1
|
Sandhu S, Sou IF, Hunter JE, Salmon L, Wilson CL, Perkins ND, Hunter N, Davies OR, McClurg UL. Centrosome dysfunction associated with somatic expression of the synaptonemal complex protein TEX12. Commun Biol 2021; 4:1371. [PMID: 34880391 PMCID: PMC8654964 DOI: 10.1038/s42003-021-02887-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 11/12/2021] [Indexed: 12/22/2022] Open
Abstract
The synaptonemal complex (SC) is a supramolecular protein scaffold that mediates chromosome synapsis and facilitates crossing over during meiosis. In mammals, SC proteins are generally assumed to have no other function. Here, we show that SC protein TEX12 also localises to centrosomes during meiosis independently of chromosome synapsis. In somatic cells, ectopically expressed TEX12 similarly localises to centrosomes, where it is associated with centrosome amplification, a pathology correlated with cancer development. Indeed, TEX12 is identified as a cancer-testis antigen and proliferation of some cancer cells is TEX12-dependent. Moreover, somatic expression of TEX12 is aberrantly activated via retinoic acid signalling, which is commonly disregulated in cancer. Structure-function analysis reveals that phosphorylation of TEX12 on tyrosine 48 is important for centrosome amplification but not for recruitment of TEX12 to centrosomes. We conclude that TEX12 normally localises to meiotic centrosomes, but its misexpression in somatic cells can contribute to pathological amplification and dysfunction of centrosomes in cancers. Sandhu et al. report that the synaptonemal complex (SC) protein, TEX12, localises to centrosomes independently of the SC during meiosis. They also show that it provokes centrosome amplification in somatic cells, a pathology associated with cancer development.
Collapse
Affiliation(s)
- Sumit Sandhu
- Howard Hughes Medical Institute, Department of Microbiology and Molecular Genetics, University of California, Davis, CA, 95616, USA
| | - Ieng F Sou
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Jill E Hunter
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Lucy Salmon
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Caroline L Wilson
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Neil D Perkins
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Neil Hunter
- Howard Hughes Medical Institute, Department of Microbiology and Molecular Genetics, University of California, Davis, CA, 95616, USA.
| | - Owen R Davies
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK. .,Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh, EH9 3BF, UK.
| | - Urszula L McClurg
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK.
| |
Collapse
|
2
|
Meier I, Brkljacic J. The Arabidopsis nuclear pore and nuclear envelope. THE ARABIDOPSIS BOOK 2010; 8:e0139. [PMID: 22303264 PMCID: PMC3244964 DOI: 10.1199/tab.0139] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The nuclear envelope is a double membrane structure that separates the eukaryotic cytoplasm from the nucleoplasm. The nuclear pores embedded in the nuclear envelope are the sole gateways for macromolecular trafficking in and out of the nucleus. The nuclear pore complexes assembled at the nuclear pores are large protein conglomerates composed of multiple units of about 30 different nucleoporins. Proteins and RNAs traffic through the nuclear pore complexes, enabled by the interacting activities of nuclear transport receptors, nucleoporins, and elements of the Ran GTPase cycle. In addition to directional and possibly selective protein and RNA nuclear import and export, the nuclear pore gains increasing prominence as a spatial organizer of cellular processes, such as sumoylation and desumoylation. Individual nucleoporins and whole nuclear pore subcomplexes traffic to specific mitotic locations and have mitotic functions, for example at the kinetochores, in spindle assembly, and in conjunction with the checkpoints. Mutants of nucleoporin genes and genes of nuclear transport components lead to a wide array of defects from human diseases to compromised plant defense responses. The nuclear envelope acts as a repository of calcium, and its inner membrane is populated by functionally unique proteins connected to both chromatin and-through the nuclear envelope lumen-the cytoplasmic cytoskeleton. Plant nuclear pore and nuclear envelope research-predominantly focusing on Arabidopsis as a model-is discovering both similarities and surprisingly unique aspects compared to the more mature model systems. This chapter gives an overview of our current knowledge in the field and of exciting areas awaiting further exploration.
Collapse
Affiliation(s)
- Iris Meier
- Department of Plant Cellular and Molecular Biology and Plant Biotechnology Center, The Ohio State University, 520 Aronoff Laboratory, 318 W 12th Avenue, Columbus, OH 43210
- Address correspondence to
| | - Jelena Brkljacic
- Department of Plant Cellular and Molecular Biology and Plant Biotechnology Center, The Ohio State University, 520 Aronoff Laboratory, 318 W 12th Avenue, Columbus, OH 43210
| |
Collapse
|
3
|
Nakayama T, Ishii T, Hotta T, Mizuno K. Radial microtubule organization by histone H1 on nuclei of cultured tobacco BY-2 cells. J Biol Chem 2008; 283:16632-40. [PMID: 18184653 DOI: 10.1074/jbc.m705764200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In acentriolar higher plant cells, the surface of the nucleus acts as a microtubule-organizing center, substituting for the centrosome. However, the protein factors responsible for this microtubule organization are unknown. The nuclear surfaces of cultured tobacco BY-2 cells possess particles that generate microtubules. We attempted to isolate the proteins in these particles to determine their role in microtubule organization. When incubated with plant or mammalian tubulin, some, but not all, of the isolated nuclei generated abundant microtubules radially from their surfaces. The substance to induce the formation of radial microtubules was confirmed by SDS-PAGE to be a protein with apparent molecular mass of 38 kDa. Partial analysis of the amino acid sequences of the peptide fragments suggested it was a histone H1-related protein. Cloning and cDNA sequence analysis confirmed this and revealed that when the recombinant protein was incubated with tubulin, it could organize microtubules as well as the 38-kDa protein. Histone H1 and tubulin formed complexes immediately, even on ice, and then clusters of these structures were formed. These clusters generated radial microtubules. This microtubule-organizing property was confined to histone H1; all other core histones failed to act as organizers. On immunoblot analysis, rabbit antibodies raised against the 38-kDa protein cross-reacted with histone H1 proteins from tobacco BY-2 cells. These antibodies virtually abolished the ability of the nucleus to organize radial microtubules. Indirect immunofluorescence showed that the antigen was distributed at the nuclear plasm and particularly at nuclear periphery independently from DNA.
Collapse
Affiliation(s)
- Takateru Nakayama
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | | | | | | |
Collapse
|
4
|
Abstract
During meiotic prophase I, traits are reassorted as a result of a highly organized process involving sister chromatid cohesion, homologous chromosome alignment, pairing, synapsis, and recombination. In the past two years, a number of components involved in this pathway, including Structure Maintenance of Chromosomes (SMC), MRE11, the RAD51 homologs, BRCA2, MSH4, MER3, and ZIP1, have been characterized in plants; in addition, several genes that encode components unique to plants, such as POOR HOMOLOGOUS SYNAPSIS 1 and AMEIOTIC 1, have been cloned. Based on these recent data, essentially from maize and Arabidopsis, we discuss the conserved and plant-specific aspects of meiosis commitment and meiotic prophase I features.
Collapse
Affiliation(s)
- Olivier Hamant
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA.
| | | | | |
Collapse
|
5
|
Brandizzi F, Irons SL, Evans DE. The plant nuclear envelope: new prospects for a poorly understood structure. THE NEW PHYTOLOGIST 2004; 163:227-246. [PMID: 33873618 DOI: 10.1111/j.1469-8137.2004.01118.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The nuclear envelope (NE) is one of the least characterized cellular structures in plant cells. In particular, knowledge of its dynamic behaviour during the cell cycle and of its protein composition is limited. This review summarizes current views on the plant NE and highlights fundamental differences with other organisms. We also introduce the power of new technology available to investigate the NE and how this has already begun to revolutionize our knowledge of the biology of the plant NE. Contents Summary 227 I. Introduction 227 II. The membranes of the nuclear envelope 228 III. Functions of the nuclear envelope 231 IV. Proteins associated with the nuclear envelope 236 V. New tools for studying the nuclear envelope 239 VI. Conclusions and future prospects 241 Acknowledgements 242 References 242.
Collapse
Affiliation(s)
- Federica Brandizzi
- Biology Department, University of Saskatchewan, Saskatoon, SK, Canada, S7N 5E2
| | - Sarah L Irons
- Research School of Biological and Molecular Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - David E Evans
- Research School of Biological and Molecular Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| |
Collapse
|
6
|
Abstract
Higher plants have developed a unique pathway to control their cytoskeleton assembly and dynamics. In most other eukaryotes, microtubules are nucleated in vivo at the nucleation and organizing centers and are involved in the establishment of polarity. Although the major cytoskeletal components are common to plant and animal cells, which suggests conserved regulation mechanisms, plants do not possess centrosome-like organelles. Nevertheless, they are able to build spindles and have developed their own specific cytoskeletal arrays: the cortical arrays, the preprophase band, and the phragmoplast, which all participate in basic developmental processes, as shown by defective mutants. New approaches provide essential clues to understanding the fundamental mechanisms of microtubule nucleation. Gamma-tubulin, which is considered to be the universal nucleator, is the essential component of microtubule-nucleating complexes identified as gamma-tubulin ring complexes (gamma-TuRC) in centriolar cells. A gamma-tubulin small complex (gamma-TuSC) forms a minimal nucleating unit recruited at specific sites of activity. These components--gamma-tubulin, Spc98p, and Spc97p--are present in higher plants. They play a crucial role in microtubule nucleation at the nuclear surface, which is known as the main functional plant microtubule-organizing center, and also probably at the cell cortex and at the phragmoplast, where secondary nucleation sites may exist. Surprisingly, plant gamma-tubulin is distributed along the microtubule length. As it is not associated with Spc98p, it may not be involved in microtubule nucleation, but may preferably control microtubule dynamics. Understanding the mechanisms of microtubule nucleation is the major challenge of the current research.
Collapse
Affiliation(s)
- Anne-Catherine Schmit
- Plant Molecular Biology Institute, National Center of Scientific Research, UPR 2357, Université Louis Pasteur, Strasbourg, France
| |
Collapse
|
7
|
Shen WH, Parmentier Y, Hellmann H, Lechner E, Dong A, Masson J, Granier F, Lepiniec L, Estelle M, Genschik P. Null mutation of AtCUL1 causes arrest in early embryogenesis in Arabidopsis. Mol Biol Cell 2002; 13:1916-28. [PMID: 12058059 PMCID: PMC117614 DOI: 10.1091/mbc.e02-02-0077] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The SCF (for SKP1, Cullin/CDC53, F-box protein) ubiquitin ligase targets a number of cell cycle regulators, transcription factors, and other proteins for degradation in yeast and mammalian cells. Recent genetic studies demonstrate that plant F-box proteins are involved in auxin responses, jasmonate signaling, flower morphogenesis, photocontrol of circadian clocks, and leaf senescence, implying a large spectrum of functions for the SCF pathway in plant development. Here, we present a molecular and functional characterization of plant cullins. The Arabidopsis genome contains 11 cullin-related genes. Complementation assays revealed that AtCUL1 but not AtCUL4 can functionally complement the yeast cdc53 mutant. Arabidopsis mutants containing transfer DNA (T-DNA) insertions in the AtCUL1 gene were shown to display an arrest in early embryogenesis. Consistently, both the transcript and the protein of the AtCUL1 gene were found to accumulate in embryos. The AtCUL1 protein localized mainly in the nucleus but also weakly in the cytoplasm during interphase and colocalized with the mitotic spindle in metaphase. Our results demonstrate a critical role for the SCF ubiquitin ligase in Arabidopsis embryogenesis.
Collapse
Affiliation(s)
- Wen-Hui Shen
- Institut de Biologie Moléculaire des Plantes du CNRS, 67084 Strasbourg, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Cowan CR, Carlton PM, Cande WZ. The polar arrangement of telomeres in interphase and meiosis. Rabl organization and the bouquet. PLANT PHYSIOLOGY 2001; 125:532-8. [PMID: 11161011 PMCID: PMC1539364 DOI: 10.1104/pp.125.2.532] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Affiliation(s)
- C R Cowan
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
| | | | | |
Collapse
|
9
|
Canaday J, Stoppin-Mellet V, Mutterer J, Lambert AM, Schmit AC. Higher plant cells: gamma-tubulin and microtubule nucleation in the absence of centrosomes. Microsc Res Tech 2000; 49:487-95. [PMID: 10842376 DOI: 10.1002/(sici)1097-0029(20000601)49:5<487::aid-jemt11>3.0.co;2-i] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The assembly of the higher plant cytoskeleton poses several fundamental questions. Since different microtubule arrays are successively assembled during the cell cycle in the absence of centrosomes, we can ask how these arrays are assembled and spatially organized. Two hypotheses are under debate. Either multiple nucleation sites are responsible for the assembly and organization of microtubule arrays or microtubule nucleation takes place at one site, the nuclear surface. In the latter case, microtubule nucleation and organization would be two distinct but coregulated processes. During recent years, novel approaches have provided entirely new insights to understand the assembly and dynamics of the plant cytoskeleton. In the present review, we summarize advances made in microscopy and in molecular biology which lead to novel hypotheses and open up new fields of investigation. From the results obtained, it is clear that the higher plant cell is a powerful model system to investigate cytoskeletal organization in acentrosomal eukaryotic cells.
Collapse
Affiliation(s)
- J Canaday
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Université Louis Pasteur, Strasbourg, France
| | | | | | | | | |
Collapse
|
10
|
Abstract
Meiotic chromosomes have been studied for many years, in part because of the fundamental life processes they represent, but also because meiosis involves the formation of homolog pairs, a feature which greatly facilitates the study of chromosome behavior. The complex events involved in homolog juxtaposition necessitate prolongation of prophase, thus permitting resolution of events that are temporally compressed in the mitotic cycle. Furthermore, once homologs are paired, the chromosomes are connected by a specific structure: the synaptonemal complex. Finally, interaction of homologs includes recombination at the DNA level, which is intimately linked to structural features of the chromosomes. In consequence, recombination-related events report on diverse aspects of chromosome morphogenesis, notably relationships between sisters, development of axial structure, and variations in chromatin status. The current article reviews recent information on these topics in an historical context. This juxtaposition has suggested new relationships between structure and function. Additional issues were addressed in a previous chapter (551).
Collapse
Affiliation(s)
- D Zickler
- Institut de Génétique et Microbiologie, Université Paris-Sud, Orsay, France.
| | | |
Collapse
|
11
|
Abstract
During meiosis, homologous chromosomes are brought together to be recombined and segregated into separate haploid gametes. This requires two cell divisions, an elaborate prophase with five substages, and specialized mechanisms that regulate the association of sister chromatids. This review focuses on plant chromosomes and chromosome-associated structures, such as recombination nodules and kinetochores, that ensure accurate meiotic chromosome segregation.
Collapse
Affiliation(s)
- R. Kelly Dawe
- Department of Botany and Department of Genetics, University of Georgia, Athens, Georgia 30602
| |
Collapse
|