1
|
Shi M, Li Y, Deng S, Wang D, Chen Y, Yang S, Wu J, Tian WM. The formation and accumulation of protein-networks by physical interactions in the rapid occlusion of laticifer cells in rubber tree undergoing successive mechanical wounding. BMC PLANT BIOLOGY 2019; 19:8. [PMID: 30616545 PMCID: PMC6322289 DOI: 10.1186/s12870-018-1617-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 12/21/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Although the wound response of plants has been extensively studied, little is known of the rapid occlusion of wounded cell itself. The laticifer in rubber tree is a specific type of tissue for natural rubber biosynthesis and storage. In natural rubber production, tapping is used to harvest the latex which flows out from the severed laticifer in the bark. Therefore, study of the rapid wound-occlusion of severed laticifer cells is important for understanding the rubber tree being protected from the continuously mechanical wounding. RESULTS Using cytological and biochemical techniques, we revealed a biochemical mechanism for the rapid occlusion of severed laticifer cells. A protein-network appeared rapidly after tapping and accumulated gradually along with the latex loss at the severed site of laticifer cells. Triple immunofluorescence histochemical localization showed that the primary components of the protein-network were chitinase, β-1,3-glucanase and hevein together with pro-hevein (ProH) and its carboxyl-terminal part. Molecular sieve chromatography showed that the physical interactions among these proteins occurred under the condition of neutral pH. The interaction of β-1,3-glucanase respectively with hevein, chitinase and ProH was testified by surface plasmon resonance (SPR). The interaction between actin and β-1,3-glucanase out of the protein inclusions of lutoids was revealed by pull-down. This interaction was pharmacologically verified by cytochalasin B-caused significant prolongation of the duration of latex flow in the field. CONCLUSIONS The formation of protein-network by interactions of the proteins with anti-pathogen activity released from lutoids and accumulation of protein-network by binding to the cytoskeleton are crucial for the rapid occlusion of laticifer cells in rubber tree. The protein-network at the wounded site of laticifer cells provides not only a physical barrier but also a biochemical barrier to protect the wounded laticifer cells from pathogen invasion.
Collapse
Affiliation(s)
- Minjing Shi
- Institute of Rubber Research, Chinese Academy of Tropical Agricultural Sciences, Danzhou, 571737, Hainan, People's Republic of China
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Danzhou, 571737, Hainan, People's Republic of China
| | - Yan Li
- Institute of Rubber Research, Chinese Academy of Tropical Agricultural Sciences, Danzhou, 571737, Hainan, People's Republic of China
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Danzhou, 571737, Hainan, People's Republic of China
| | - Shunnan Deng
- Institute of Rubber Research, Chinese Academy of Tropical Agricultural Sciences, Danzhou, 571737, Hainan, People's Republic of China
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Danzhou, 571737, Hainan, People's Republic of China
- Dehong Vocational College, Mangshi, Dehong State, 678400, Yunnan, People's Republic of China
| | - Dongdong Wang
- Institute of Rubber Research, Chinese Academy of Tropical Agricultural Sciences, Danzhou, 571737, Hainan, People's Republic of China
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Danzhou, 571737, Hainan, People's Republic of China
| | - Yueyi Chen
- Institute of Rubber Research, Chinese Academy of Tropical Agricultural Sciences, Danzhou, 571737, Hainan, People's Republic of China
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Danzhou, 571737, Hainan, People's Republic of China
| | - Shuguang Yang
- Institute of Rubber Research, Chinese Academy of Tropical Agricultural Sciences, Danzhou, 571737, Hainan, People's Republic of China
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Danzhou, 571737, Hainan, People's Republic of China
| | - Jilin Wu
- Institute of Rubber Research, Chinese Academy of Tropical Agricultural Sciences, Danzhou, 571737, Hainan, People's Republic of China
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Danzhou, 571737, Hainan, People's Republic of China
| | - Wei-Min Tian
- Institute of Rubber Research, Chinese Academy of Tropical Agricultural Sciences, Danzhou, 571737, Hainan, People's Republic of China.
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Danzhou, 571737, Hainan, People's Republic of China.
| |
Collapse
|
2
|
Brunet T, Arendt D. From damage response to action potentials: early evolution of neural and contractile modules in stem eukaryotes. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150043. [PMID: 26598726 PMCID: PMC4685582 DOI: 10.1098/rstb.2015.0043] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2015] [Indexed: 12/14/2022] Open
Abstract
Eukaryotic cells convert external stimuli into membrane depolarization, which in turn triggers effector responses such as secretion and contraction. Here, we put forward an evolutionary hypothesis for the origin of the depolarization-contraction-secretion (DCS) coupling, the functional core of animal neuromuscular circuits. We propose that DCS coupling evolved in unicellular stem eukaryotes as part of an 'emergency response' to calcium influx upon membrane rupture. We detail how this initial response was subsequently modified into an ancient mechanosensory-effector arc, present in the last eukaryotic common ancestor, which enabled contractile amoeboid movement that is widespread in extant eukaryotes. Elaborating on calcium-triggered membrane depolarization, we reason that the first action potentials evolved alongside the membrane of sensory-motile cilia, with the first voltage-sensitive sodium/calcium channels (Nav/Cav) enabling a fast and coordinated response of the entire cilium to mechanosensory stimuli. From the cilium, action potentials then spread across the entire cell, enabling global cellular responses such as concerted contraction in several independent eukaryote lineages. In animals, this process led to the invention of mechanosensory contractile cells. These gave rise to mechanosensory receptor cells, neurons and muscle cells by division of labour and can be regarded as the founder cell type of the nervous system.
Collapse
Affiliation(s)
- Thibaut Brunet
- European Molecular Biology Laboratory, Developmental Biology Unit, Heidelberg 69012, Germany
| | - Detlev Arendt
- European Molecular Biology Laboratory, Developmental Biology Unit, Heidelberg 69012, Germany
| |
Collapse
|
3
|
Moe AM, Golding AE, Bement WM. Cell healing: Calcium, repair and regeneration. Semin Cell Dev Biol 2015; 45:18-23. [PMID: 26514621 DOI: 10.1016/j.semcdb.2015.09.026] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 09/24/2015] [Indexed: 01/25/2023]
Abstract
Cell repair is attracting increasing attention due to its conservation, its importance to health, and its utility as a model for cell signaling and cell polarization. However, some of the most fundamental questions concerning cell repair have yet to be answered. Here we consider three such questions: (1) How are wound holes stopped? (2) How is cell regeneration achieved after wounding? (3) How is calcium inrush linked to wound stoppage and cell regeneration?
Collapse
Affiliation(s)
- Alison M Moe
- Cell and Molecular Biology Graduate Program, Laboratory of Cell and Molecular Biology, 1525 Linden Drive, Madison, WI, USA
| | - Adriana E Golding
- Cell and Molecular Biology Graduate Program, Laboratory of Cell and Molecular Biology, 1525 Linden Drive, Madison, WI, USA
| | - William M Bement
- Cell and Molecular Biology Graduate Program, Laboratory of Cell and Molecular Biology, 1525 Linden Drive, Madison, WI, USA; Department of Zoology, University of Wisconsin-Madison, 1525 Linden Drive, Madison, WI, USA.
| |
Collapse
|
4
|
Abstract
The giant-celled algae, which consist of cells reaching millimeters in size, some even centimeters, exhibit unique cell architecture and physiological characteristics. Their cells display a variety of morphogenetic phenomena, that is, growth, division, differentiation, and reproductive cell formation, as well as wound-healing responses. Studies using immunofluorescence microscopy and pharmacological approaches have shown that microtubules and/or actin filaments are involved in many of these events through the generation of intracellular movement of cell components or entire protoplasmic contents and the spatial control of cell activities in specific areas of the giant cells. A number of environmental factors including physical stimuli, such as light and gravity, invoke localized but also generalized cellular reactions. These have been extensively investigated to understand the regulation of morphogenesis, in particular addressing cytoskeletal and endomembrane dynamics, electrophysiological elements affecting ion fluxes, and the synthesis and mechanical properties of the cell wall. Some of the regulatory pathways involve signal transduction and hormonal control, as in other organisms. The giant unicellular green alga Acetabularia, which has proven its usefulness as an experimental model in early amputation/grafting experiments, will potentially once again serve as a useful model organism for studying the role of gene expression in orchestrating cellular morphogenesis.
Collapse
|
5
|
de Almeida Engler J, Van Poucke K, Karimi M, De Groodt R, Gheysen G, Engler G, Gheysen G. Dynamic cytoskeleton rearrangements in giant cells and syncytia of nematode-infected roots. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 38:12-26. [PMID: 15053756 DOI: 10.1111/j.1365-313x.2004.02019.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Giant cells induced by root knot nematodes and syncytia caused by cyst nematodes are large multinucleated feeding cells containing a dense cytoplasm generated during a complex host-parasite association in plant roots. To find out whether cytoskeleton changes occurred during feeding cell development, transcriptional activity of actin (ACT) and tubulin genes and organization of the ACT filaments and of the microtubules (MTs) were analyzed in situ. The importance of changes in the cytoskeleton architecture for the proper initiation and development of galls and syncytia was demonstrated by perturbing the cytoskeleton with chemical inhibitors. The expression levels of cytoskeletal components, such as tubulins and ACTs, are proposed to be upregulated to allow the assembly of a new cytoskeleton in expanding feeding cells. However, MTs and ACT filaments failed to properly organize and appeared partially depolymerized throughout feeding site development. Both the actin and tubulin cytoskeletons were strongly disrupted in syncytia and mitotic figures were never observed. In contrast, in giant cells, an ACT and cortical MT cytokeleton, although disturbed, was still visible. In addition, a functional mitotic apparatus was present that contained multiple large spindles and arrested phragmoplasts, but no pre-prophase bands. Chemical stabilization of the microtubular cytoskeleton with taxol blocked feeding site development. On the other hand, when the ACT or MT cytoskeleton of feeding cells was depolymerized by cytochalasin D or oryzalin, nematodes could complete their life cycle. Our data suggest that the cytoskeleton rearrangements and depolymerization induced by parasitic nematodes may be essential for a successful feeding process.
Collapse
Affiliation(s)
- Janice de Almeida Engler
- Department of Plant Systems Biology, Flanders Interuniversity Institute for Biotechnology (VIB), Ghent University, B-9052 Gent, Belgium
| | | | | | | | | | | | | |
Collapse
|
6
|
Alessa L, Oliveira L. Aluminum toxicity studies in Vaucheria longicaulis var. macounii (Xanthophyta, Tribophyceae). II. Effects on the F-actin array. ENVIRONMENTAL AND EXPERIMENTAL BOTANY 2001; 45:223-237. [PMID: 11323031 DOI: 10.1016/s0098-8472(00)00088-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In this study, we test the hypothesis that exposure to environmentally significant concentrations of aluminum (Al, 80 µM) causes the microfilament array of Vaucheria longicaulis var. macounii vegetative filaments to become fragmented and disorganized. Changes in F-actin organization following treatment of vegetative filaments by Al are examined using vital staining with fluorescein phalloidin. In the cortical cytoplasm of the apical zone of pH 7.5 and pH 4.5 control cells, axially aligned bundles of F-actin lead to a region of diffuse, brightly stained material. Dimly stained focal masses are noted deeper in the cytoplasm of the apical zone whereas they are absent from the zone of vacuolation. The F-actin array is visualized in the cortical cytoplasm of the region of the cell, distal to the apical tip, which exhibits vigorous cytoplasmic streaming (zone of vacuolation) as long, axially aligned bundles with which chloroplasts and mitochondria associate. Thirty minutes following treatment with aluminum, and for the next 8-16 h, the F-actin array is progressively disorganized. The longitudinally aligned F-actin array becomes fragmented. Aggregates of F-actin, such as short rods, amorphous and stellate F-actin focal masses, curved F-actin bundles and F-actin rings replace the control array. Each of these structures may occur in association with chloroplasts or independently with no apparent association with organelles. Images are recorded which indicate that F-actin rings not associated with organelles may self-assemble by successive bundling of F-actin fragments. The fragmentation and bundling of F-actin in cells of V. longicaulis upon treatment with aluminum resembles those reported after diverse forms of cell disturbance and supports the hypothesis that aluminum-induced changes in the F-actin array may be a calcium-mediated response to stress.
Collapse
Affiliation(s)
- L Alessa
- Department of Biology, 3211 Providence Dr., University of Alaska, 99508, Anchorage, AK, USA
| | | |
Collapse
|
7
|
Vitha S, Baluska F, Braun M, Samaj J, Volkmann D, Barlow PW. Comparison of cryofixation and aldehyde fixation for plant actin immunocytochemistry: aldehydes do not destroy F-actin. THE HISTOCHEMICAL JOURNAL 2000; 32:457-66. [PMID: 11095070 DOI: 10.1023/a:1004171431449] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
For walled plant cells, the immunolocalization of actin microfilaments, also known as F-actin, has proved to be much trickier than that of microtubules. These difficulties are commonly attributed to the high sensitivity of F-actin to aldehyde fixatives. Therefore, most plant studies have been accomplished using fluorescent phallotoxins in fresh tissues. Nevertheless, concerns regarding the questionable ability of phallotoxins to bind the whole complement of F-actin necessitate further optimization of actin immunofluorescence methods. We have compared two procedures: (1) formaldehyde fixation and (2) rapid freezing and freeze substitution (cryofixation), both followed by embedding in low-melting polyester wax. Actin immunofluorescence in sections of garden cress (Lepidium sativum L.) root gave similar results with both methods. The compatibility of aldehydes with actin immunodetection was further confirmed by the freeze-shattering technique that does not require embedding after aldehyde fixation. It appears that rather than aldehyde fixation, some further steps in the procedures used for actin visualization are critical for preserving F-actin. Wax embedding, combined with formaldehyde fixation, has proved to be also suitable for the detection of a wide range of other antigens.
Collapse
Affiliation(s)
- S Vitha
- Institute of Plant Molecular Biology, Academy of Sciences of Czech Republic, Ceské Budejovice
| | | | | | | | | | | |
Collapse
|
8
|
|
9
|
Kobayashi I, Murdoch LJ, Hardham AR, Kunoh H. Cell biology of early events in the plant resistance response to infection by pathogenic fungi. ACTA ACUST UNITED AC 1995. [DOI: 10.1139/b95-278] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In addition to passive (or constitutive) defence mechanisms, plants have evolved a range of active (or inducible) responses that occur rapidly on infection with an incompatible (avirulent) pathogen and that are thought to play a major role in the expression of resistance. These defence reactions are only induced if the plant possesses the ability to recognize and respond to the pathogen. Signal reception by the host must initiate a cascade of events that lead to the expression of resistance. Some resistance responses, such as callose deposition, do not require the expression of new genes. Many responses, for example the synthesis and secretion of toxic compounds or molecules that enhance the strength of physical barriers, result from changes in the pattern of gene transcription. Other defence phenomena include hypersensitive cell collapse, intercellular signalling, and the induction of defence gene transcripts in surrounding cells. Changes in cell biochemistry and physiology are accompanied by characteristic structural modifications in the infected cells, such as the redeployment of selected organelles and dramatic modifications of the host cell wall. Recent evidence indicates that microtubules and microfilaments of the plant cytoskeleton facilitate the rapid localization of these and other plant defence responses to the region of infection. Key words: plant resistance, plant cytoskeleton, microtubules, microfilaments, fungal pathogens, polarity of defence response.
Collapse
|
10
|
Kinkema M, Wang H, Schiefelbein J. Molecular analysis of the myosin gene family in Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 1994; 26:1139-1153. [PMID: 7811972 DOI: 10.1007/bf00040695] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Myosin is believed to act as the molecular motor for many actin-based motility processes in eukaryotes. It is becoming apparent that a single species may possess multiple myosin isoforms, and at least seven distinct classes of myosin have been identified from studies of animals, fungi, and protozoans. The complexity of the myosin heavy-chain gene family in higher plants was investigated by isolating and characterizing myosin genomic and cDNA clones from Arabidopsis thaliana. Six myosin-like genes were identified from three polymerase chain reaction (PCR) products (PCR1, PCR11, PCR43) and three cDNA clones (ATM2, MYA2, MYA3). Sequence comparisons of the deduced head domains suggest that these myosins are members of two major classes. Analysis of the overall structure of the ATM2 and MYA2 myosins shows that they are similar to the previously-identified ATM1 and MYA1 myosins, respectively. The MYA3 appears to possess a novel tail domain, with five IQ repeats, a six-member imperfect repeat, and a segment of unique sequence. Northern blot analyses indicate that some of the Arabidopsis myosin genes are preferentially expressed in different plant organs. Combined with previous studies, these results show that the Arabidopsis genome contains at least eight myosin-like genes representing two distinct classes.
Collapse
Affiliation(s)
- M Kinkema
- Department of Biology, University of Michigan, Ann Arbor 48109
| | | | | |
Collapse
|
11
|
McDonald AR, Garbary DJ, Duckett JG. Rhodamine-phalloidin staining of F-actin in rhodophyta. Biotech Histochem 1993; 68:91-8. [PMID: 7684265 DOI: 10.3109/10520299309104673] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Rhodamine-phalloidin was used to label F-actin in unfixed cells of 13 species of filamentous and blade-forming red algae from the three families Ceramiaceae, Acrochaetiaceae and Bangiaceae. Labelling was achieved only after treatment with either beta-glucuronidase or a combination of cellulase and an extract of snail gut enzyme. Different species required different enzyme treatments and incubation times for successful labelling. All species examined showed extensive arrays of F-actin which generally are confined to the peripheral cytoplasm and are oriented longitudinally. Transverse arrays are present beside the crosswalls of Griffithsia pacifica, and Audouinella species show actin concentrations at the tips of apical cells and in developing branch initials.
Collapse
Affiliation(s)
- A R McDonald
- Department of Biology, St. Francis Xavier University, Antigonish, Nova Scotia, Canada
| | | | | |
Collapse
|
12
|
Regulation of Intracellular Movements in Plant Cells by Environmental Stimuli. ACTA ACUST UNITED AC 1993. [DOI: 10.1016/s0074-7696(08)60429-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
13
|
Several aspects of current research into the role of calcium in plant physiology. ACTA ACUST UNITED AC 1992. [DOI: 10.1007/bf02489443] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
14
|
|
15
|
Goddard RH, La Claire JW. Calmodulin and wound healing in the coenocytic green alga Ernodesmis verticillata (Kützing) Børgesen: Ultrastructure of the cortical cytoskeleton and immunogold labeling. PLANTA 1991; 186:17-26. [PMID: 24186570 DOI: 10.1007/bf00201493] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/02/1991] [Indexed: 06/02/2023]
Abstract
Ultrastructural changes in the cortical cytoskeleton during wound-induced cytoplasmic contraction were examined in the coenocytic green alga Ernodesmis verticillata. Both calmodulin (CaM) and actin were localized in intact and contracting cells by immunogold labeling. Within 5 min after wounding, compact microfilament (MF) bundles were observed which increase in diameter as cytoplasmic contraction proceeds. Calmodulin labeling is associated with amorphous material studding the MF bundles, whereas actin labeling occurs along the individual MFs. No MF bundles were ever observed during contraction that were not also labeled with anti-CaM antibodies. In cells treated with the CaM antagonist W-7 (N-[6-aminohexyl]-5-chloro-1-naphtha-lenesulfonamide), MF bundles do not form, and the formation of loosely arranged MFs (similar to nascent bundles in untreated cells) is greatly retarded. We propose that CaM binds indirectly to actin by activating an actin-binding regulatory protein which functions in early stages of the transduction sequence leading to functional MF bundles. Additionally, ultrastructural evidence is presented for a plasma-membrane skeleton or undercoating in this alga.
Collapse
Affiliation(s)
- R H Goddard
- Department of Botany, University of Texas, 78713, Austin, TX, USA
| | | |
Collapse
|
16
|
La Claire JW, Fulginiti R. Dynamics of microtubule reassembly and reorganization in the coenocytic green alga Ernodesmis verticillata (Kützing) Børgesen. PLANTA 1991; 185:447-457. [PMID: 24186520 DOI: 10.1007/bf00202952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/1991] [Accepted: 07/03/1991] [Indexed: 06/02/2023]
Abstract
The dynamics of microtubule (MT) disassembly and reassembly were studied in the green alga Ernodesmis verticillata, using indirect immunofluorescent localization of tubulin. This alga possesses two distinct MT arrays: highly-ordered, longitudinally-oriented cortical MTs, and shorter perinuclear MTs radiating from nuclear surfaces. Perinuclear MTs are very labile, completely disassembling in the cold (cells on ice) within 5-10 min or in 25 μM amiprophos-methyl (APM) within 15-30 min. Although cortical MTs are generally absent after 3 h in APM, it takes 45-60 min before any cold-induced depolymerization is apparent, and some cortical MTs persist after 6 h of cold treatment. The extent of immunofluorescence of cytoplasmic (depolymerized?) tubulin is inversely proportional to the abundance of cortical MTs. Recovery of MT arrays upon warming or upon removal of APM occurs within 30-60 min for the perinuclear MTs, but the cortical arrays take much longer to regain their normal patterns. The cortical MTs initially reappear in a random distribution with respect to the cell axis, but within 3-4 d of warming (or 24-36 h of removing APM) they are nearly parallel to each other and to the cell's longitudinal axis. Thus, although the timing differs, the actual patterns of depolymerization and recovery are similar, irrespective of whether physical or chemical agents are used. Longer-term treatments in 1 μM APM indicate that despite the rapid disappearance of perinuclear MTs, a loss of the uniform nuclear spacing occurs gradually over 1-6 d. Similar disorganization of nuclei is obtained with long-term treatment with 1 μM taxol, where a gradual loss of perinuclear MTs is accompanied by an increased abundance of mitotic spindles. This implies that perinuclear MTs can disassemble in vivo in the presence of taxol, and that they are not the sole components involved in maintaining nuclear spacing in these coenocytes. The results indicate that both nuclear and cortical sites of MT nucleation may exist in this organism, and that MT reassembly and re-organization are temporally distinct events in cells that have highly-ordered arrays of long MTs.
Collapse
Affiliation(s)
- J W La Claire
- Department of Botany, University of Texas, 78713, Austin, TX, USA
| | | |
Collapse
|
17
|
La Claire JW. Immunolocalization of myosin in intact and wounded cells of the green alga Ernodesmis verticillata (Kützing) Borgesen. PLANTA 1991; 184:209-217. [PMID: 24194072 DOI: 10.1007/bf00197949] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/29/1990] [Indexed: 06/02/2023]
Abstract
Myosin localization was examined in the coenocytic green alga E. verticillata using indirect immunofluorescence microscopy. A polyclonal antibody affinity-purified against the heavy chain of slime-mold myosin recognizes a 220000 to 230000 Mr protein that electrophoretically migrates slightly behind rabbit myosin. A second polypeptide of 85000 Mr is also consistently detected in immunoblots, indicating that two forms of myosin-like proteins may be present in these cells. In intact cells, myosin immunofluorescence is present on the chloroplast surfaces, in nuclei and in cytoplasmic strands between plastids. Myosin labeling also occurs in association with pyrenoids primarily in apical chloroplasts. During wound-induced cytoplasmic contractions, myosin is localized near the plasma membrane in longitudinal arrays superimposed over a reticulate pattern of fluorescence; both these patterns become apparent upon wounding. Double-label immunofluorescence of actin and myosin demonstrates that these arrays represent the longitudinal bundles of actin microfilaments and the actin-containing reticulum, the former being directly associated with contraction in these cells. These results indicate that both actin and myosin are associated with contractility in Ernodesmis, probably representing the apparatus and "molecular motor", respectively, which effect motility.
Collapse
Affiliation(s)
- J W La Claire
- Department of Botany, University of Texas, 78713, Austin, TX, USA
| |
Collapse
|
18
|
Goddard RH, La Claire JW. Calmodulin and wound healing in the coenocytic green alga Ernodesmis verticillata (Kützing) Børgesen : Immunofluorescence and effects of antagonists. PLANTA 1991; 183:281-293. [PMID: 24193632 DOI: 10.1007/bf00197800] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/28/1990] [Indexed: 06/02/2023]
Abstract
The involvement of calmodulin (CaM) in wound-induced cytoplasmic contractions in E. verticillata was investigated. Indirect immunofluorescence of CaM in intact cells showed a faint, reticulate pattern of fluorescence in the cortical cytoplasm. Diffuse fluorescence was evident deeper within the cytoplasm. In contracted cells, CaM co-localizes with actin in the cortical cytoplasm in extensive, longitudinal bundles of microfilaments (MFs), and in an actin-containing reticulum. No association of CaM with tubulin was ever observed in the cortical cytoplasm at any stage of wound-healing. When contraction rates in wounded cells are measured, a lag period of 2 min is followed by a rapid, steady rate of movement over the subsequent 10 min. The delay in the initiation of longitudinal contraction corresponds to the time necessary for the assembly of the longitudinal MF bundles. Cytoplasmic motility was inhibited in a dose-dependent manner by CaM antagonists. In these inhibited cells, MF bundles did not assemble, or were poorly formed. In the latter case, CaM was always found associated with MFs. These results indicate a direct spatial and temporal correlation between CaM and actin, and a potential role for CaM in regulating the formation of functional MF bundles during wound-induced cytoplasmic contraction in Ernodesmis.
Collapse
Affiliation(s)
- R H Goddard
- Department of Botany, University of Texas, 78713, Austin, TX, USA
| | | |
Collapse
|
19
|
McCurdy DW, Gunning BES. Reorganization of cortical actin microfilaments and microtubules at preprophase and mitosis in wheat root-tip cells: A double label immunofluorescence study. ACTA ACUST UNITED AC 1990. [DOI: 10.1002/cm.970150204] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
20
|
Heath I. The Roles of Actin in Tip Growth of Fungi. ACTA ACUST UNITED AC 1990. [DOI: 10.1016/s0074-7696(08)60672-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|