1
|
Green CE, Chacon J, Godinich BM, Hock R, Kiesewetter M, Raynor M, Marwaha K, Maharaj S, Holland N. The Heart of the Matter: Immune Checkpoint Inhibitors and Immune-Related Adverse Events on the Cardiovascular System. Cancers (Basel) 2023; 15:5707. [PMID: 38136253 PMCID: PMC10742007 DOI: 10.3390/cancers15245707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/21/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
Cancer remains a prominent global cause of mortality, second only to cardiovascular disease. The past decades have witnessed substantial advancements in anti-cancer therapies, resulting in improved outcomes. Among these advancements, immunotherapy has emerged as a promising breakthrough, leveraging the immune system to target and eliminate cancer cells. Despite the remarkable potential of immunotherapy, concerns have arisen regarding associations with adverse cardiovascular events. This review examines the complex interplay between immunotherapy and cardiovascular toxicity and provides an overview of immunotherapy mechanisms, clinical perspectives, and potential biomarkers for adverse events, while delving into the intricate immune responses and evasion mechanisms displayed by cancer cells. The focus extends to the role of immune checkpoint inhibitors in cancer therapy, including CTLA-4, PD-1, and PD-L1 targeting antibodies. This review underscores the multifaceted challenges of managing immunotherapy-related cardiovascular toxicity. Risk factors for immune-related adverse events and major adverse cardiac events are explored, encompassing pharmacological, treatment-related, autoimmune, cardiovascular, tumor-related, social, genetic, and immune-related factors. The review also advocates for enhanced medical education and risk assessment tools to identify high-risk patients for preventive measures. Baseline cardiovascular evaluations, potential prophylactic strategies, and monitoring of emerging toxicity symptoms are discussed, along with the potential of adjunct anti-inflammatory therapies.
Collapse
Affiliation(s)
- Chase E. Green
- Department of Medical Education, Paul L. Foster School of Medicine, Texas Tech Health Sciences Center El Paso, 5001 El Paso Ave., El Paso, TX 79905, USA
| | - Jessica Chacon
- Department of Medical Education, Paul L. Foster School of Medicine, Texas Tech Health Sciences Center El Paso, 5001 El Paso Ave., El Paso, TX 79905, USA
| | - Brandon M. Godinich
- Department of Medical Education, Paul L. Foster School of Medicine, Texas Tech Health Sciences Center El Paso, 5001 El Paso Ave., El Paso, TX 79905, USA
| | - Rivers Hock
- Department of Medical Education, Paul L. Foster School of Medicine, Texas Tech Health Sciences Center El Paso, 5001 El Paso Ave., El Paso, TX 79905, USA
| | - Maria Kiesewetter
- Department of Medical Education, Paul L. Foster School of Medicine, Texas Tech Health Sciences Center El Paso, 5001 El Paso Ave., El Paso, TX 79905, USA
| | - Mark Raynor
- Department of Medical Education, Paul L. Foster School of Medicine, Texas Tech Health Sciences Center El Paso, 5001 El Paso Ave., El Paso, TX 79905, USA
| | - Komal Marwaha
- Department of Medical Education, Paul L. Foster School of Medicine, Texas Tech Health Sciences Center El Paso, 5001 El Paso Ave., El Paso, TX 79905, USA
| | - Satish Maharaj
- Department of Internal Medicine, Division of Hematology/Oncology, Paul L. Foster School of Medicine, Texas Tech Health Sciences Center El Paso, 4800 Alberta Ave., El Paso, TX 79905, USA
| | - Nathan Holland
- Department of Medical Education, Paul L. Foster School of Medicine, Texas Tech Health Sciences Center El Paso, 5001 El Paso Ave., El Paso, TX 79905, USA
| |
Collapse
|
2
|
Kondo S, Hozumi Y, Maejima H, Aso K. Organ culture of psoriatic skin: effect of TGF-alpha and TGF-beta on epidermal structure in vitro. Arch Dermatol Res 1992; 284:150-3. [PMID: 1503499 DOI: 10.1007/bf00372708] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Normal skin and uninvolved and involved psoriatic skin specimens were maintained in vitro in organ culture. The 3-4 mm punch-biopsied skin specimens were put freely into the culture medium with or without fetal calf serum, under an atmosphere of 95% O2 plus 5% CO2, and rotated at 60 rpm at 37 degrees C. In the serum-free culture medium (vitamin A-free) granular layers appeared in the involved psoriatic epidermis in culture. Addition of TGF-alpha caused normal skin and uninvolved and involved psoriatic skin specimens to become acanthotic and to degenerate easily almost to the full thickness of the epidermal layer in proportion to increasing concentrations of TGF-alpha as well as with the duration of the culture, but without disappearance of their granular layers. TGF-beta caused the normal skin and uninvolved psoriatic skin specimens to become thinned without disappearance of granular layers, but caused the involved psoriatic skin specimens to be thinned without appearance of granular layers in serum-containing medium or with their disappearance in the serum-free medium. TGF-beta also antagonized the acanthotic and degenerative effect of TGF-alpha. The results suggest that TGF-alpha and TGF-beta may partially be related to the induction of psoriatic epidermal lesions.
Collapse
Affiliation(s)
- S Kondo
- Department of Dermatology, Yamagata University School of Medicine, Japan
| | | | | | | |
Collapse
|