. ATCC 51142 is a unicellular, diazotrophic cyanobacterium that demonstrates diurnal rhythms for photosynthesis and N(2) fixation, with peaks of O(2) evolution and nitrogenase activity approximately 12 h out of phase. We cloned and sequenced the nifHDK operon, and determined that the amino acid sequences of all three proteins were highly conserved relative to those of other cyanobacteria and bacteria. However, the Fe-protein, encoded by the nifH gene, demonstrated two differences from the related protein in Azotobacter vinelandii, for which a 3-D structure has been determined. First, the Cyanothece Fe-protein contained a 37 amino acid extension at the N-terminus. This approximately 4 kDa addition to the protein appeared to fold as a separate domain, but remained a part of the active protein, as was verified by migration on acrylamide gels. In addition, the Cyanothece Fe-protein had amino acid differences at positions involved in formation of the Fe-protein dimer-dimer contacts in A. vinelandii nitrogenase. There were also changes in residues involved with interaction between the Fe-protein and the MoFe-protein when compared with A. vinelandii. Since the Cyanothece Fe-protein is quickly degraded after activity, it is suggested that the extension and the amino acid alterations were somehow involved in this degradative process.
Collapse
Affiliation(s)
- M S Colón-López
- Department of Biological Sciences, 1392 Lilly Hall of Life Sciences, Purdue University, West Lafayette, IN 47907-1392, USA
| | | | | | | |
Collapse
|
7
|
Barrios H, Valderrama B, Morett E. Compilation and analysis of sigma(54)-dependent promoter sequences. Nucleic Acids Res 1999; 27:4305-13. [PMID: 10536136 PMCID: PMC148710 DOI: 10.1093/nar/27.22.4305] [Citation(s) in RCA: 294] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Promoters recognized by the RNA-polymerase with the alternative sigma factor sigma(54) (Esigma54) are unique in having conserved positions around -24 and -12 nucleotides upstream from the transcriptional start site, instead of the typical -35 and -10 boxes. Here we compile 186 -24/-12 promoter sequences reported in the literature and generate an updated and extended consensus sequence. The use of the extended consensus increases the probability of identifying genuine -24/-12 promoters. The effect of several reported mutations at the -24/-12 elements on RNA-polymerase binding and promoter strength is discussed in the light of the updated consensus.
Collapse
Affiliation(s)
- H Barrios
- Departamento de Reconocimiento Molecular y Bioestructura, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62271, México
| | | | | |
Collapse
|
8
|
Luka S, Stacey G. Molecular studies on a new genetic locus linked to the common nodulation genes in Bradyrhizobium japonicum. FEMS Microbiol Lett 1997; 148:145-51. [PMID: 9084141 DOI: 10.1111/j.1574-6968.1997.tb10280.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
ORFA, an actively transcribed genetic locus linked to the common nodulation genes in Bradyrhizobium japonicum USDA110, was sequenced and analysed. The expression of ORFA is neither dependent on the regulatory proteins NifA, NtrC, NtrB and NodD1 nor on either copy of sigma 54, RpoN1 and RpoN2. The transcriptional start site of ORFA was determined and found to overlap the oppositely transcribed nodZ gene by 224 nucleotides. An appropriately located -10 sequence identical to the consensus proposed for rhizobia and a homologous -35 region were identified upstream of the transcriptional start site. ORFA showed no significant homologies to known sequences in gene databases, and its mutational inactivation had no effect on the nodulation of five legume species. Nevertheless, ORFA seems to be conserved among bradyrhizobia, since an ORFA probe hybridised to total DNA extracted from other Bradyrhizobium strains.
Collapse
Affiliation(s)
- S Luka
- Department of Microbiology, University of Tennessee, Knoxville 37996-0845, USA.
| | | |
Collapse
|
9
|
Kündig C, Hennecke H, Göttfert M. Correlated physical and genetic map of the Bradyrhizobium japonicum 110 genome. J Bacteriol 1993; 175:613-22. [PMID: 8423135 PMCID: PMC196196 DOI: 10.1128/jb.175.3.613-622.1993] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
We describe a compilation of 79 known genes of Bradyrhizobium japonicum 110, 63 of which were placed on a correlated physical and genetic map of the chromosome. Genomic DNA was restricted with enzymes PacI, PmeI, and SwaI, which yielded two, five, and nine fragments, respectively. Linkage of some of the fragments was established by performing Southern blot hybridization experiments. For probes we used isolated, labelled fragments that were produced either by PmeI or by SwaI. Genes were mapped on individual restriction fragments by performing gene-directed mutagenesis. The principle of this method was to introduce recognition sites for all three restriction enzymes mentioned above into or very near the desired gene loci. Pulsed-field gel electrophoresis of restricted mutant DNA then resulted in an altered fragment pattern compared with wild-type DNA. This allowed us to identify overlapping fragments and to determine the exact position of any selected gene locus. The technique was limited only by the accuracy of the fragment size estimates. After linkage of all of the restriction fragments we concluded that the B. japonicum genome consists of a single, circular chromosome that is approximately 8,700 kb long. Genes directly concerned with nodulation and symbiotic nitrogen fixation are clustered in a chromosomal section that is about 380 kb long.
Collapse
Affiliation(s)
- C Kündig
- Mikrobiologisches Institut, Eidgenössische Technische Hochschule, ETH-Zentrum, Zürich, Switzerland
| | | | | |
Collapse
|
10
|
Ramseier TM, Göttfert M. Codon usage and G + C content in Bradyrhizobium japonicum genes are not uniform. Arch Microbiol 1991; 156:270-6. [PMID: 1793334 DOI: 10.1007/bf00262997] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
To date, the sequences of 45 Bradyrhizobium japonicum genes are known. This provides sufficient information to determine their codon usage and G + C content. Surprisingly, B. japonicum nodulation and NifA-regulated genes were found to have a less biased codon usage and a lower G + C content than genes not belonging to these two groups. Thus, the coding regions of nodulation genes and NifA-regulated genes could hardly be identified in codon preference plots whereas this was not difficult with other genes. The codon frequency table of the highly biased genes was used in a codon preference plot to analyze the RSRj alpha 9 sequence which is an insertion sequence (IS)-like element. The plot helped identify a new open reading frame (ORF355) that escaped previous detection because of two sequencing errors. These were now corrected. The deduced gene product of ORF355 in RSRj alpha 9 showed extensive similarity to a putative protein encoded by an ORF in the T-DNA of Agrobacterium rhizogenes. The DNA sequences bordering both ORFs showed inverted repeats and potential target site duplications which supported the assumption that they were IS-like elements.
Collapse
Affiliation(s)
- T M Ramseier
- Mikrobiologisches Institut, Eidgenössische Technische Hochschule, ETH-Zentrum, Zürich, Switzerland
| | | |
Collapse
|
11
|
Aguilar OM, Taormino J, Thöny B, Ramseier T, Hennecke H, Szalay AA. The nifEN genes participating in FeMo cofactor biosynthesis and genes encoding dinitrogenase are part of the same operon in Bradyrhizobium species. MOLECULAR & GENERAL GENETICS : MGG 1990; 224:413-20. [PMID: 2266945 DOI: 10.1007/bf00262436] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The nucleotide sequences of genes homologous to the Klebsiella pneumoniae nifEN genes have been determined in Bradyrhizobium japonicum 110. The coding regions for the nifE and nifN consist, respectively, of 1641 and 1407 nucleotides. The nifD gene (coding for the beta-subunit of dinitrogenase) and nifE are linked, and separated by 95 nucleotides. In the region of 12 nucleotides that separates nifE from nifN the stop codon for nifE overlaps the putative ribosome binding site for nifN. In contrast to Klebsiella and Azotobacter vinelandii, the B. japonicum nifEN genes are linked to the nifDK genes in the same operon. Comparison of dinitrogenase polypeptides (nifDK products) and the polypeptides of the nifE and nifN genes reveals considerable homology between nifD and nifE, and between nifK and nifN. Several protein domains, containing highly conserved cysteine residues, are conserved among the gene products of nifD, nifK, nifE and nifN. This result allows us to propose a probable evolutionary pathway for the common origin of these genes.
Collapse
Affiliation(s)
- O M Aguilar
- Plant Molecular Genetics and Biotechnology Center, University of Alberta, Edmonton, Canada
| | | | | | | | | | | |
Collapse
|
12
|
|
13
|
Abstract
The symbiotic nitrogen fixation genes (nif, fix) of Bradyrhizobium japonicum, the root nodule endosymbiont of soybean, are organized in at least two separate chromosomal gene clusters. These genes code for proteins of the nitrogenase complex, for proteins involved in their assembly with cofactors and for putative electron transport functions. One gene, nifA, codes for a transcriptional regulatory protein that plays a central role in the control of expression of the other genes in response to the cellular oxygen status. Only at low partial pressures of O2 will the target promoters be activated by NifA.
Collapse
Affiliation(s)
- H Hennecke
- Mikrobiologisches Institut, Eidgenössische Technische Hochschule, ETH-Zentrum, Zürich, Switzerland
| |
Collapse
|
14
|
Souillard N, Sibold L. Primary structure, functional organization and expression of nitrogenase structural genes of the thermophilic archaebacterium Methanococcus thermolithotrophicus. Mol Microbiol 1989; 3:541-51. [PMID: 2503679 DOI: 10.1111/j.1365-2958.1989.tb00200.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Two regions of homology to Anabaena nifH (nitrogenase Fe protein) were detected in the total DNA of the thermophilic nitrogen-fixing archaebacterium Methanococcus thermolithotrophicus. A 2.8 kb HindIII fragment carrying one of these regions was previously cloned and shown to contain a nifH gene (Souillard et al., 1988) now referred to as ORFnifH2. A 3.4 kb PstI fragment and an overlapping 3.8 kb BglII fragment, containing the second region of homology, were cloned, and a DNA region of 4073 bp was sequenced. It contained four complete open reading frames (ORFs) (ORF nifH1, ORF105, ORF128, ORFnifD) and two truncated ORFs (ORFnifK and ORF96). Five ORFs were transcribed in the same direction in the order of ORFnifH1-ORF105-ORF128-ORFnifD-ORFnifk. ORFnifH1, ORFnifD and ORFnifK were assigned from their similarity to eubacterial nifH and nifDK (nitrogenase MoFe protein) genes. Transcription studies showed that ORFnifH1 and ORFnifD were expressed only under nitrogen-fixation conditions, whereas no ORFnifH2 mRNA was detected under the same conditions. A DNA probe containing ORFnifH1 hybridized with a 1.8 kb mRNA, as detected by a Northern blotting experiment. A transcriptional start site was localized 87 and 88 bp upstream from the ATG codon of ORFnifH1. This site is preceded, 21 bp upstream, by the sequence 5'-TTTATATA-3' already found at the same position in several archaebacterial promoters. ORFnifH1 mRNA was too small to encode ORFnifDK. This was confirmed by the fact that another transcription start site was localized 85 bp upstream from the ATG codon of ORFnifD.
Collapse
Affiliation(s)
- N Souillard
- Département des Biotechnologies, Institut Pasteur, Paris, France
| | | |
Collapse
|
15
|
Rawlings DE. Sequence and structural analysis of the alpha- and beta-dinitrogenase subunits of Thiobacillus ferrooxidans. Gene 1988; 69:337-43. [PMID: 3234769 DOI: 10.1016/0378-1119(88)90444-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The structural genes (nifD and nifK) for the alpha and beta subunits of the molybdenum-iron (MoFe) protein of the Thiobacillus ferrooxidans dinitrogenase have been sequenced. The Mr values deduced from the nucleotide sequences are 54,919 and 57,901 for the alpha and beta subunits, respectively. The amino acid sequences of both subunits were quantitatively compared with the equivalent subunits from other bacteria. Distinct areas of amino acid homology were found between the alpha and beta subunits of T. ferrooxidans.
Collapse
Affiliation(s)
- D E Rawlings
- Department of Microbiology, University of Cape Town, South Africa
| |
Collapse
|
16
|
Chang CL, Davis LC, Rider M, Takemoto DJ. Characterization of nifH mutations of Klebsiella pneumoniae. J Bacteriol 1988; 170:4015-22. [PMID: 2457577 PMCID: PMC211404 DOI: 10.1128/jb.170.9.4015-4022.1988] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Nucleotide changes in the nifH gene of Klebsiella pneumoniae were identified by DNA cloning and sequencing of six selected mutant strains. The strains were UN60, C-640-GC----TGC; UN116, C-67-TC----TTC; UN117, G-688-AG----AAG; UN1041, CG-302-C----CAC; UN1678, GC-713-C----GTC; and UN1795, G-439-AG----AAG. Their corresponding amino acid substitutions were UN60, Arg-214----Cys; UN116, Leu-23----Phe; UN117, Glu-230----Lys; UN1041, Arg-101----His; UN1678, Ala-238----Val; and UN1795, Glu-147----Lys. Results from Western and Northern blots of the mutant strains showed significant reductions in both steady-state levels of the accumulated Fe protein and nifH mRNA during derepression in the presence of serine. The relative specific activities of the nitrogenases in strains UN60, UN1041, and UN1795 were less than 2% of the wild type, whereas those in UN116, UN117, and UN1678 were between 28 and 40% of the wild type during enhanced derepression with serine. The residues of Arg-101 (UN1041), Glu-147 (UN1795), and Arg-214 (UN60) were invariant in sequences of a dozen diazotrophs that have been examined thus far. In UN1041, in which Arg-101 of the Fe protein was replaced by His, the Fe protein had a larger apparent molecular weight than that of the other strains on sodium dodecyl sulfate-gel electrophoresis, as detected with rabbit antiserum raised against the C-terminal peptide of the wild-type Fe protein. The reduced levels of nifH mRNA in point mutant strains suggests that nifH (the gene or gene product) may be involved in self-regulation. mRNA transcripts of different sizes were detected when a nifH-specific probe, CCKp2003, was used in the Northern blot hybridization.
Collapse
Affiliation(s)
- C L Chang
- Department of Biochemistry, Kansas State University, Manhattan 66506
| | | | | | | |
Collapse
|
17
|
Auling G, Busse J, Hahn M, Hennecke H, Kroppenstedt RM, Probst A, Stackebrandt E. Phylogenetic Heterogeneity and Chemotaxonomic Properties of Certain Gram-negative Aerobic Carboxydobacteria. Syst Appl Microbiol 1988. [DOI: 10.1016/s0723-2020(88)80011-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Lewin A, Rosenberg C, H Meyer ZA, Wong CH, Nelson L, Manen JF, Stanley J, Dowling DN, Denarie J, Broughton WJ. Multiple host-specificity loci of the broad host-range Rhizobium sp. NGR234 selected using the widely compatible legume Vigna unguiculata. PLANT MOLECULAR BIOLOGY 1987; 8:447-459. [PMID: 24301307 DOI: 10.1007/bf00017990] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/1986] [Revised: 01/29/1987] [Accepted: 02/17/1987] [Indexed: 06/02/2023]
Abstract
Specificity in legume-Rhizobium symbiosis depends on plant and rhizobial genes. As our objective was to study broad host-range determinants of rhizobia, we sought a legume and a Rhizobium with the lowest possible specificity. By inoculating 12 different legumes with a heterogenous collection of 35 fast-growing rhizobia, we found Rhizobium sp. NGR234 to be the Rhizobium and Vigna unguiculata to be the plant with the lowest specificities. Transfer of cloned fragments of the Sym-plasmid pNGR234a into heterologous rhizobia, screening for extension of host-range of the transconjugants to include V. unguiculata, and restriction mapping of the Hsn- and overlapping clones, proved that there were at least three distinct Hsn-regions (HsnI, II, and III) on pNGR234a. HsnI is located next to nodD, HsnII is linked to nifKDH and HsnIII to nodC. In addition to nodulation of Vigna, HsnI conferred upon the transconjugants the ability to nodulate Glycine max, Macroptilium atropurpureum and Psophocarpus tetragonolobus. All three Hsn-regions, when transferred to the appropriate recipients, induced root-hair-curling on M. atropurpureum. Hsn-region III was able to complement a mutation in the host-range gene nodH of R. meliloti strain 2011. Homology to "nod-box"-sequences could be shown only for the sub-clones containing HsnII and HsnIII, thus suggesting different regulation mechanisms for HsnI and HsnII/III.
Collapse
Affiliation(s)
- A Lewin
- Laboratoire de Biologie Moléculaire des Plantes Supérieures, Université de Genève, 1 chemin de l'Impératrice, 1292, Chambésy/Genève, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Ebeling S, Hahn M, Fischer HM, Hennecke H. Identification of nifE-, nifN- and nifS-like genes in Bradyrhizobium japonicum. ACTA ACUST UNITED AC 1987. [DOI: 10.1007/bf00331622] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Denèfle P, Kush A, Norel F, Paquelin A, Elmerich C. Biochemical and genetic analysis of the nifHDKE region of Rhizobium ORS571. ACTA ACUST UNITED AC 1987. [DOI: 10.1007/bf00331590] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
21
|
Trifonov EN. Translation framing code and frame-monitoring mechanism as suggested by the analysis of mRNA and 16 S rRNA nucleotide sequences. J Mol Biol 1987; 194:643-52. [PMID: 2443708 DOI: 10.1016/0022-2836(87)90241-5] [Citation(s) in RCA: 179] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Protein coding sequences carry an additional message in the form of a universal three-base periodical pattern (G-non-G-N)n, which is expressed as a strong preference for guanines in the first positions of the codons in mRNA and lack of guanines in the second positions. This periodicity appears immediately after the initiation codon and is maintained along the mRNA as far as the termination triplet, where it disappears abruptly. Known cases of ribosome slippage during translation (leaky frameshifts, out-of-frame gene fusion) are analyzed. At the sites of the slippage the G-periodical pattern is found to be interrupted. It reappears downstream from the slippage sites, in a new frame that corresponds to the new translation frame. This suggests that the (G-non-G-N)n pattern in the mRNA may be responsible for monitoring the correct reading frame during translation. Several sites with complementary C-periodical structure are found in the Escherichia coli 16 S rRNA sequence. Only three of them are exposed to various interactions at the surface of the small ribosomal subunit: (517)gcCagCagCegC, (1395)caCacCgcC and (1531)auCacCucC. A model of a frame-monitoring mechanism is suggested based on the weak complementarity of G-periodical mRNA to the C-periodical sites in the ribosomal RNA. The model is strongly supported by the fact that the hypothetical frame-monitoring sites in the 16 S rRNA that are derived from the nucleotide sequence analysis are also the only sites known to be actually involved or implicated in rRNA-mRNA interactions.
Collapse
Affiliation(s)
- E N Trifonov
- Department of Polymer Research, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
22
|
NIF, FIX and NOD Gene Clusters in Bradyrhizobium Japonicum, and NifA-Mediated Control of Symbiotic Nitrogen Fixation. ACTA ACUST UNITED AC 1987. [DOI: 10.1007/978-94-009-4482-4_48] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
23
|
Acuña G, Alvarez-Morales A, Hahn M, Hennecke H. A vector for the site-directed, genomic integration of foreign DNA into soybean root-nodule bacteria. PLANT MOLECULAR BIOLOGY 1987; 9:41-50. [PMID: 24276796 DOI: 10.1007/bf00017985] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/1987] [Accepted: 04/01/1987] [Indexed: 06/02/2023]
Abstract
A non-essential DNA region carrying two different repeated sequences (RSβ3 and RSα9) adjacent to a nitrogen fixation (nif) gene cluster has been identified previously in Bradyrhizobium japonicum strain 110. In closely related B. japonicum strains a similar genomic arrangement was found. We constructed a mobilizable plasmid vector carrying RSβ3 and RSα9, and a kanamycin resistance cassette (nptII gene) plus suitable cloning sites inserted between the two repeated sequences. Using this vector (pRJ1035), stable integration of a lacZ gene fusion into the B. japonicum genomic RS region was achieved. The resulting strain yielded more than 10-fold higher β-galactosidase activity in soybean root nodules as compared to a B. japonicum strain carrying the same lacZ fusion on a pRK290-based plasmid.
Collapse
Affiliation(s)
- G Acuña
- Mikrobiologisches Institut, Eidgenössische Technische Hochschule, ETH-Zentrum, Universitätstrasse 2, CH-8092, Zürich, Switzerland
| | | | | | | |
Collapse
|
24
|
Noti JD, Folkerts O, Turken AN, Szalay AA. Organization and characterization of genes essential for symbiotic nitrogen fixation from Bradyrhizobium japonicum I110. J Bacteriol 1986; 167:774-83. [PMID: 3462181 PMCID: PMC215941 DOI: 10.1128/jb.167.3.774-783.1986] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
A total of 96 independent Tn5 insertions within a 39-kilobase-pair (kbp) segment of chromosomal DNA containing the three structural genes for nitrogenase (nifH, nifD, and nifK) from Bradyhizobium japonicum I110 were obtained in Escherichia coli and transferred to the wild-type strain by marker exchange. Individual transconjugants containing a Tn5 insertion were inoculated onto Glycine max cv. Wilkin (soybeans) and analyzed for their effect on symbiotic nitrogen fixation. In addition to the three structural genes, genes essential for nitrogen fixation (fix genes) were located in three separate regions: 9 kbp upstream of the nifDK operon; 1.5 kbp downstream of the nifDK operon; 4.5 kbp upstream of nifH. All of the fix::Tn5 insertion strains formed nodules which contained low or undetectable levels of nitrogenase activity. Bacteroids isolated from these nodules had approximately the same levels of the nifDK and nifH transcripts as those detectable from nodules formed by the wild-type strain. Western blot analysis of bacteroid proteins from nodules formed by the fix::Tn5 mutants or the wild-type strain showed the presence of similar levels of the nitrogenase protein subunits. The region upstream of nifH was characterized further by DNA sequence analysis and was shown to contain the nifB gene. The coding sequence of the nifB gene consisted of 1,494 nucleotides and was preceded by putative promoter (5' GTGG-10 base pairs [bp] TTGCA 3') and upstream activator (5' TGT-4 bp-T-5 bp-ACA 3') sequences.
Collapse
|
25
|
Yun AC, Noti JD, Szalay AA. Nitrogenase promoter-lacZ fusion studies of essential nitrogen fixation genes in Bradyrhizobium japonicum I110. J Bacteriol 1986; 167:784-91. [PMID: 3462182 PMCID: PMC215942 DOI: 10.1128/jb.167.3.784-791.1986] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
DNA fragments containing either the nifD or nifH promoter and 5' structural gene sequences from Bradyrhizobium japonicum I110 were fused in frame to the lacZ gene. Stable integration of these nif promoter-lacZ fusions by homologous double reciprocal crossover into a symbiotically nonessential region of the B. japonicum chromosome provided an easy assay for the effects of potential nif regulatory mutants. The level of beta-galactosidase activity expressed from these two nif promoter-lacZ fusions was assayed in bacteroids of B. japonicum I110 wild type and Fix mutants generated by transposon Tn5 mutagenesis and identified in the accompanying paper. No nif-positive regulatory mutants were identified from among an array of Fix- mutants in which Tn5 was inserted 9 kilobase pairs upstream of the nifDK operon and within the 18-kilobase-pair region separating the nifDK and nifH operons. This result indicates that there are no genes in these regions involved in the regulation of nitrogenase structural gene expression. Interestingly, the level of beta-galactosidase activity expressed from the nifH promoter was twice that expressed from the nifD promoter, suggesting that the normal cellular level of the nifH gene product in bacteroids is in a 2:1 ratio with the nifD gene product instead of in the 1:1 stoichiometry of the nitrogenase enzyme complex.
Collapse
|
26
|
Chen KC, Chen JS, Johnson JL. Structural features of multiple nifH-like sequences and very biased codon usage in nitrogenase genes of Clostridium pasteurianum. J Bacteriol 1986; 166:162-72. [PMID: 3457003 PMCID: PMC214572 DOI: 10.1128/jb.166.1.162-172.1986] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The structural gene (nifH1) encoding the nitrogenase iron protein of Clostridium pasteurianum has been cloned and sequenced. It is located on a 4-kilobase EcoRI fragment (cloned into pBR325) that also contains a portion of nifD and another nifH-like sequence (nifH2). C. pasteurianum nifH1 encodes a polypeptide (273 amino acids) identical to that of the isolated iron protein, indicating that the smaller size of the C. pasteurianum iron protein does not result from posttranslational processing. The 5' flanking region of nifH1 or nifH2 does not contain the nif promoter sequences found in several gram-negative bacteria. Instead, a sequence resembling the Escherichia coli consensus promoter (TTGACA-N17-TATAAT) is present before C. pasteurianum nifH2, and a TATAAT sequence is present before C pasteurianum nifH1. Codon usage in nifH1, nifH2, and nifD (partial) is very biased. A preference for A or U in the third position of the codons is seen. nifH2 could encode a protein of 272 amino acid residues, which differs from the iron protein (nifH1 product) in 23 amino acid residues (8%). Another nifH-like sequence (nifH3) is located on a nonadjacent EcoRI fragment and has been partially sequenced. C. pasteurianum nifH2 and nifH3 may encode proteins having several amino acids that are conserved in other proteins but not in C. pasteurianum iron protein, suggesting a possible role for the multiple nifH-like sequences of C. pasteurianum in the evolution of nifH. Among the nine sequenced iron proteins, only the C. pasteurianum protein lacks a conserved lysine residue which is near the extended C terminus of the other iron proteins. The absence of this positive charge in the C. pasteurianum iron protein might affect the cross-reactivity of the protein in heterologous systems.
Collapse
|
27
|
Buck M, Miller S, Drummond M, Dixon R. Upstream activator sequences are present in the promoters of nitrogen fixation genes. Nature 1986. [DOI: 10.1038/320374a0] [Citation(s) in RCA: 244] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
28
|
Schumann JP, Waitches GM, Scolnik PA. A DNA fragment hybridizing to a nif probe in Rhodobacter capsulatus is homologous to a 16S rRNA gene. Gene 1986; 48:81-92. [PMID: 3557130 DOI: 10.1016/0378-1119(86)90354-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We have sequenced the Rhodobacter capsulatus nifH and nifD genes. The nifH gene, which codes for the dinitrogenase reductase protein, is 894 bp long and codes for a polypeptide of predicted Mr 32,412. The nifD gene, which codes for the alpha subunit of dinitrogenase, is 1,500 bp long and codes for a protein of predicted Mr 56,113. A 776-bp BglII-XhoI fragment containing only nif sequences was used as a hybridization probe against R. capsulatus genomic DNA. Two HindIII fragments, 11.8 kb and 4.7 kb in length, hybridize to this probe. Both fragments have been cloned from a cosmid library. The 11.8-kb fragment contains the nifH, D and K genes, as previously demonstrated (Scolnik and Haselkorn, 1984). In this paper we present evidence that suggests that the 4.7-kb HindIII fragment contains a gene coding for 16S rRNA, and that although homology between nif and this fragment can be observed in filter hybridization experiments, a second copy of the nif structural genes seems not to be present in this region.
Collapse
|
29
|
Hennecke H, Kaluza K, Th�ny B, Fuhrmann M, Ludwig W, Stackebrandt E. Concurrent evolution of nitrogenase genes and 16S rRNA in Rhizobium species and other nitrogen fixing bacteria. Arch Microbiol 1985. [DOI: 10.1007/bf00491901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
30
|
Hybridization of DNA from methanogenic bacteria with nitrogenase structural genes (nifHDK). ACTA ACUST UNITED AC 1985. [DOI: 10.1007/bf00383310] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Watson JM, Schofield PR. Species-specific, symbiotic plasmid-located repeated DNA sequences in Rhizobium trifolii. ACTA ACUST UNITED AC 1985. [DOI: 10.1007/bf00330270] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Mapping of Rhizobium japonicum nifB-,fixBC-, and fixA-like genes and identification of the fixA promoter. ACTA ACUST UNITED AC 1985. [DOI: 10.1007/bf00330274] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
33
|
Kaluza K, Hahn M, Hennecke H. Repeated sequences similar to insertion elements clustered around the nif region of the Rhizobium japonicum genome. J Bacteriol 1985; 162:535-42. [PMID: 2985537 PMCID: PMC218881 DOI: 10.1128/jb.162.2.535-542.1985] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Two different repeated sequences (RSs) were discovered in the Rhizobium japonicum genome: RSRj alpha is 1126 base pairs long and is repeated 12 times; RSRj beta is approximately 950 base pairs long and is repeated at least 6 times. Their arrangement in root nodule bacteroid DNA is the same as in DNA from bacteria grown in culture. Deletion analysis showed that many copies of alpha and beta are clustered around the nitrogenase genes nifDK and nifH, or, in general, they are found within a genomic region harboring genes that are nonessential for growth. One copy each of alpha and beta are located upstream of nifDK and are adjacent to each other. Neither of them, however, is involved in the expression of nifDK. Nucleotide sequence analysis of three copies of RS alpha revealed many characteristics of procaryotic insertion sequence elements: potential inverted repeats at their ends, potential target site duplication, and large open reading frames. Despite this, their genomic positions appear to be stable. One possible function of these RSs is in deletion formation probably via recombination between them.
Collapse
|
34
|
Alvarez-Morales A, Hennecke H. Expression of Rhizobium japonicum nifH and nifDK operons can be activated by the Klebsiella pneumonia nifA protein but not by the product of ntrC. MOLECULAR & GENERAL GENETICS : MGG 1985; 199:306-14. [PMID: 2862569 DOI: 10.1007/bf00330273] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Rhizobium japonicum nifH'- and nifD'-'lacZ fusions were constructed using the translational fusion vector pMC1403. beta-Galactosidase activities from these fusion plasmids were measured in wild-type, ntrA- and delta(ntrBC) Escherichia coli strains carrying plasmids which overproduced the Klebsiella pneumoniae nifA or ntrC gene products. In contrast to results reported in R. meliloti (ref. in the text) neither nifH nor nifD promoters were activated by the ntrC product. In the presence of nifA gene product, however, beta-galactosidase activity from both nifH and nifD fusion plasmids increased substantially. NifA-mediated activation of these Rhizobium promoters was temperature sensitive and was dependent on the host ntrA product. In order to determine the point at which the fusion transcripts were initiated, RNA was extracted from the wild-type E. coli strain carrying each of the R. japonicum fusion plasmids plus the nifA overproducing plasmid. This RNA was used to perform S1 mapping experiments. NifA-mediated transcription from both R. japonicum promoters, began at the same point as previously determined in soybean root-nodule bacteroids (ref. in the text). The results obtained suggest that there may be differences in the mode of regulation between members of the fast- and slow-growing rhizobia. Also, the results of the S1 mapping experiments indicate that activation of the R. japonicum nitrogenase structural genes may be similar to the activation of nif genes in K. pneumoniae thus raising the possibility that R. japonicum may contain nifA and ntrA-like genes.
Collapse
|
35
|
Structural and functional homology between the α and β subunits of the nitrogenase MoFe protein as revealed by sequencing the Rhizobium japonicum nifK gene. ACTA ACUST UNITED AC 1985. [DOI: 10.1007/bf00332937] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
36
|
Brigle KE, Newton WE, Dean DR. Complete nucleotide sequence of the Azotobacter vinelandii nitrogenase structural gene cluster. Gene 1985; 37:37-44. [PMID: 3863780 DOI: 10.1016/0378-1119(85)90255-0] [Citation(s) in RCA: 134] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
DNA fragments coding for the structural genes for Azotobacter vinelandii nitrogenase have been isolated and sequenced. These genes, nifH, nifD and nifK, code for the iron (Fe) protein and the alpha and beta subunits of the molybdenum-iron (MoFe) protein, respectively. They are arranged in the order: promoter:nifH:nifD:nifK. There are 129 nucleotides separating nifH and nifD and 101 nucleotides separating nifD and nifK. The amino acid (aa) sequences deduced from the nucleotide sequences are discussed in relation to the prosthetic group-binding regions of the nifHDK-encoded polypeptides.
Collapse
|
37
|
|
38
|
Linkage map of the Rhizobium japonicum nifH and nifDK operons encoding the polypeptides of the nitrogenase enzyme complex. ACTA ACUST UNITED AC 1984. [DOI: 10.1007/bf00436206] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|