1
|
Dodueva IE, Lebedeva MA, Kuznetsova KA, Gancheva MS, Paponova SS, Lutova LL. Plant tumors: a hundred years of study. PLANTA 2020; 251:82. [PMID: 32189080 DOI: 10.1007/s00425-020-03375-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/11/2020] [Indexed: 05/21/2023]
Abstract
The review provides information on the mechanisms underlying the development of spontaneous and pathogen-induced tumors in higher plants. The activation of meristem-specific regulators in plant tumors of various origins suggests the meristem-like nature of abnormal plant hyperplasia. Plant tumor formation has more than a century of research history. The study of this phenomenon has led to a number of important discoveries, including the development of the Agrobacterium-mediated transformation technique and the discovery of horizontal gene transfer from bacteria to plants. There are two main groups of plant tumors: pathogen-induced tumors (e.g., tumors induced by bacteria, viruses, fungi, insects, etc.), and spontaneous ones, which are formed in the absence of any pathogen in plants with certain genotypes (e.g., interspecific hybrids, inbred lines, and mutants). The causes of the transition of plant cells to tumor growth are different from those in animals, and they include the disturbance of phytohormonal balance and the acquisition of meristematic characteristics by differentiated cells. The aim of this review is to discuss the mechanisms underlying the development of most known examples of plant tumors.
Collapse
Affiliation(s)
- Irina E Dodueva
- Department of Genetics and Biotechnology, Saint-Petersburg State University, Saint-Petersburg, Russia.
| | - Maria A Lebedeva
- Department of Genetics and Biotechnology, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Kseniya A Kuznetsova
- Department of Genetics and Biotechnology, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Maria S Gancheva
- Department of Genetics and Biotechnology, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Svetlana S Paponova
- Department of Genetics and Biotechnology, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Ludmila L Lutova
- Department of Genetics and Biotechnology, Saint-Petersburg State University, Saint-Petersburg, Russia
| |
Collapse
|
2
|
Sánchez-Parra B, Frerigmann H, Alonso MMP, Loba VC, Jost R, Hentrich M, Pollmann S. Characterization of Four Bifunctional Plant IAM/PAM-Amidohydrolases Capable of Contributing to Auxin Biosynthesis. PLANTS 2014; 3:324-47. [PMID: 27135507 PMCID: PMC4844348 DOI: 10.3390/plants3030324] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 07/23/2014] [Accepted: 07/30/2014] [Indexed: 01/09/2023]
Abstract
Amidases [EC 3.5.1.4] capable of converting indole-3-acetamide (IAM) into the major plant growth hormone indole-3-acetic acid (IAA) are assumed to be involved in auxin de novo biosynthesis. With the emerging amount of genomics data, it was possible to identify over forty proteins with substantial homology to the already characterized amidases from Arabidopsis and tobacco. The observed high conservation of amidase-like proteins throughout the plant kingdom may suggest an important role of theses enzymes in plant development. Here, we report cloning and functional analysis of four, thus far, uncharacterized plant amidases from Oryza sativa, Sorghum bicolor, Medicago truncatula, and Populus trichocarpa. Intriguingly, we were able to demonstrate that the examined amidases are also capable of converting phenyl-2-acetamide (PAM) into phenyl-2-acetic acid (PAA), an auxin endogenous to several plant species including Arabidopsis. Furthermore, we compared the subcellular localization of the enzymes to that of Arabidopsis AMI1, providing further evidence for similar enzymatic functions. Our results point to the presence of a presumably conserved pathway of auxin biosynthesis via IAM, as amidases, both of monocot, and dicot origins, were analyzed.
Collapse
Affiliation(s)
- Beatriz Sánchez-Parra
- Center for Plant Biotechnology and Genomics (U.P.M.-I.N.I.A.), Technical University Madrid, Montegancedo Campus, Crta. M-40, km 38, 28223 Pozuelo de Alarcón (Madrid), Spain.
| | - Henning Frerigmann
- Department of Plant Physiology, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany.
| | - Marta-Marina Pérez Alonso
- Center for Plant Biotechnology and Genomics (U.P.M.-I.N.I.A.), Technical University Madrid, Montegancedo Campus, Crta. M-40, km 38, 28223 Pozuelo de Alarcón (Madrid), Spain.
| | - Víctor Carrasco Loba
- Center for Plant Biotechnology and Genomics (U.P.M.-I.N.I.A.), Technical University Madrid, Montegancedo Campus, Crta. M-40, km 38, 28223 Pozuelo de Alarcón (Madrid), Spain.
| | - Ricarda Jost
- School of Plant Biology, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.
| | - Mathias Hentrich
- Department of Plant Physiology, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany.
| | - Stephan Pollmann
- Center for Plant Biotechnology and Genomics (U.P.M.-I.N.I.A.), Technical University Madrid, Montegancedo Campus, Crta. M-40, km 38, 28223 Pozuelo de Alarcón (Madrid), Spain.
| |
Collapse
|
3
|
|
4
|
Aragón IM, Pérez-Martínez I, Moreno-Pérez A, Cerezo M, Ramos C. New insights into the role of indole-3-acetic acid in the virulence ofPseudomonas savastanoipv.savastanoi. FEMS Microbiol Lett 2014; 356:184-92. [DOI: 10.1111/1574-6968.12413] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 02/28/2014] [Indexed: 12/25/2022] Open
Affiliation(s)
- Isabel M. Aragón
- Área de Genética; Facultad de Ciencias; Instituto de Hortofruticultura Subtropical y Mediterrnea “La Mayora”; Universidad de Málaga-CSIC (IHSM-UMA-CSIC); Málaga Spain
| | - Isabel Pérez-Martínez
- Área de Genética; Facultad de Ciencias; Instituto de Hortofruticultura Subtropical y Mediterrnea “La Mayora”; Universidad de Málaga-CSIC (IHSM-UMA-CSIC); Málaga Spain
| | - Alba Moreno-Pérez
- Área de Genética; Facultad de Ciencias; Instituto de Hortofruticultura Subtropical y Mediterrnea “La Mayora”; Universidad de Málaga-CSIC (IHSM-UMA-CSIC); Málaga Spain
| | - Miguel Cerezo
- Plant Physiology Section; Departamento CAMN; Metabolic Integration & Cell Signalling Group; Universitat Jaume I; Castellón de La Plana Spain
| | - Cayo Ramos
- Área de Genética; Facultad de Ciencias; Instituto de Hortofruticultura Subtropical y Mediterrnea “La Mayora”; Universidad de Málaga-CSIC (IHSM-UMA-CSIC); Málaga Spain
| |
Collapse
|