1
|
Alternative paths to telomere elongation. Semin Cell Dev Biol 2020; 113:88-96. [PMID: 33293233 DOI: 10.1016/j.semcdb.2020.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 10/31/2020] [Accepted: 11/09/2020] [Indexed: 11/24/2022]
Abstract
Overcoming cellular senescence that is induced by telomere shortening is critical in tumorigenesis. A majority of cancers achieve telomere maintenance through telomerase expression. However, a subset of cancers takes an alternate route for elongating telomeres: recombination-based alternative lengthening of telomeres (ALT). Current evidence suggests that break-induced replication (BIR), independent of RAD51, underlies ALT telomere synthesis. However, RAD51-dependent homologous recombination is required for homology search and inter-chromosomal telomere recombination in human ALT cancer cell maintenance. Accumulating evidence suggests that the breakdown of stalled replication forks, the replication stress, induces BIR at telomeres. Nevertheless, ALT research is still in its early stage and a comprehensive view is still unclear. Here, we review the current findings regarding the genesis of ALT, how this recombinant pathway is chosen, the epigenetic regulation of telomeres in ALT, and perspectives for clinical applications with the hope that this overview will generate new questions.
Collapse
|
2
|
Zhao Y, Schetelig MF, Handler AM. Genetic breakdown of a Tet-off conditional lethality system for insect population control. Nat Commun 2020; 11:3095. [PMID: 32555259 PMCID: PMC7303202 DOI: 10.1038/s41467-020-16807-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/19/2020] [Indexed: 12/22/2022] Open
Abstract
Genetically modified conditional lethal strains have been created to improve the control of insect pest populations damaging to human health and agriculture. However, understanding the potential for the genetic breakdown of lethality systems by rare spontaneous mutations, or selection for inherent suppressors, is critical since field release studies are in progress. This knowledge gap was addressed in a Drosophila tetracycline-suppressible embryonic lethality system by analyzing the frequency and structure of primary-site spontaneous mutations and second-site suppressors resulting in heritable survivors from 1.2 million zygotes. Here we report that F1 survivors due to primary-site deletions and indels occur at a 5.8 × 10−6 frequency, while survival due to second-site maternal-effect suppressors occur at a ~10−5 frequency. Survivors due to inherent lethal effector suppressors could result in a resistant field population, and we suggest that this risk may be mitigated by the use of dual redundant, albeit functionally unrelated, lethality systems. Insect population control using conditional lethal systems could break down due to spontaneous mutations that render the system ineffective. Here the authors analyse the structure and frequency of such mutations in Drosophila and suggest the use of dual lethality systems to mitigate their survival.
Collapse
Affiliation(s)
- Yang Zhao
- State Key Lab for Conservation and Utilization of Subtropical Agro-Biology Resources, Guangxi University, 100 Daxuedong Road, 530005, Nanning, Guangxi, China.,Center for Medical, Agricultural and Veterinary Entomology, USDA/ARS, 1700 SW 23rd Drive, Gainesville, FL, 32608, USA
| | - Marc F Schetelig
- Department of Insect Biotechnology in Plant Protection, Justus-Liebig University Gießen, Winchesterstr. 2, 35394, Gießen, Germany
| | - Alfred M Handler
- Center for Medical, Agricultural and Veterinary Entomology, USDA/ARS, 1700 SW 23rd Drive, Gainesville, FL, 32608, USA.
| |
Collapse
|
3
|
Cipressa F, Morciano P, Bosso G, Mannini L, Galati A, Raffa GD, Cacchione S, Musio A, Cenci G. A role for Separase in telomere protection. Nat Commun 2016; 7:10405. [PMID: 26778495 PMCID: PMC4735636 DOI: 10.1038/ncomms10405] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 12/08/2015] [Indexed: 12/04/2022] Open
Abstract
Drosophila telomeres are elongated by transposition of specialized retroelements rather than telomerase activity and are assembled independently of the sequence. Fly telomeres are protected by the terminin complex that localizes and functions exclusively at telomeres and by non-terminin proteins that do not serve telomere-specific functions. We show that mutations in the Drosophila Separase encoding gene Sse lead not only to endoreduplication but also telomeric fusions (TFs), suggesting a role for Sse in telomere capping. We demonstrate that Separase binds terminin proteins and HP1, and that it is enriched at telomeres. Furthermore, we show that loss of Sse strongly reduces HP1 levels, and that HP1 overexpression in Sse mutants suppresses TFs, suggesting that TFs are caused by a HP1 diminution. Finally, we find that siRNA-induced depletion of ESPL1, the Sse human orthologue, causes telomere dysfunction and HP1 level reduction in primary fibroblasts, highlighting a conserved role of Separase in telomere protection. Drosophila telomeres are elongated by transposition of specialized retroelements rather than telomerase activity. Here, the authors show that Separase is enriched at Drosophila telomeres and loss of Sse, the gene encoding Separase, leads to telomere defects, suggesting a role for Separase in telomere protection.
Collapse
Affiliation(s)
- Francesca Cipressa
- Department of Biology and Biotechnology "Charles Darwin" Section of Genetics, SAPIENZA University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy.,Istituto Pasteur, Fondazione Cenci-Bolognetti, Viale Regina Elena 291, 00185 Rome, Italy
| | - Patrizia Morciano
- Department of Biology and Biotechnology "Charles Darwin" Section of Genetics, SAPIENZA University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy.,Istituto Pasteur, Fondazione Cenci-Bolognetti, Viale Regina Elena 291, 00185 Rome, Italy
| | - Giuseppe Bosso
- Department of Biology and Biotechnology "Charles Darwin" Section of Genetics, SAPIENZA University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy.,Istituto Pasteur, Fondazione Cenci-Bolognetti, Viale Regina Elena 291, 00185 Rome, Italy
| | - Linda Mannini
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, c/o Area di Ricerca di S. Cataldo Via G. Moruzzi 1, 56124 Pisa, Italy
| | - Alessandra Galati
- Department of Biology and Biotechnology "Charles Darwin" Section of Genetics, SAPIENZA University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy.,Istituto Pasteur, Fondazione Cenci-Bolognetti, Viale Regina Elena 291, 00185 Rome, Italy
| | - Grazia Daniela Raffa
- Department of Biology and Biotechnology "Charles Darwin" Section of Genetics, SAPIENZA University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy.,Istituto Pasteur, Fondazione Cenci-Bolognetti, Viale Regina Elena 291, 00185 Rome, Italy
| | - Stefano Cacchione
- Department of Biology and Biotechnology "Charles Darwin" Section of Genetics, SAPIENZA University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy.,Istituto Pasteur, Fondazione Cenci-Bolognetti, Viale Regina Elena 291, 00185 Rome, Italy
| | - Antonio Musio
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, c/o Area di Ricerca di S. Cataldo Via G. Moruzzi 1, 56124 Pisa, Italy.,Istituto Toscano Tumori, Via T. Alderotti 26N, 50139 Firenze, Italy
| | - Giovanni Cenci
- Department of Biology and Biotechnology "Charles Darwin" Section of Genetics, SAPIENZA University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy.,Istituto Pasteur, Fondazione Cenci-Bolognetti, Viale Regina Elena 291, 00185 Rome, Italy
| |
Collapse
|
4
|
Belyayev A. Bursts of transposable elements as an evolutionary driving force. J Evol Biol 2014; 27:2573-84. [PMID: 25290698 DOI: 10.1111/jeb.12513] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 09/17/2014] [Accepted: 09/17/2014] [Indexed: 12/25/2022]
Abstract
A burst of transposable elements (TEs) is a massive outbreak that may cause radical genomic rebuilding. This phenomenon has been reported in connection with the formation of taxonomic groups and species and has therefore been associated with major evolutionary events in the past. Over the past few years, several research groups have discovered recent stress-induced bursts of different TEs. The events for which bursts of TEs have been recorded include domestication, polyploidy, changes in mating systems, interspecific and intergeneric hybridization and abiotic stress. Cases involving abiotic stress, particularly bursts of TEs in natural populations driven by environmental change, are of special interest because this phenomenon may underlie micro- and macro-evolutionary events and ultimately support the maintenance and generation of biological diversity. This study reviews the known cases of bursts of TEs and their possible consequences, with particular emphasis on the speciation process.
Collapse
Affiliation(s)
- A Belyayev
- Institute of Botany, Czech Academy of Sciences, Pruhonice near Prague, Czech Republic
| |
Collapse
|
5
|
Ladevèze V, Chaminade N, Lemeunier F, Periquet G, Aulard S. General survey of hAT transposon superfamily with highlight on hobo element in Drosophila. Genetica 2012; 140:375-92. [DOI: 10.1007/s10709-012-9687-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 10/10/2012] [Indexed: 11/30/2022]
|
6
|
Belyayev A, Kalendar R, Brodsky L, Nevo E, Schulman AH, Raskina O. Transposable elements in a marginal plant population: temporal fluctuations provide new insights into genome evolution of wild diploid wheat. Mob DNA 2010; 1:6. [PMID: 20226076 PMCID: PMC2836003 DOI: 10.1186/1759-8753-1-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Accepted: 02/01/2010] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND How new forms arise in nature has engaged evolutionary biologists since Darwin's seminal treatise on the origin of species. Transposable elements (TEs) may be among the most important internal sources for intraspecific variability. Thus, we aimed to explore the temporal dynamics of several TEs in individual genotypes from a small, marginal population of Aegilops speltoides. A diploid cross-pollinated grass species, it is a wild relative of the various wheat species known for their large genome sizes contributed by an extraordinary number of TEs, particularly long terminal repeat (LTR) retrotransposons. The population is characterized by high heteromorphy and possesses a wide spectrum of chromosomal abnormalities including supernumerary chromosomes, heterozygosity for translocations, and variability in the chromosomal position or number of 45S and 5S ribosomal DNA (rDNA) sites. We propose that variability on the morphological and chromosomal levels may be linked to variability at the molecular level and particularly in TE proliferation. RESULTS Significant temporal fluctuation in the copy number of TEs was detected when processes that take place in small, marginal populations were simulated. It is known that under critical external conditions, outcrossing plants very often transit to self-pollination. Thus, three morphologically different genotypes with chromosomal aberrations were taken from a wild population of Ae. speltoides, and the dynamics of the TE complex traced through three rounds of selfing. It was discovered that: (i) various families of TEs vary tremendously in copy number between individuals from the same population and the selfed progenies; (ii) the fluctuations in copy number are TE-family specific; (iii) there is a great difference in TE copy number expansion or contraction between gametophytes and sporophytes; and (iv) a small percentage of TEs that increase in copy number can actually insert at novel locations and could serve as a bona fide mutagen. CONCLUSIONS We hypothesize that TE dynamics could promote or intensify morphological and karyotypical changes, some of which may be potentially important for the process of microevolution, and allow species with plastic genomes to survive as new forms or even species in times of rapid climatic change.
Collapse
Affiliation(s)
- Alexander Belyayev
- Institute of Evolution, University of Haifa, Mount Carmel, Haifa, Israel
| | - Ruslan Kalendar
- MTT/BI Plant Genomics Laboratory, Institute of Biotechnology, Viikki Biocenter, University of Helsinki, Helsinki, Finland
| | - Leonid Brodsky
- Institute of Evolution, University of Haifa, Mount Carmel, Haifa, Israel
| | - Eviatar Nevo
- Institute of Evolution, University of Haifa, Mount Carmel, Haifa, Israel
| | - Alan H Schulman
- MTT/BI Plant Genomics Laboratory, Institute of Biotechnology, Viikki Biocenter, University of Helsinki, Helsinki, Finland
- Plant Genomics, Biotechnology and Food Research, MTT Agrifood Research, Jokioinen, Finland
| | - Olga Raskina
- Institute of Evolution, University of Haifa, Mount Carmel, Haifa, Israel
| |
Collapse
|
7
|
Chen XF, Meng FL, Zhou JQ. Telomere recombination accelerates cellular aging in Saccharomyces cerevisiae. PLoS Genet 2009; 5:e1000535. [PMID: 19557187 PMCID: PMC2694356 DOI: 10.1371/journal.pgen.1000535] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Accepted: 05/22/2009] [Indexed: 12/19/2022] Open
Abstract
Telomeres are nucleoprotein structures located at the linear ends of eukaryotic chromosomes. Telomere integrity is required for cell proliferation and survival. Although the vast majority of eukaryotic species use telomerase as a primary means for telomere maintenance, a few species can use recombination or retrotransposon-mediated maintenance pathways. Since Saccharomyces cerevisiae can use both telomerase and recombination to replicate telomeres, budding yeast provides a useful system with which to examine the evolutionary advantages of telomerase and recombination in preserving an organism or cell under natural selection. In this study, we examined the life span in telomerase-null, post-senescent type II survivors that have employed homologous recombination to replicate their telomeres. Type II recombination survivors stably maintained chromosomal integrity but exhibited a significantly reduced replicative life span. Normal patterns of cell morphology at the end of a replicative life span and aging-dependent sterility were observed in telomerase-null type II survivors, suggesting the type II survivors aged prematurely in a manner that is phenotypically consistent with that of wild-type senescent cells. The shortened life span of type II survivors was extended by calorie restriction or TOR1 deletion, but not by Fob1p inactivation or Sir2p over-expression. Intriguingly, rDNA recombination was decreased in type II survivors, indicating that the premature aging of type II survivors was not caused by an increase in extra-chromosomal rDNA circle accumulation. Reintroduction of telomerase activity immediately restored the replicative life span of type II survivors despite their heterogeneous telomeres. These results suggest that telomere recombination accelerates cellular aging in telomerase-null type II survivors and that telomerase is likely a superior telomere maintenance pathway in sustaining yeast replicative life span. Telomeres are the specialized structures at the ends of eukaryotic linear chromosomes. The simple guanine-rich DNA repeats at telomeres and their associated proteins are important for chromosome stability. Most eukaryotic species have evolved an enzyme named telomerase to replicate their telomeric DNA. Telomerase usually contains a protein catalytic subunit and a RNA template subunit. A few eukaryotic species can use either telomere recombination or retrotransposon-mediated transposition to accomplish telomere elongation. Interestingly, the baker's yeast Saccharomyces cerevisiae can use both telomerase and recombination to replicate telomeres. In this study, we utilize this unique eukaryotic model system to compare the efficiency of these two mechanisms in the maintenance of cellular function and life span. Telomerase-null cells that used recombination to elongate telomeres were able to maintain relatively stable chromosomes; however, they exhibited a shortened replicative life span which may represent a novel aging pathway. Reintroduction of telomerase inhibited telomere recombination and restored the replicative life span of these cells, implying that telomerase is superior to telomere recombination in the regulation of yeast replicative life span.
Collapse
Affiliation(s)
- Xiao-Fen Chen
- The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Fei-Long Meng
- The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Jin-Qiu Zhou
- The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
- * E-mail:
| |
Collapse
|
8
|
Eissenberg JC, Reuter G. Cellular mechanism for targeting heterochromatin formation in Drosophila. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 273:1-47. [PMID: 19215901 DOI: 10.1016/s1937-6448(08)01801-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Near the end of their 1990 historical perspective article "60 Years of Mystery," Spradling and Karpen (1990) observe: "Recent progress in understanding variegation at the molecular level has encouraged some workers to conclude that the heterochromatization model is essentially correct and that position-effect variegation can now join the mainstream of molecular biology." In the 18 years since those words were written, heterochromatin and its associated position effects have indeed joined the mainstream of molecular biology. Here, we review the findings that led to our current understanding of heterochromatin formation in Drosophila and the mechanistic insights into heterochromatin structural and functional properties gained through molecular genetics and cytology.
Collapse
Affiliation(s)
- Joel C Eissenberg
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | | |
Collapse
|
9
|
Abstract
I have been fascinated by chromosomes for longer than I care to mention; their beautiful structure, cell-type-specific changes in morphology, and elegant movements delight me. Shortly before I began graduate study, the development of nucleic acid hybridization made it possible to compare two nucleic acids whether or not their sequences were known. From this stemmed a progression of development in tools and techniques that continues to enhance our understanding of how chromosomes function. As my PhD project I contributed to this progression by developing in situ hybridization, a technique for hybridization to nucleic acids within their cellular context. Early studies with this technique initiated several lines of research, two of which I describe here, that I have pursued to this day. First, analysis of RNA populations by hybridization to polytene chromosomes (a proto-microarray-type experiment) led us to characterize levels of regulation during heat shock beyond those recognizable by puffing studies. We found also that one still-undeciphered major heat shock puff encodes a novel set of RNAs for which we propose a regulatory role. Second, localization of various multicopy DNA sequences has suggested roles for them in chromosome structure: Most recently we have found that Drosophila telomeres consist of and are maintained by special non-LTR (long terminal repeat) retrotransposons.
Collapse
Affiliation(s)
- Mary-Lou Pardue
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
10
|
Altinkut A, Raskina O, Nevo E, Belyayev A. En/Spm-like transposons in Poaceae species: transposase sequence variability and chromosomal distribution. Cell Mol Biol Lett 2006; 11:214-30. [PMID: 16847566 PMCID: PMC6275990 DOI: 10.2478/s11658-006-0017-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2005] [Accepted: 02/21/2006] [Indexed: 11/20/2022] Open
Abstract
Belonging to Class II of transposable elements, En/Spm transposons are widespread in a variety of distantly related plant species. Here, we report on the sequence conservation of the transposase region from sequence analyses of En/Spm-like transposons from Poaceae species, namely Zingeria biebersteiniana, Zingeria trichopoda, Triticum monococcum, Triticum urartu, Hordeum spontaneum, and Aegilops speltoides. The transposase region of En/Spm-like transposons was cloned, sequenced, and compared with equivalent regions of Oryza and Arabidopsis from the gene bank database. Southern blot analysis indicated that the En/Spm transposon was present in low (Hordeum spontaneum, Triticum monococcum, Triticum urartu) through medium (Zingeria bieberstiana, Zingeria trichopoda) to relatively high (Aegilops speltoides) copy numbers in Poaceae species. A cytogenetic analysis of the chromosomal distribution of En/Spm transposons revealed the concurence of the chromosomal localization of the En/Spm clusters with mobile clusters of rDNA. An analysis of En/Spm-like transposase amino acid sequences was carried out to investigate sequence divergence between 5 genera--Triticum, Aegilops, Zingeria, Oryza and Arabidopsis. A distance matrix was generated; apparently, En/Spm-like transposase sequences shared the highest sequence homology intra-generically and, as expected, these sequences were significantly diverged from those of O. sativa and A. thaliana. A sequence comparison of En/Spm-like transposase coding regions defined that the intra-genomic complex of En/Spm-like transposons could be viewed as relatively independent, vertically transmitted, and permanently active systems inside higher plant genomes. The sequence data from this article was deposited in the EMBL/GenBank Data Libraries under the accession nos. AY707995-AY707996-AY707997-AY707998-AY707999-AY708000-AY708001-AY708002-AY708003-AY708004-AY708005-AY708005-AY265312.
Collapse
Affiliation(s)
- Ahu Altinkut
- Institute of Evolution, University of Haifa, Mt. Carmel, Haifa, Israel.
| | | | | | | |
Collapse
|
11
|
Berloco M, Fanti L, Sheen F, Levis RW, Pimpinelli S. Heterochromatic distribution of HeT-A- and TART-like sequences in several Drosophila species. Cytogenet Genome Res 2005; 110:124-33. [PMID: 16093664 DOI: 10.1159/000084944] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2004] [Accepted: 05/18/2004] [Indexed: 11/19/2022] Open
Abstract
Drosophila melanogaster telomeres contain arrays of two non-LTR retrotransposons called HeT-A and TART. Previous studies have shown that HeT-A- and TART-like sequences are also located at non-telomeric sites in the Y chromosome heterochromatin. By in situ hybridization experiments, we mapped TART sequences in the h16 region of the long arm close to the centromere of the Y chromosome of D. melanogaster. HeT-A sequences were localized in two different regions on the Y chromosome, one very close to the centromere in the short arm (h18-h19) and the other in the long arm (h13-h14). To assess a possible heterochromatic location of TART and HeT-A elements in other Drosophila species, we performed in situ hybridization experiments, using both TART and HeT-A probes, on mitotic and polytene chromosomes of D. simulans, D. sechellia, D. mauritiana, D. yakuba and D. teissieri. We found that TART and HeT-A probes hybridize at specific heterochromatic regions of the Y chromosome in all Drosophila species that we analyzed.
Collapse
Affiliation(s)
- M Berloco
- Dipartimento di Anatomia Patologica e di Genetica (DAPEG), Università degli Studi di Bari, Bari, Italy
| | | | | | | | | |
Collapse
|
12
|
Oikemus SR, McGinnis N, Queiroz-Machado J, Tukachinsky H, Takada S, Sunkel CE, Brodsky MH. Drosophila atm/telomere fusion is required for telomeric localization of HP1 and telomere position effect. Genes Dev 2004; 18:1850-61. [PMID: 15256487 PMCID: PMC517405 DOI: 10.1101/gad.1202504] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Terminal deletions of Drosophila chromosomes can be stably protected from end-to-end fusion despite the absence of all telomere-associated sequences. The sequence-independent protection of these telomeres suggests that recognition of chromosome ends might contribute to the epigenetic protection of telomeres. In mammals, Ataxia Telangiectasia Mutated (ATM) is activated by DNA damage and acts through an unknown, telomerase-independent mechanism to regulate telomere length and protection. We demonstrate that the Drosophila homolog of ATM is encoded by the telomere fusion (tefu) gene. In the absence of ATM, telomere fusions occur even though telomere-specific Het-A sequences are still present. High levels of spontaneous apoptosis are observed in ATM-deficient tissues, indicating that telomere dysfunction induces apoptosis in Drosophila. Suppression of this apoptosis by p53 mutations suggests that loss of ATM activates apoptosis through a DNA damage-response mechanism. Loss of ATM reduces the levels of heterochromatin protein 1 (HP1) at telomeres and suppresses telomere position effect. We propose that recognition of chromosome ends by ATM prevents telomere fusion and apoptosis by recruiting chromatin-modifying complexes to telomeres.
Collapse
Affiliation(s)
- Sarah R Oikemus
- Program in Gene Function and Expression and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Abad JP, De Pablos B, Osoegawa K, De Jong PJ, Martín-Gallardo A, Villasante A. Genomic analysis of Drosophila melanogaster telomeres: full-length copies of HeT-A and TART elements at telomeres. Mol Biol Evol 2004; 21:1613-9. [PMID: 15163766 DOI: 10.1093/molbev/msh174] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The repetitive nature of heterochromatin hampers its analysis in general genome-sequencing projects. Specific studies are needed to extend the sequence into telomeric and centromeric heterochromatin. Drosophila telomeres lack the telomerase-generated repeats that are characteristic of other eukaryotic chromosomes. Instead, they consist of tandem arrays of HeT-A and TART elements. Herein, we present the genomic organization of the telomeres in the isogenic strain (y; cn bw sp) that was used for the Drosophila melanogaster sequencing project. The data indicate that the canonical features of telomere organization are widely conserved in evolution. In addition, we have identified full-length elements, likely competent elements, for HeT-A and TART.
Collapse
|
14
|
Gan Y, Mo Y, Johnston J, Lu J, Wientjes MG, Au JLS. Telomere maintenance in telomerase-positive human ovarian SKOV-3 cells cannot be retarded by complete inhibition of telomerase. FEBS Lett 2002; 527:10-4. [PMID: 12220625 DOI: 10.1016/s0014-5793(02)03141-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The two known mechanisms for telomere maintenance in eukaryocytes are telomerase in telomerase-positive cells and alternative lengthening of telomeres (ALT) in telomerase-negative cells. We report here that telomere maintenance in the telomerase-positive human ovarian SKOV-3 cells was not affected by inhibition of telomerase. For comparison, the effect of telomerase inhibitors on telomere maintenance in another telomerase-positive cell line (i.e. human pharynx FaDu cells) and the telomerase-negative human osteosarcoma Saos-2 cells was examined. Telomerase activity was measured using a modified telomeric repeat amplification protocol and telomere length was measured using a solution hybridization-based method and fluorescence in situ hybridization. A reverse transcriptase inhibitor (3'-azido-deoxythymidine or AZT) and an antisense against a component of human telomerase RNA (antisense hTR) were used to inhibit telomerase. FaDu and SKOV-3 cells showed comparable baseline telomerase activity. Telomerase activity in both cells was inhibited about equally by AZT (maximal inhibition of approximately 80%) and by expression of antisense hTR (complete inhibition in SKOV-3 cells and maximal inhibition of approximately 80% in FaDu cells). However, treatment with telomerase inhibitors resulted in approximately 50% telomere shortening in FaDu cells but had no effect on SKOV-3 nor Saos-2 cells. SKOV-3 cells did not show the characteristic features of ALT (i.e. heterogeneous telomere length and promyelocytic leukemia bodies), whereas these ALT features were observed in Saos-2 cells. Collectively, these results suggest the existence of a telomerase-independent mechanism of telomere maintenance in the telomerase-positive SKOV-3 cells.
Collapse
Affiliation(s)
- Yuebo Gan
- College of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, OH 43210, USA
| | | | | | | | | | | |
Collapse
|
15
|
Abstract
Mobile genetic elements, by virtue of their ability to move to new chromosomal locations, are considered important in shaping the evolutionary course of the genome. They are widespread in the biological kingdom. Among the protozoan parasites several types of transposable elements are encountered. The largest variety is seen in the trypanosomatids-Trypanosoma brucei, Trypanosoma cruzi and Crithidia fasciculata. They contain elements that insert site-specifically in the spliced-leader RNA genes, and others that are dispersed in a variety of genomic locations. Giardia lamblia contains three families of transposable elements. Two of these are subtleomeric in location while one is chromosome-internal. Entamoeba histolytica has an abundant retrotransposon dispersed in the genome. Nucleotide sequence analysis of all the elements shows that they are all retrotransposons, and, with the exception of one class of elements in T. cruzi, all of them are non-long-terminal-repeat retrotransposons. Although most copies have accumulated mutations, they can potentially encode reverse transcriptase, endonuclease and nucleic-acid-binding activities. Functionally and phylogenetically they do not belong to a single lineage, showing that retrotransposons were acquired early in the evolution of protozoan parasites. Many of the potentially autonomous elements that encode their own transposition functions have nonautonomous counterparts that probably utilize the functions in trans. In this respect these elements are similar to the mammalian LINEs and SINEs (long and short interspersed DNA elements), showing a common theme in the evolution of retrotransposons. So far there is no report of a DNA transposon in any protozoan parasite. The genome projects that are under way for most of these organisms will help understand the evolution and possible function of these genetic elements.
Collapse
Affiliation(s)
- Sudha Bhattacharya
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110 067, India.
| | | | | |
Collapse
|
16
|
Siriaco GM, Cenci G, Haoudi A, Champion LE, Zhou C, Gatti M, Mason JM. Telomere elongation (Tel), a new mutation in Drosophila melanogaster that produces long telomeres. Genetics 2002; 160:235-45. [PMID: 11805059 PMCID: PMC1461955 DOI: 10.1093/genetics/160.1.235] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In most eukaryotes telomeres are extended by telomerase. Drosophila melanogaster, however, lacks telomerase, and telomere-specific non-LTR retrotransposons, HeT-A and TART, transpose specifically to chromosome ends. A Drosophila strain, Gaiano, that has long telomeres has been identified. We extracted the major Gaiano chromosomes into an Oregon-R genetic background and examined the resulting stocks after 60 generations. In situ hybridization using HeT-A and TART sequences showed that, in stocks carrying either the X or the second chromosome from Gaiano, only the Gaiano-derived chromosomes display long telomeres. However, in stocks carrying the Gaiano third chromosome, all telomeres are substantially elongated, indicating that the Gaiano chromosome 3 carries a factor that increases HeT-A and TART addition to the telomeres. We show that this factor, termed Telomere elongation (Tel), is dominant and localizes as a single unit to 69 on the genetic map. The long telomeres tend to associate with each other in both polytene and mitotic cells. These associations depend on telomere length rather than the presence of Tel. Associations between metaphase chromosomes are resolved during anaphase, suggesting that they are mediated by either proteinaceous links or DNA hydrogen bonding, rather than covalent DNA-DNA bonds.
Collapse
Affiliation(s)
- Giorgia M Siriaco
- Istituto Pasteur Fondazione Cenci Bolognetti, Dipartimento di Genetica e Biologia Molecolare, Universita' di Roma "La Sapienza," Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
'Selfish genetic elements', such as transposons, homing endonucleases, meiotic drive chromosomes and heritable microorganisms, are common features of eukaryotes. However, their importance in the evolution of eukaryotic genomes is still controversial. In this review, we discuss these diverse elements and their potential importance in the evolution of genetic systems, adaptation, and the extinction and birth of species.
Collapse
Affiliation(s)
- G D Hurst
- Department of Biology, University College London, 4 Stephenson Way, London NW1 2HE, UK.
| | | |
Collapse
|
18
|
Abstract
Activation of a telomere maintenance mechanism appears to be essential for immortalization. In most human tumors and tumor cell lines, the telomere maintenance mechanism involves the activity of telomerase, a reverse transcriptase holoenzyme that synthesizes telomeric repeat DNA. In some cases, telomere maintenance occurs in the absence of telomerase activity by a mechanism referred to as alternative lengthening of telomeres (ALT). The development of telomere-targeted anticancer therapies will be facilitated by an understanding of the molecular mechanisms of ALT and of the means whereby ALT is repressed in normal cells.
Collapse
Affiliation(s)
- R R Reddel
- Children's Medical Research Institute, 214 Hawkesbury Road, Westmead, Sydney, New South Wales, 2145 Australia
| | | | | | | | | |
Collapse
|
19
|
Pham DQ, Brown SE, Knudson DL, Winzerling JJ, Dodson MS, Shaffer JJ. Structure and location of a ferritin gene of the yellow fever mosquito Aedes aegypti. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:3885-90. [PMID: 10849008 DOI: 10.1046/j.1432-1327.2000.01428.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have isolated and sequenced a genomic clone encoding the 24- and 26-kDa ferritin subunits in the mosquito Aedes aegypti (Rockefeller strain). The A. aegypti gene differs from other known ferritin genes in that it possesses an additional intron and an unusually large second intron. The additional intron is located within the 5' untranslated region, between the CAP site and the start codon. The second intron contains numerous putative transposable elements. In addition, unlike the human and rat ferritin genes, the A. aegypti ferritin gene is a single copy gene, located at 88.3% FLpter on the q-arm of chromosome 1. Primer extension analysis indicates that the A. aegypti ferritin gene has multiple transcriptional start sites. A differential usage of these sites is observed with varied cellular iron concentrations.
Collapse
Affiliation(s)
- D Q Pham
- Department of Biological Sciences and Biomedical Research Institute, University of Wisconsin-Parkside, Kenosha 53141-2000, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Farabaugh PJ. Translational frameshifting: implications for the mechanism of translational frame maintenance. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2000; 64:131-70. [PMID: 10697409 DOI: 10.1016/s0079-6603(00)64004-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The ribosome rapidly translates the information in the nucleic sequence of mRNA into the amino acid sequence of proteins. As with any biological process, translation is not completely accurate; it must compromise the antagonistic demands of increased speed and greater accuracy. Yet, reading-frame errors are especially infrequent, occurring at least 10 times less frequently than other errors. How do ribosomes maintain the reading frame so faithfully? Geneticists have addressed this question by identifying suppressors that increase error frequency. Most familiar are the frameshift suppressor tRNAs, though other suppressors include mutant forms of rRNA, ribosomal proteins, or translation factors. Certain mRNA sequences can also program frameshifting by normal ribosomes. The models of suppression and programmed frameshifting describe apparently quite different mechanisms. Contemporary work has questioned the long-accepted model for frameshift suppression by mutant tRNAs, and a unified explanation has been proposed for both phenomena. The Quadruplet Translocation Model proposes that suppressor tRNAs cause frameshifting by recognizing an expanded mRNA codon. The new data are inconsistent with this model for some tRNAs, implying the model may be invalid for all. A new model for frameshift suppression involves slippage caused by a weak, near-cognate codon.anticodon interaction. This strongly resembles the mechanism of +1 programmed frameshifting. This may mean that infrequent frameshift errors by normal ribosomes may result from two successive errors: misreading by a near-cognate tRNA, which causes a subsequent shift in reading frame. Ribosomes may avoid phenotypically serious frame errors by restricting apparently innocuous errors of sense.
Collapse
Affiliation(s)
- P J Farabaugh
- Department of Biological Sciences and Program in Molecular and Cell Biology, University of Maryland, Baltimore County 21250, USA
| |
Collapse
|
21
|
Lyko F, Ramsahoye BH, Kashevsky H, Tudor M, Mastrangelo MA, Orr-Weaver TL, Jaenisch R. Mammalian (cytosine-5) methyltransferases cause genomic DNA methylation and lethality in Drosophila. Nat Genet 1999; 23:363-6. [PMID: 10545955 DOI: 10.1038/15551] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
CpG methylation is essential for mouse development as well as gene regulation and genome stability. Many features of mammalian DNA methylation are consistent with the action of a de novo methyltransferase that establishes methylation patterns during early development and the post-replicative maintenance of these patterns by a maintenance methyltransferase. The mouse methyltransferase Dnmt1 (encoded by Dnmt) shows a preference for hemimethylated substrates in vitro, making the enzyme a candidate for a maintenance methyltransferase. Dnmt1 also has de novo methylation activity in vitro, but the significance of this finding is unclear, because mouse embryonic stem (ES) cells contain a de novo methylating activity unrelated to Dnmt1 (ref. 10). Recently, the Dnmt3 family of methyltransferases has been identified and shown in vitro to catalyse de novo methylation. To analyse the function of these enzymes, we expressed Dnmt and Dnmt3a in transgenic Drosophila melanogaster. The absence of endogenous methylation in Drosophila facilitates detection of experimentally induced methylation changes. In this system, Dnmt3a functioned as a de novo methyltransferase, whereas Dnmt1 had no detectable de novo methylation activity. When co-expressed, Dnmt1 and Dnmt3a cooperated to establish and maintain methylation patterns. Genomic DNA methylation impaired the viability of transgenic flies, suggesting that cytosine methylation has functional consequences for Drosophila development.
Collapse
Affiliation(s)
- F Lyko
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Agudo M, Losada A, Abad JP, Pimpinelli S, Ripoll P, Villasante A. Centromeres from telomeres? The centromeric region of the Y chromosome of Drosophila melanogaster contains a tandem array of telomeric HeT-A- and TART-related sequences. Nucleic Acids Res 1999; 27:3318-24. [PMID: 10454639 PMCID: PMC148565 DOI: 10.1093/nar/27.16.3318] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Cytological and cytogenetic studies have previously defined the region needed for centromeric function in the Y chromosome of Drosophila melanogaster. We have identified a YAC clone that originated from this region. Molecular analysis of the YAC and genomic DNAs has allowed the description of a satellite DNA made of telomeric HeT-A- and TART-derived sequences and the construction of a long-range physical map of the heterochromatic region h18. Sequences within the YAC clone are conserved in the centromeric region of the sibling species Drosophila simulans. That telomere-derived DNA now forms part of the centromeric region of the Y chromosome could indicate a telomeric origin of this centromere. The existence of common determinants for the function of both centromeres and telomeres is discussed.
Collapse
Affiliation(s)
- M Agudo
- Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM), 28049 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
23
|
Abad JP, Villasante A. The 3' non-coding region of the Drosophila melanogaster HeT-A telomeric retrotransposon contains sequences with propensity to form G-quadruplex DNA. FEBS Lett 1999; 453:59-62. [PMID: 10403375 DOI: 10.1016/s0014-5793(99)00695-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
HeT-A elements are non-long terminal repeat retrotransposons added onto the Drosophila chromosome ends. We have investigated the formation in vitro of higher order structures by oligonucleotides derived from the 3' non-coding region of HeT-A elements and found that they are capable of forming G-quadruplex DNA. These results suggest that the 3' repeat region of HeT-A may structurally behave as the telomeric repeats common to a majority of eukaryotes. The presence of structural motifs shared by telomeres and centromeres and the implications of these findings for chromosome evolution are discussed.
Collapse
Affiliation(s)
- J P Abad
- Centro de Biología Molecular Severo Ochoá (CSIC-UAM), Madrid, Spain
| | | |
Collapse
|
24
|
Danilevskaya ON, Traverse KL, Hogan NC, DeBaryshe PG, Pardue ML. The two Drosophila telomeric transposable elements have very different patterns of transcription. Mol Cell Biol 1999; 19:873-81. [PMID: 9858610 PMCID: PMC83944 DOI: 10.1128/mcb.19.1.873] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/1998] [Accepted: 09/29/1998] [Indexed: 11/20/2022] Open
Abstract
The transposable elements HeT-A and TART constitute the telomeres of Drosophila chromosomes. Both are non-long terminal repeat (LTR) retrotransposons, sharing the remarkable property of transposing only to chromosome ends. In addition, strong sequence similarity of their gag proteins indicates that these coding regions share a common ancestor. These findings led to the assumption that HeT-A and TART are closely related. However, we now find that these elements produce quite different sets of transcripts. HeT-A produces only sense-strand transcripts of the full-length element, whereas TART produces both sense and antisense full-length RNAs, with antisense transcripts in more than 10-fold excess over sense RNA. In addition, features of TART sequence organization resemble those of a subclass of non-LTR elements characterized by unequal terminal repeats. Thus, the ancestral gag sequence appears to have become incorporated in two different types of elements, possibly with different functions in the telomere. HeT-A transcripts are found in both nuclear and cytoplasmic cell fractions, consistent with roles as both mRNA and transposition template. In contrast, both sense and antisense TART transcripts are almost entirely concentrated in nuclear fractions. Also, TART open reading frame 2 probes detect a cytoplasmic mRNA for reverse transcriptase (RT), with no similarity to TART sequence 5' or 3' of the RT coding region. This RNA could be a processed TART transcript or the product of a "free-standing" RT gene. Either origin would be novel. The distinctive transcription patterns of both HeT-A and TART are conserved in Drosophila yakuba, despite significant sequence divergence. The conservation argues that these sets of transcripts are important to the function(s) of HeT-A and TART.
Collapse
Affiliation(s)
- O N Danilevskaya
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | |
Collapse
|
25
|
Fanti L, Giovinazzo G, Berloco M, Pimpinelli S. The heterochromatin protein 1 prevents telomere fusions in Drosophila. Mol Cell 1998; 2:527-38. [PMID: 9844626 DOI: 10.1016/s1097-2765(00)80152-5] [Citation(s) in RCA: 228] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
HP1 (Heterochromatin protein 1) is a conserved, non-histone chromosomal protein that is best known for its preferential binding to pericentric heterochromatin and its role in position effect variegation in Drosophila. Using immunolocalization, we show that HP1 is a constant feature of the telomeres of interphase polytene and mitotic chromosomes. This localization does not require the presence of telomeric retrotransposons, since HP1 is also detected at the ends of terminally deleted chromosomes that lack these elements. Importantly, larvae expressing reduced or mutant versions of HP1 exhibit aberrant chromosome associations and multiple telomeric fusions in neuroblast cells, imaginal disks, and male meiotic cells. Taken together, these results provide evidence that HP1 plays a functional role in mediating normal telomere behavior in Drosophila.
Collapse
Affiliation(s)
- L Fanti
- Istituto di Genetica, Università di Bari, Italy
| | | | | | | |
Collapse
|
26
|
Abstract
Telomeres are the termini of linear eukaryotic chromosomes consisting of tandem repeats of DNA and proteins that bind to these repeat sequences. Telomeres ensure the complete replication of chromosome ends, impart protection to ends from nucleolytic degradation, end-to-end fusion, and guide the localization of chromosomes within the nucleus. In addition, a combination of genetic, biochemical, and molecular biological approaches have implicated key roles for telomeres in diverse cellular processes such as regulation of gene expression, cell division, cell senescence, and cancer. This review focuses on recent advances in our understanding of the organization of telomeres, telomere replication, proteins that bind telomeric DNA, and the establishment of telomere length equilibrium.
Collapse
Affiliation(s)
- K Muniyappa
- Department of Biochemistry, Indian Institute of Science, Bangalore
| | | |
Collapse
|
27
|
Cambareri EB, Aisner R, Carbon J. Structure of the chromosome VII centromere region in Neurospora crassa: degenerate transposons and simple repeats. Mol Cell Biol 1998; 18:5465-77. [PMID: 9710630 PMCID: PMC109131 DOI: 10.1128/mcb.18.9.5465] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/1998] [Accepted: 06/17/1998] [Indexed: 11/20/2022] Open
Abstract
DNA from the centromere region of linkage group (LG) VII of Neurospora crassa was cloned previously from a yeast artificial chromosome library and was found to be atypical of Neurospora DNA in both composition (AT rich) and complexity (repetitive). We have determined the DNA sequence of a small portion (approximately 16.1 kb) of this region and have identified a cluster of three new retrotransposon-like elements as well as degenerate fragments from the 3' end of Tad, a previously identified LINE-like retrotransposon. This region contains a novel full-length but nonmobile copia-like element, designated Tcen, that is only associated with centromere regions. Adjacent DNA contains portions of a gypsy-like element designated Tgl1. A third new element, Tgl2, shows similarity to the Ty3 transposon of Saccharomyces cerevisiae. All three of these elements appear to be degenerate, containing predominantly transition mutations suggestive of the repeat-induced point mutation (RIP) process. Three new simple DNA repeats have also been identified in the LG VII centromere region. While Tcen elements map exclusively to centromere regions by restriction fragment length polymorphism analysis, the defective Tad elements appear to occur most frequently within centromeres but are also found at other loci including telomeres. The characteristics and arrangement of these elements are similar to those seen in the Drosophila centromere, but the relative abundance of each class of repeats, as well as the sequence degeneracy of the transposon-like elements, is unique to Neurospora. These results suggest that the Neurospora centromere is heterochromatic and regional in character, more similar to centromeres of Drosophila than to those of most single-cell yeasts.
Collapse
Affiliation(s)
- E B Cambareri
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, California 93106, USA.
| | | | | |
Collapse
|
28
|
Biessmann H, Walter MF, Mason JM. Drosophila telomere elongation. CIBA FOUNDATION SYMPOSIUM 1998; 211:53-67; discussion 67-70. [PMID: 9524751 DOI: 10.1002/9780470515433.ch5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Drosophila melanogaster has an unusual telomere elongation mechanism. Instead of short repeats that are synthesized by telomerase, long retrotransposons, HeT-A and TART, transpose to the ends of chromosomes. This mechanism generates tandem arrays of these elements at the chromosome ends, in which all elements are oriented with their oligo(A) tails towards the centromere. Structural features of HeT-A and TART elements may provide clues as to their transposition mechanism. Drosophila telomere length polymorphism is mainly due to terminal retrotransposon arrays that differ between chromosome tips and that change with time. In addition, stable terminal chromosome deletions can be generated that do not contain terminal HeT-A and TART arrays, suggesting that, unlike the equivalent terminal repeats in yeast and humans, the presence and length of terminal arrays in Drosophila may not be critical for cell cycle progression.
Collapse
Affiliation(s)
- H Biessmann
- Developmental Biology Center, University of California, Irvine 92697, USA
| | | | | |
Collapse
|
29
|
Danilevskaya ON, Tan C, Wong J, Alibhai M, Pardue ML. Unusual features of the Drosophila melanogaster telomere transposable element HeT-A are conserved in Drosophila yakuba telomere elements. Proc Natl Acad Sci U S A 1998; 95:3770-5. [PMID: 9520442 PMCID: PMC19912 DOI: 10.1073/pnas.95.7.3770] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/1998] [Indexed: 02/06/2023] Open
Abstract
HeT-A was the first transposable element shown to have a bona fide role in chromosome structure, maintenance of telomeres in Drosophila melanogaster. HeT-A has hallmarks of non-long-terminal-repeat (non-LTR) retrotransposable elements but also has several unique features. We have now isolated HeT-A elements from Drosophila yakuba, showing that the retrotransposon mechanism of telomere maintenance predates the separation of D. melanogaster and D. yakuba (5-15 million years ago). HeT-A elements from the two species show significant sequence divergence, yet unusual features seen in HeT-Amel are conserved in HeT-Ayak. In both species, HeT-A elements are found in head-to-tail tandem arrays in telomeric heterochromatin. In both species, nearly half of the HeT-A sequence is noncoding and shows a distinctive imperfect repeat pattern of A-rich segments. Neither element encodes reverse transcriptase. The HeT-Amel promoter appears to be intermediate between the promoters of non-LTR and of LTR retrotransposons. The HeT-Ayak promoter shows similar features. HeT-Amel has a frameshift within the coding region. HeT-Ayak does not require a frameshift but shows conservation of the polypeptide sequence of the frameshifted product of D. melanogaster.
Collapse
Affiliation(s)
- O N Danilevskaya
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | |
Collapse
|
30
|
Danilevskaya ON, Lowenhaupt K, Pardue ML. Conserved subfamilies of the Drosophila HeT-A telomere-specific retrotransposon. Genetics 1998; 148:233-42. [PMID: 9475735 PMCID: PMC1459768 DOI: 10.1093/genetics/148.1.233] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
HeT-A, a major component of Drosophila telomeres, is the first retrotransposon proposed to have a vital cellular function. Unlike most retrotransposons, more than half of its genome is noncoding. The 3' end contains > 2.5 kb of noncoding sequence. Copies of HeT-A differ by insertions or deletions and multiple nucleotide changes, which initially led us to conclude that HeT-A noncoding sequences are very fluid. However, we can now report, on the basis of new sequences and further analyses, that most of these differences are due to the existence of a small number of conserved sequence subfamilies, not to extensive sequence change during each transposition event. The high level of sequence conservation within subfamilies suggests that they arise from a small number of replicatively active elements. All HeT-A subfamilies show preservation of two intriguing features. First, segments of extremely A-rich sequence form a distinctive pattern within the 3' noncoding region. Second, there is a strong strand bias of nucleotide composition: The DNA strand running 5' to 3' toward the middle of the chromosome is unusually rich in adenine and unusually poor in guanine. Although not faced with the constraints of coding sequences, the HeT-A 3' noncoding sequence appears to be under other evolutionary constraints, possibly reflecting its roles in the telomeres.
Collapse
Affiliation(s)
- O N Danilevskaya
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | | | |
Collapse
|
31
|
Abstract
Centromeres play a critical role in chromosome inheritance but are among the most difficult genomic components to analyze in multicellular eukaryotes. Here, we present a highly detailed molecular structure of a functional centromere in a multicellular organism. The centromere of the Drosophila minichromosome Dp1187 is contained within a 420 kb region of centric heterochromatin. We have used a new approach to characterize the detailed structure of this centromere and found that it is primarily composed of satellites and single, complete transposable elements. In the rest of the Drosophila genome, these satellites and transposable elements are neither unique to the centromeres nor present at all centromeres. We discuss the impact of these results on our understanding of heterochromatin structure and on the determinants of centromere identity and function.
Collapse
Affiliation(s)
- X Sun
- Molecular Biology and Virology Laboratory, The Salk Institute, La Jolla, California 92037, USA
| | | | | |
Collapse
|
32
|
Zhimulev IF. Polytene chromosomes, heterochromatin, and position effect variegation. ADVANCES IN GENETICS 1997; 37:1-566. [PMID: 9352629 DOI: 10.1016/s0065-2660(08)60341-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- I F Zhimulev
- Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
33
|
Danilevskaya ON, Arkhipova IR, Traverse KL, Pardue ML. Promoting in tandem: the promoter for telomere transposon HeT-A and implications for the evolution of retroviral LTRs. Cell 1997; 88:647-55. [PMID: 9054504 DOI: 10.1016/s0092-8674(00)81907-8] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
HeT-A elements are non-long terminal repeat (non-LTR) retrotransposons found in head-to-tail arrays on Drosophila chromosome ends, where they form telomeres. We report that HeT-A promoter activity is located in the 3' end of the element, unlike the 5' location seen for other non-LTR retrotransposons. In HeT-A arrays the 3' sequence of one element directs transcription of its downstream neighbor. Because the upstream promoter has the same sequence as the 3' end of the transcribed element, the HeT-A promoter is effectively equivalent to a 5' LTR in both structure and function. Retroviruses and LTR retrotransposons have their promoters and transcription initiation sites in their 5' LTRs. Thus HeT-A appears to have the structure of an evolutionary intermediate between non-LTR and LTR retrotransposons.
Collapse
Affiliation(s)
- O N Danilevskaya
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | | | | | |
Collapse
|
34
|
Pardue ML, Danilevskaya ON, Traverse KL, Lowenhaupt K. Evolutionary links between telomeres and transposable elements. Genetica 1997. [PMID: 9440260 DOI: 10.1007/978-94-011-4898-6_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
Transposable elements are abundant in the genomes of higher organisms but are usually thought to affect cells only incidentally, by transposing in or near a gene and influencing its expression. Telomeres of Drosophila chromosomes are maintained by two non-LTR retrotransposons, HeT-A and TART. These are the first transposable elements with identified roles in chromosome structure. We suggest that these elements may be evolutionarily related to telomerase; in both cases an enzyme extends the end of a chromosome by adding DNA copied from an RNA template. The evolution of transposable elements from chromosomal replication mechanisms may have occurred multiple times, although in other organisms the new products have not replaced the endogenous telomerase, as they have in Drosophila. This is somewhat reminiscent of the oncogenes that have arisen from cellular genes. Perhaps the viruses that carry oncogenes have also arisen from cellular genetic systems.
Collapse
Affiliation(s)
- M L Pardue
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | | | | | |
Collapse
|
35
|
Pardue ML, Danilevskaya ON, Lowenhaupt K, Wong J, Erby K. The gag coding region of the Drosophila telomeric retrotransposon, HeT-A, has an internal frame shift and a length polymorphic region. J Mol Evol 1996; 43:572-83. [PMID: 8995054 DOI: 10.1007/bf02202105] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A major component of Drosophila telomeres is the retrotransposon HeT-A, which is clearly related to other retrotransposons and retroviruses. This retrotransposon is distinguished by its exclusively telomeric location, and by the fact that, unlike other retrotransposons, it does not encode its own reverse transcriptase. HeT-A coding sequences diverge significantly, even between elements within the same genome. Such rapid divergence has been noted previously in studies of gag genes from other retroelements. Sequence comparisons indicate that the entire HeT-A coding region codes for gag protein, with regions of similarity to other insect retrotransposon gag proteins found throughout the open reading frame (ORF). Similarity is most striking in the zinc knuckle region, a region characteristic of gag genes of most replication-competent retroelements. We identify a subgroup of insect non-LTR retrotransposons with three zinc knuckles of the form: (1) CX2CX4HX4C, (2) CX2CX3HX4C, (3) CX2CX3HX6C. The first and third knuckles are invariant, but the second shows some differences between members of this subgroup. This subgroup includes HeT-A and a second Drosophila telomeric retrotransposon, TART. Unlike other gag regions, HeT-A requires a -1 frameshift for complete translation. Such frameshifts are common between the gag and pol sequences of retroviruses but have not before been seen within a gag sequence. The frameshift allows HeT-A to encode two polypeptides; this mechanism may substitute for the post-translational cleavage that creates multiple gag polypeptides in retroviruses. D. melanogaster HeT-A coding sequences have a polymorphic region with insertions/deletions of 1-31 codons and many nucleotide changes. None of these changes interrupt the open reading frame, arguing that only elements with translatable ORFs can be incorporated into the chromosomes. Perhaps HeT-A translation products act in cis to target the RNA to chromosome ends.
Collapse
Affiliation(s)
- M L Pardue
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | | | | | | | |
Collapse
|
36
|
Abstract
Errors that alter the reading frame occur extremely rarely during translation, yet some genes have evolved sequences that efficiently induce frameshifting. These sequences, termed programmed frameshift sites, manipulate the translational apparatus to promote non-canonical decoding. Frameshifts are mechanistically diverse. Most cause a -1 shift of frames; the first such site was discovered in a metazoan retrovirus, but they are now known to be dispersed quite widely among evolutionarily diverse species. +1 frameshift sites are much less common, but again dispersed widely. The rarest form are the translational hop sites which program the ribosome to bypass a region of several dozen nucleotides. Each of these types of events are stimulated by distinct mechanisms. All of the events share a common phenomenology in which the programmed frameshift site causes the ribosome to pause during elongation so that the kinetically unfavorable alternative decoding event can occur. During this pause most frameshifts occur because one or more ribosome-bound tRNAs slip between cognate or near-cognate codons. However, even this generalization is not entirely consistent, since some frameshifts occur without slippage. Because of their similarity to rarer translational errors, programmed frameshift sites provide a tool with which to probe the mechanism of frame maintenance.
Collapse
Affiliation(s)
- P J Farabaugh
- Department of Biological Sciences, University of Maryland, Baltimore 21228, USA
| |
Collapse
|
37
|
Abstract
We have recently learned more about the biochemistry of heterochromatin and about how heterochromatic environments affect gene function. New findings have emphasized the distinctions between telomeric and pericentric heterochromatin in Drosophila and have suggested a mosaic structure within pericentric heterochromatin. Theories concerning the mechanism of inactivation of euchromatic genes in heterochromatic environments have been tested using transgenes inserted into heterochromatin. The current data support a competition/chromatin structure model, in which multiprotein repressor complexes compete with transcriptional activators to assemble an active or inactive chromatin structure.
Collapse
Affiliation(s)
- S C Elgin
- Washington University, Department of Biology, St. Louis, Missouri 63130, USA.
| |
Collapse
|
38
|
Abstract
Yeast chromosome ends are similar in structure and function to chromosome ends in most, if not all, eukaryotic organisms. There is a G-rich terminal repeat at the ends which is maintained by telomerase. In addition to the classical functions of protecting the end from degradation and end-to-end fusions, and completing replication, yeast telomeres have several interesting properties including: non-nucleosomal chromatin structure; transcriptional position effect variegation for genes with adjacent telomeres; nuclear peripheral localization; apparent physical clustering; non-random recombinational interactions. A number of genes have been identified that are involved in modifying one or more of these properties. These include genes involved in general DNA metabolism, chromatin structure and telomere maintenance. Adjacent to the terminal repeat is a mosaic of middle repetitive elements that exhibit a great deal of polymorphism both between individual strains and among different chromosome ends. Much of the sequence redundancy in the yeast genome is found in the sub-telomeric regions (within the last 25 kb of each end). The sub-telomeric regions are generally low in gene density, low in transcription, low in recombination, and they are late replicating. The only element which appears to be shared by all chromosome ends is part of the previously defined X element containing an ARS consensus. Most of the 'core' X elements also contain an Abf1p binding site and a URS1-like element, which may have consequences for the chromatin structure, nuclear architecture and transcription of native telomeres. Possible functions of sub-telomeric repeats include: fillers for increasing chromosome size to some minimum threshold level necessary for chromosome stability; barrier against transcriptional silencing; a suitable region for adaptive amplification of genes; secondary mechanism of telomere maintenance via recombination when telomerase activity is absent.
Collapse
Affiliation(s)
- E J Louis
- Yeast Genetics, Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, UK.
| |
Collapse
|
39
|
Walter MF, Jang C, Kasravi B, Donath J, Mechler BM, Mason JM, Biessmann H. DNA organization and polymorphism of a wild-type Drosophila telomere region. Chromosoma 1995; 104:229-41. [PMID: 8565699 DOI: 10.1007/bf00352254] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Telomeres at the ends of linear chromosomes of eukaryotes protect the chromosome termini from degradation and fusion. While telomeric replication/elongation mechanisms have been studied extensively, the functions of subterminal sequences are less well understood. In general, subterminal regions can be quite polymorphic, varying in size from organism to organism, and differing among chromosomes within an organism. The subterminal regions of Drosophila melanogaster are not well characterized today, and it is not known which and how many different components they contain. Here we present the molecular characterization of DNA components and their organization in the subterminal region of the left arm of chromosome 2 of the Oregon RC wild-type strain of D. melanogaster, including a minisatellite with a 457bp repeat length. Two distinct polymorphic arrangements at 2L were found and analyzed, supporting the Drosophila telomere elongation model by retrotransposition. The high incidence of terminal chromosome deficiencies occurring in natural Drosophila populations is discussed in view of the telomere structure at 2L.
Collapse
Affiliation(s)
- M F Walter
- Developmental Biology Center, University of California, Irvine, CA 92717, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
The telomeres of most eukaryotes contain short, simple repeats that are highly conserved. Drosophila, on the other hand, does not have such sequences, but carries at the ends of its chromosomes one or more LINE-like retrotransposable elements. Instead of elongation by telomerase, incomplete DNA replication at the termini of Drosophila chromosomes is counterbalanced by transposition of these elements at high frequency specifically to the termini. These transposable elements are not responsible for distinguishing telomeric ends in Drosophila from broken chromosome ends; the structure performing this function is not yet known. Proximal to the terminal array of transposable elements are regions of tandem repeats that are structurally, and probably functionally, analogous to the subterminal regions in other eukaryotes.
Collapse
Affiliation(s)
- J M Mason
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709
| | | |
Collapse
|
41
|
Sheen FM, Levis RW. Transposition of the LINE-like retrotransposon TART to Drosophila chromosome termini. Proc Natl Acad Sci U S A 1994; 91:12510-4. [PMID: 7809068 PMCID: PMC45468 DOI: 10.1073/pnas.91.26.12510] [Citation(s) in RCA: 109] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
TART, a telomere-associated DNA element from Drosophila, is shown in this paper to have structural homology to LINE (long interspersed element)-like retrotransposons and to transpose to broken chromosome ends. TART DNA was detected by in situ hybridization in 7 of 10 independent additions of DNA to a chromosome end. We found evidence that a TART element had transposed to the chromosome end in each of two additions that were examined in detail. From the DNA sequence of a TART element that recently transposed, we infer that TART encodes two proteins having significant sequence similarity to the putative proteins of many LINEs. These results support the hypothesis that TART elements preferentially retrotranspose to the termini of chromosomes as part of the essential process by which Drosophila telomeres are maintained.
Collapse
Affiliation(s)
- F M Sheen
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98104
| | | |
Collapse
|
42
|
Abstract
The three known classes of eukaryotic telomeres share the requirement for an RNA template in their replication. This RNA-templated replication is subject to species-specific differences, such as telomere length and its regulation, which suggest that telomeres may have acquired different additional functions in different organisms. Centromeres show less conservation than do telomeres.
Collapse
Affiliation(s)
- M L Pardue
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139, USA
| |
Collapse
|