Bouvier F, Backhaus RA, Camara B. Induction and control of chromoplast-specific carotenoid genes by oxidative stress.
J Biol Chem 1998;
273:30651-9. [PMID:
9804838 DOI:
10.1074/jbc.273.46.30651]
[Citation(s) in RCA: 158] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The differentiation of chloroplasts into chromoplasts involves a series of biochemical changes that culminate with the intense accumulation of long chain chromophore carotenoids such as lycopene, rhodoxanthin, astaxanthin, anhydroeschsoltzxanthin, capsanthin, and capsorubin. The signal pathways mediating these transformations are unknown. Chromoplast carotenoids are known to accumulate in green tissues experiencing stress conditions, and studies indicate that they provide efficient protection against oxidative stress. We tested the role of reactive oxygen species (ROS) as regulators of chromoplast carotenoid biosynthesis in vivo. The addition of ROS progenitors, such as menadione, tert-butylhydroperoxide, or paraquat and prooxidants such as diamide or buthionine sulfoximine to green pericarp discs of pepper fruits rapidly and dramatically induce the simultaneous expression of multiple carotenogenic gene mRNAS that give rise to capsanthin. Similarly, down-regulation of catalase by amitrole induces expression of carotenogenic gene mRNAs leading to the synthesis of capsanthin in excised green pericarp discs. ROS signals from plastids and mitochondria also contribute significantly to this process. Analysis of the capsanthin-capsorubin synthase promoter in combination with a beta-glucuronidase reporter gene reveals strong activation in transformed pepper protoplasts challenged with the above ROS. Collectively these data demonstrate that ROS act as a novel class of second messengers that mediate intense carotenoid synthesis during chromoplast differentiation.
Collapse