1
|
Karasawa R, Yudoh K, Sato T, Tanaka M, Tamaki M, Sabbagh SE, O’Hanlon TP, Noroozi-Farhadi P, Targoff IN, Flegel WA, Mammen AL, Miller FW, Hicar MD, Rider LG, Jarvis JN. Association of anti-HSC70 autoantibodies with cutaneous ulceration and severe disease in juvenile dermatomyositis. Rheumatology (Oxford) 2022; 61:2969-2977. [PMID: 34791087 PMCID: PMC9258543 DOI: 10.1093/rheumatology/keab846] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 11/06/2021] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES JDM is an inflammatory myopathy characterized by prominent vasculopathy. AECAs are frequently detected in inflammatory and autoimmune diseases. We sought to determine whether AECAs correlate with clinical features of JDM, and thus serve as biomarkers to guide therapy or predict outcome. METHODS Plasma samples from 63 patients with JDM, 49 patients with polyarticular JIA and 40 juvenile healthy controls were used to detect anti-heat shock cognate 71 kDa protein (HSC70) autoantibodies, a newly identified AECA, in ELISA assays. Clinical features were compared between JDM patients with and without anti-HSC70 autoantibodies. RESULTS Anti-HSC70 autoantibodies were detected in 35% of patients with JDM, in 0% of patients with JIA (P < 0.0001) and in 0% of healthy donors (P < 0.0001). Both the presence of cutaneous ulcers (59% vs 17%, P < 0.002) and the use of wheelchairs and/or assistive devices (64% vs 27%, P < 0.007) were strongly associated with anti-HSC70 autoantibodies in JDM. High scores on the severity of myositis damage measures at the time of measurement of anti-HSC70 autoantibodies and an increased number of hospitalizations were also associated with anti-HSC70 autoantibodies. Intravenous immunoglobulin therapy was used more often in anti-HSC70 autoantibody-positive patients. CONCLUSION Anti-HCS70 autoantibodies are detected frequently in children with JDM and are novel myositis-associated autoantibodies correlating with disease severity.
Collapse
Affiliation(s)
- Rie Karasawa
- Department of Frontier Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Kazuo Yudoh
- Department of Frontier Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Toshiko Sato
- Department of Frontier Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Megumi Tanaka
- Department of Frontier Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Mayumi Tamaki
- Department of Frontier Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Sara E Sabbagh
- Muscle Disease Unit, Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health (NIH), Bethesda, MD
- Division of Rheumatology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI
| | - Terrance P O’Hanlon
- Environmental Autoimmunity Group, Clinical Research Branch, National Institute of Environmental Health Sciences, National Institutes of Health (NIH), Bethesda, MD
| | - Payam Noroozi-Farhadi
- Environmental Autoimmunity Group, Clinical Research Branch, National Institute of Environmental Health Sciences, National Institutes of Health (NIH), Bethesda, MD
| | - Ira N Targoff
- Oklahoma City VA Health Care System, University of Oklahoma Health Sciences Center, and Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Willy A Flegel
- Department of Transfusion Medicine, NIH Clinical Center, National Institutes of Health (NIH), Bethesda, MD
| | - Andrew L Mammen
- Muscle Disease Unit, Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health (NIH), Bethesda, MD
| | - Frederick W Miller
- Environmental Autoimmunity Group, Clinical Research Branch, National Institute of Environmental Health Sciences, National Institutes of Health (NIH), Bethesda, MD
| | - Mark D Hicar
- Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences
| | - Lisa G Rider
- Environmental Autoimmunity Group, Clinical Research Branch, National Institute of Environmental Health Sciences, National Institutes of Health (NIH), Bethesda, MD
| | - James N Jarvis
- Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences
- Genetics, Genomics, & Bioinformatics Program, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
2
|
Cauwe B, Martens E, Proost P, Opdenakker G. Multidimensional degradomics identifies systemic autoantigens and intracellular matrix proteins as novel gelatinase B/MMP-9 substrates. Integr Biol (Camb) 2009; 1:404-26. [PMID: 20023747 DOI: 10.1039/b904701h] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The action radius of matrix metalloproteinases or MMPs is not restricted to massive extracellular matrix (ECM) degradation, it extends to the proteolysis of numerous secreted and membrane-bound proteins. Although many instances exist in which cells disintegrate, often in conjunction with induction of MMPs, the intracellular MMP substrate repertoire or degradome remains relatively unexplored. We started an unbiased exploration of the proteolytic modification of intracellular proteins by MMPs, using gelatinase B/MMP-9 as a model enzyme. To this end, multidimensional degradomics technology was developed by the integration of broadly available biotechniques. In this way, 100-200 MMP-9 candidate substrates were isolated, of which 69 were identified. Integration of these results with the known biological functions of the substrates revealed many novel MMP-9 substrates from the intracellular matrix (ICM), such as actin, tubulin, gelsolin, moesin, ezrin, Arp2/3 complex subunits, filamin B and stathmin. About 2/3 of the identified candidates were autoantigens described in multiple autoimmune conditions and in cancer (e.g. annexin I, nucleolin, citrate synthase, HMGB1, alpha-enolase, histidyl-tRNA synthetase, HSP27, HSC70, HSP90, snRNP D3). These findings led to the insight that MMPs and other proteases may have novel (immuno)regulatory properties by the clearance of toxic and immunogenic burdens of abundant ICM proteins released after extensive necrosis. In line with the extracellular processing of organ-specific autoantigens, proteolysis might also assist in the generation of immunodominant 'neo-epitopes' from systemic autoantigens. The study of proteolysis of ICM molecules, autoantigens, alarmins and other crucial intracellular molecules may result in the discovery of novel roles for proteolytic modification.
Collapse
Affiliation(s)
- Bénédicte Cauwe
- Department of Microbiology and Immunology, Laboratory of Immunobiology, Rega Institute for Medical Research, University of Leuven, Minderbroedersstraat 10, Leuven, Belgium
| | | | | | | |
Collapse
|
3
|
Kalabay L, Fekete B, Czirják L, Horváth L, Daha MR, Veres A, Fónyad G, Horváth A, Viczián A, Singh M, Hoffer I, Füst G, Romics L, Prohászka Z. Helicobacter pylori infection in connective tissue disorders is associated with high levels of antibodies to mycobacterial hsp65 but not to human hsp60. Helicobacter 2002; 7:250-6. [PMID: 12165033 DOI: 10.1046/j.1523-5378.2002.00092.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND To investigate whether the Helicobacter pylori status influences levels of antibodies against mycobacterial heat shock protein (hsp) 65 and human hsp60 in systemic autoimmune diseases and to study the concentration of anti-H. pylori antibodies in autoimmune patients and healthy controls. MATERIALS AND METHODS Antibodies against human heat-shock protein hsp60, mycobacterial heat-shock protein hsp65 were analyzed by ELISA. Anti-Helicobacter antibodies were determined by enzyme immunoassay. RESULTS There was a markedly higher prevalence of H. pylori infection in undifferentiated connective tissue disease (82%) (n = 33) and systemic sclerosis (78%) (n = 55) but not in systemic lupus erythematosus (n = 49), polymyositis/dermatomyositis (n = 14), rheumatoid arthritis (n = 21) or primary Raynaud's syndrome (n = 26) compared with controls (59%) (n = 349). In autoimmune diseases H. pylori infection was associated with elevated levels of antihsp65 (p =.008) but not of antihsp60. Anti-hsp65 levels were significantly higher in H. pylori-infected (n = 129) than in uninfected patients (n = 69) (p =.0007). CONCLUSIONS These findings indicate that in autoimmune diseases the infection with the H. pylori bacterium is associated with increased concentration of antimycobacterial hsp65.
Collapse
Affiliation(s)
- László Kalabay
- 3rd Department of Internal Medicine, Faculty of Medicine, Semmelweis University and Research Group of Metabolism, Genetics and Immunology, Hungarian Academy of Sciences, Budapest, Hungary
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Fujimoto M, Sato S, Ihn H, Kikuchi K, Tamaki T, Tamaki K, Takehara K. Antiubiquitin antibody in localised and systemic scleroderma. Ann Rheum Dis 1996; 55:399-402. [PMID: 8694581 PMCID: PMC1010193 DOI: 10.1136/ard.55.6.399] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
OBJECTIVE To determine the presence of antiubiquitin antibody (AUbA) in localised scleroderma and systemic sclerosis, as it is frequently found in the sera of patients with systemic lupus erythematosus (SLE) and has also been shown to have a close relationship with antihistone antibodies that have an important role in scleroderma. METHODS Serum samples from patients with localised scleroderma (n = 48) and systemic sclerosis (n = 52) were examined by enzyme linked immunosorbent assay. Twenty samples from patients with SLE, 20 from patients with dermatomyositis, and 30 samples from healthy individuals were used as controls. RESULTS AUbA was demonstrated in 44% of patients with localised scleroderma and in 42% of those with systemic sclerosis. The presence of AUbA correlated with the presence of antihistone antibodies in both localised scleroderma and systemic sclerosis. CONCLUSIONS AUbA is frequently present in patients with localised scleroderma and systemic sclerosis. Induction of AUbA is closely associated with that of antihistone antibodies, suggesting that ubiquitinated histone may be the target in autoimmune responses of these disorders.
Collapse
Affiliation(s)
- M Fujimoto
- Department of Dermatology, University of Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|