1
|
Shakoor A, Abdullah M, Yousaf B, Amina, Ma Y. Atmospheric emission of nitric oxide and processes involved in its biogeochemical transformation in terrestrial environment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016:10.1007/s11356-016-7823-6. [PMID: 27771880 DOI: 10.1007/s11356-016-7823-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 10/03/2016] [Indexed: 06/06/2023]
Abstract
Nitric oxide (NO) is an intra- and intercellular gaseous signaling molecule with a broad spectrum of regulatory functions in biological system. Its emissions are produced by both natural and anthropogenic sources; however, soils are among the most important sources of NO. Nitric oxide plays a decisive role in environmental-atmospheric chemistry by controlling the tropospheric photochemical production of ozone and regulates formation of various oxidizing agents such as hydroxyl radical (OH), which contributes to the formation of acid of precipitates. Consequently, for developing strategies to overcome the deleterious impact of NO on terrestrial ecosystem, it is mandatory to have reliable information about the exact emission mechanism and processes involved in its transformation in soil-atmospheric system. Although the formation process of NO is a complex phenomenon and depends on many physicochemical characteristics, such as organic matter, soil pH, soil moisture, soil temperature, etc., this review provides comprehensive updates about the emission characteristics and biogeochemical transformation mechanism of NO. Moreover, this article will also be helpful to understand the processes involved in the consumption of NO in soils. Further studies describing the functions of NO in biological system are also discussed.
Collapse
Affiliation(s)
- Awais Shakoor
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Muhammad Abdullah
- State-Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Balal Yousaf
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, China
| | - Amina
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Youhua Ma
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
2
|
Affiliation(s)
- M. K. Firestone
- Department of Plant and Soil Biology University of California; Berkeley
| |
Collapse
|
3
|
|
4
|
Abstract
Denitrification is a distinct means of energy conservation, making use of N oxides as terminal electron acceptors for cellular bioenergetics under anaerobic, microaerophilic, and occasionally aerobic conditions. The process is an essential branch of the global N cycle, reversing dinitrogen fixation, and is associated with chemolithotrophic, phototrophic, diazotrophic, or organotrophic metabolism but generally not with obligately anaerobic life. Discovered more than a century ago and believed to be exclusively a bacterial trait, denitrification has now been found in halophilic and hyperthermophilic archaea and in the mitochondria of fungi, raising evolutionarily intriguing vistas. Important advances in the biochemical characterization of denitrification and the underlying genetics have been achieved with Pseudomonas stutzeri, Pseudomonas aeruginosa, Paracoccus denitrificans, Ralstonia eutropha, and Rhodobacter sphaeroides. Pseudomonads represent one of the largest assemblies of the denitrifying bacteria within a single genus, favoring their use as model organisms. Around 50 genes are required within a single bacterium to encode the core structures of the denitrification apparatus. Much of the denitrification process of gram-negative bacteria has been found confined to the periplasm, whereas the topology and enzymology of the gram-positive bacteria are less well established. The activation and enzymatic transformation of N oxides is based on the redox chemistry of Fe, Cu, and Mo. Biochemical breakthroughs have included the X-ray structures of the two types of respiratory nitrite reductases and the isolation of the novel enzymes nitric oxide reductase and nitrous oxide reductase, as well as their structural characterization by indirect spectroscopic means. This revealed unexpected relationships among denitrification enzymes and respiratory oxygen reductases. Denitrification is intimately related to fundamental cellular processes that include primary and secondary transport, protein translocation, cytochrome c biogenesis, anaerobic gene regulation, metalloprotein assembly, and the biosynthesis of the cofactors molybdopterin and heme D1. An important class of regulators for the anaerobic expression of the denitrification apparatus are transcription factors of the greater FNR family. Nitrate and nitric oxide, in addition to being respiratory substrates, have been identified as signaling molecules for the induction of distinct N oxide-metabolizing enzymes.
Collapse
Affiliation(s)
- W G Zumft
- Lehrstuhl für Mikrobiologie, Universität Fridericiana, Karlsruhe, Germany
| |
Collapse
|
5
|
Affiliation(s)
- W G Zumft
- Lehrstuhl für Mikrobiologie, Universität Karlsruhe, Germany
| |
Collapse
|
6
|
Marker exchange of the structural genes for nitric oxide reductase blocks the denitrification pathway of Pseudomonas stutzeri at nitric oxide. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)54420-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
7
|
Heiss B, Frunzke K, Zumft WG. Formation of the N-N bond from nitric oxide by a membrane-bound cytochrome bc complex of nitrate-respiring (denitrifying) Pseudomonas stutzeri. J Bacteriol 1989; 171:3288-97. [PMID: 2542222 PMCID: PMC210048 DOI: 10.1128/jb.171.6.3288-3297.1989] [Citation(s) in RCA: 154] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Nitric oxide (NO) reductase was solubilized by Triton X-100 from the membrane fraction of Pseudomonas stutzeri ZoBell and purified 100-fold to apparent electrophoretic homogeneity. The enzyme consisted of two polypeptides of Mr 38,000 and 17,000 associated with heme b and heme c, respectively. Absorption maxima of the reduced complex were at 420.5, 522.5, and 552.5 nm, with a shoulder at 560 nm. The electron paramagnetic resonance spectrum was characteristic of high- and low-spin ferric heme proteins; no signals typical for iron-sulfur proteins were found. Nitric oxide reductase stoichiometrically transformed NO to nitrous oxide in an ascorbate-phenazine methosulfate-dependent reaction with a specific activity of 11.8 mumols/min per mg of protein. The activity increased to 40 mumols upon the addition of soybean phospholipids, n-octyl-beta-D-glucopyranoside, or its thio derivative to the assay system. Apparent Km values for NO and phenazine methosulfate were 60 and 2 microM, respectively. The pH optimum of the reaction was at 4.8. Cytochrome co was purified from P. stutzeri to permit its distinction from NO reductase. Spectrophotometric binding assays and other criteria also differentiated NO reductase from the respiratory cytochrome bc1 complex.
Collapse
Affiliation(s)
- B Heiss
- Lehrstuhl für Mikrobiologie, Universität Karlsruhe, Federal Republic of Germany
| | | | | |
Collapse
|
8
|
Cooper AJ, Gelbard AS, Freed BR. Nitrogen-13 as a biochemical tracer. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 1985; 57:251-356. [PMID: 3929571 DOI: 10.1002/9780470123034.ch4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
9
|
Abstract
Present knowledge of the different enzymatic steps of the denitrification chains in various bacteria, particularly Paracoccus denitrificans and Pseudomonas aeruginosa has been briefly reviewed. The question whether nitric oxide (NO), nitrous oxide (N2O) and other nitrogen derivatives are obligatory intermediates has been discussed. The second part is an extensive review of the structure and the function of a key enzyme in denitrification, cytochrome c551-nitrite-oxidoreductase from P. aeruginosa. Recent results on the stoichiometry of nitrite reduction have been discussed.
Collapse
|
10
|
Heat production and energy balance during growth of a prototrophic denitrifying strain of Bacillus stearothermophilus. Arch Microbiol 1983. [DOI: 10.1007/bf00425212] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
11
|
|
12
|
Zumft WG, Frunzke K. Discrimination of ascorbate-dependent nonenzymatic and enzymatic, membrane-bound reduction of nitric oxide in denitrifying Pseudomonas perfectomarinus. BIOCHIMICA ET BIOPHYSICA ACTA 1982; 681:459-68. [PMID: 7126558 DOI: 10.1016/0005-2728(82)90188-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The marine nitrite-respiring (denitrifying) bacterium, Pseudomonas perfectomarinus, catalyzes by a membrane-bound enzyme the reduction of nitric oxide to nitrous oxide with ascorbic-reduced phenazine methosulfate as electron donor. The entire nitric oxide-reducing capability of a cell-free system was membrane bound and this process was studied with respect to pH and substrate dependency. The enzymatic process was perturbed by an identical nonenzymatic reduction by iron(II) ascorbate in neutral to alkaline aqueous solution. 2 mol nitric oxide and 1 mol ascorbate were consumed per mol nitrous oxide formed. Enzymatic and nonenzymatic processes were discriminated by their differential behavior towards pH and metal-chelating agents. The pH optimum for the enzymatic and nonenzymatic reaction was 5.2 and greater than 7.0, respectively. EDTA (10 mM) inhibited the nonenzymatic reduction completely without interfering with the membrane-bound activity. The nonenzymatic system mimics the reaction of nitric oxide reductase and could serve as a model to study the formation of the N-N bond in denitrification. Enzymatic generation of nitric oxide by cytochrome cd and subsequent nonenzymatic reduction to nitrous oxide simulate an overall quasi-enzymatic nitrous oxide formation by cytochrome cd. The nonenzymatic reduction of nitric oxide might have occurred in previous work due to the ubiquitous use of ascorbate in studies on nitrite respiration and the likelihood of adventitious iron in biological samples.
Collapse
|
13
|
Matsubara T, Frunzke K, Zumft WG. Modulation by copper of the products of nitrite respiration in Pseudomonas perfectomarinus. J Bacteriol 1982; 149:816-23. [PMID: 7061387 PMCID: PMC216467 DOI: 10.1128/jb.149.3.816-823.1982] [Citation(s) in RCA: 65] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
A synthetic growth medium was purified with the chelator 1,5-diphenylthiocarbazone to study the effects of copper on partial reactions and product formation of nitrite respiration in Pseudomonas perfectomarinus. This organism grew anaerobically in a copper-deficient medium with nitrate or nitrite as the terminal electron acceptor. Copper-deficient cells had high activity for reduction of nitrate, nitrite, and nitric oxide, but little activity for nitrous oxide reduction. High rates of nitrous oxide reduction were observed only in cells grown on a copper-sufficient (1 micro M) medium. Copper-deficient cells converted nitrate or nitrite initially to nitrous oxide instead of dinitrogen, the normal end product of nitrite respiration in this organism. In agreement with this was the finding that anaerobic growth of P. perfectomarinus with nitrous oxide as the terminal electron acceptor required copper. This requirement was not satisfied by substitution of molybdenum, zinc, nickel, cobalt, or manganese for copper. Reconstitution of nitrous oxide reduction in copper-deficient cells was rapid on addition of a small amount of copper, even though protein synthesis was inhibited. The results indicate an involvement of copper protein(s) in the last step of nitrite respiration in P. perfectomarinus. In addition we found that nitric oxide, a presumed intermediate of nitrite respiration, inhibited nitrous oxide reduction.
Collapse
|
14
|
McKenney DJ, Shuttleworth KF, Vriesacker JR, Findlay WI. Production and Loss of Nitric Oxide from Denitrification in Anaerobic Brookston Clay. Appl Environ Microbiol 1982; 43:534-41. [PMID: 16345961 PMCID: PMC241870 DOI: 10.1128/aem.43.3.534-541.1982] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nitric oxide, nitrous oxide, and nitrite ion production was measured in a Brookston clay column undergoing anaerobic denitrification. A flow system method was used whereby argon carrier gas continuously stripped soil gases from the column, allowing steady-state rates to be obtained. Over several days the temporal change in rates of these gases and NO
2
−
followed a pattern of increase and decay which may be expected of a reaction proceeding by several consecutive steps. The method permits observation of the relatively large net production rate of NO, which is normally not observed in static systems based on head space analysis of gaseous denitrification products. In the first several hours after the onset of anoxic conditions, the net rate of NO production,
f
NO
, increased sharply to a maximum (∼1 × 10
−10
mol of N/g of soil per min), paralleling the rapid increase in NO
2
−
level, and then followed a more gradual decline extending over approximately 45 h. A similar but less pronounced pattern was observed for N
2
O, with net rates of production being considerably less than for NO. The ratio [NO-N]/[N
2
O-N] decreased with time from ∼2.5 at 6 h to ∼2.0 at 45 h. Estimated rates of N
2
production appeared to be initially high, decreased rapidly within a few hours, and then gradually increased with time after the establishment of anaerobic conditions.
Collapse
Affiliation(s)
- D J McKenney
- Department of Chemistry, University of Windsor, Windsor, Ontario N9B 3P4, and Agriculture Canada, Research Station, Harrow, Ontario N0R 1G0, Canada
| | | | | | | |
Collapse
|
15
|
|
16
|
Boogerd FC, Van Verseveld HW, Stouthamer AH. Respiration-driven proton translocation with nitrite and nitrous oxide in Paracoccus denitrificans. BIOCHIMICA ET BIOPHYSICA ACTA 1981; 638:181-91. [PMID: 7317386 DOI: 10.1016/0005-2728(81)90226-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
(1)H+ leads to/electron acceptor ratios have been determined with the oxidant pulse method for cells of denitrifying Paracoccus denitrificans oxidizing endogenous substrates during reduction of O2, NO2- or N2O. Under optimal H+-translocation conditions, the ratios leads to H+/O, H+ leads to/N2O, H+ leads to/NO2- for reduction to N2 and H+ leads to/NO2- for reduction to N2O were 6.0-6.3, 4.02, 5.79 and 3.37, respectively. (2) With ascorbate/N,N,N,'N'-tetramethyl-p-phenylene-diamine as exogenous substrate, addition of NO2- or N2O to an anaerobic cell suspension resulted in rapid alkalinization of the outer bulk medium. H+/N2O, H+/NO2- for reduction to N2 and H+/NO2- for reduction to N2O were -0.84, -2.33 and -1.90, respectively. (3) The H+/oxidant ratios, mentioned in item 2, were not altered in the presence of valinomycin/K+ and the triphenylmethylphosphonium cation. (4) A simplified scheme of electron transport to O2, NO2- and N2O is presented which shows a periplasmic orientation of the nitrite reductase as well as the nitrous oxide reductase. Electrons destined for NO2-, N2O or O2 pass two H+-trans-locating sites. The H+ leads to/electron acceptor ratios predicted by this scheme are in good agreement with the experimental values.
Collapse
|
17
|
Betlach MR, Tiedje JM. Kinetic Explanation for Accumulation of Nitrite, Nitric Oxide, and Nitrous Oxide During Bacterial Denitrification. Appl Environ Microbiol 1981; 42:1074-84. [PMID: 16345900 PMCID: PMC244157 DOI: 10.1128/aem.42.6.1074-1084.1981] [Citation(s) in RCA: 423] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The kinetics of denitrification and the causes of nitrite and nitrous oxide accumulation were examined in resting cell suspensions of three denitrifiers. An
Alcaligenes
species and a
Pseudomonas fluorescens
isolate characteristically accumulated nitrite when reducing nitrate; a
Flavobacterium
isolate did not. Nitrate did not inhibit nitrite reduction in cultures grown with tungstate to prevent formation of an active nitrate reductase; rather, accumulation of nitrite seemed to depend on the relative rates of nitrate and nitrite reduction. Each isolate rapidly reduced nitrous oxide even when nitrate or nitrite had been included in the incubation mixture. Nitrate also did not inhibit nitrous oxide reduction in
Alcaligenes odorans
, an organism incapable of nitrate reduction. Thus, added nitrate or nitrite does not always cause nitrous oxide accumulation, as has often been reported for denitrifying soils. All strains produced small amounts of nitric oxide during denitrification in a pattern suggesting that nitric oxide was also under kinetic control similar to that of nitrite and nitrous oxide. Apparent
K
m
values for nitrate and nitrite reduction were 15 μM or less for each isolate. The
K
m
value for nitrous oxide reduction by
Flavobacterium
sp. was 0.5 μM. Numerical solutions to a mathematical model of denitrification based on Michaelis-Menten kinetics showed that differences in reduction rates of the nitrogenous compounds were sufficient to account for the observed patterns of nitrite, nitric oxide, and nitrous oxide accumulation. Addition of oxygen inhibited gas production from
13
NO
3
−
by
Alcaligenes
sp. and
P. fluorescens
, but it did not reduce gas production by
Flavobacterium
sp. However, all three isolates produced higher ratios of nitrous oxide to dinitrogen as the oxygen tension increased. Inclusion of oxygen in the model as a nonspecific inhibitor of each step in denitrification resulted in decreased gas production but increased ratios of nitrous oxide to dinitrogen, as observed experimentally. The simplicity of this kinetic model of denitrification and its ability to unify disparate observations should make the model a useful guide in research on the physiology of denitrifier response to environmental effectors.
Collapse
Affiliation(s)
- M R Betlach
- Department of Microbiology and Public Health, Michigan State University, East Lansing, Michigan 48824
| | | |
Collapse
|
18
|
|
19
|
The Electron Transport System and Hydrogenase of Paracoccus denitrificans. CURRENT TOPICS IN BIOENERGETICS 1981. [DOI: 10.1016/b978-0-12-152512-5.50009-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
20
|
|
21
|
Zumft WG, Vega JM. Reduction of nitrite to nitrous oxide by a cytoplasmic membrane fraction from the marine denitrifier Pseudomonas perfectomarinus. BIOCHIMICA ET BIOPHYSICA ACTA 1979; 548:484-99. [PMID: 228713 DOI: 10.1016/0005-2728(79)90060-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A cytoplasmic membrane fraction from the marine denitrifier Pseudomonas perfectomarinus reduced nitrite to nitrous oxide in a stoichiometric reaction without nitric oxide as free intermediate. The membrane system had a specific requirement for FMN with NAD(P)H as electron donors. Other electron donors were ascorbate-reduced cytochrome c-551 or phenazine methosulfate. The membrane fraction contained tightly bound cytochrome cd which represented only a small portion of the total cytochrome cd of the cell. As further terminal oxidase cytochrome o was identified. The membrane fraction produced also nitrous oxide from nitric oxide, however, at a substantially lower rate than from nitrite when using ascorbate-reduced phenazine methosulfate as electron donor.
Collapse
|
22
|
Firestone MK, Firestone RB, Tiedje JM. Nitric oxide as an intermediate in denitrification: evidence from nitrogen-13 isotope exchange. Biochem Biophys Res Commun 1979; 91:10-6. [PMID: 518609 DOI: 10.1016/0006-291x(79)90575-8] [Citation(s) in RCA: 87] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|