1
|
Ceusters N, Ceusters J, Hurtado-Castano N, Dever LV, Boxall SF, Kneřová J, Waller JL, Rodick R, Van den Ende W, Hartwell J, Borland AM. Phosphorolytic degradation of leaf starch via plastidic α-glucan phosphorylase leads to optimized plant growth and water use efficiency over the diel phases of Crassulacean acid metabolism. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4419-4434. [PMID: 33754643 PMCID: PMC8266541 DOI: 10.1093/jxb/erab132] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 03/19/2021] [Indexed: 05/27/2023]
Abstract
In plants with Crassulacean acid metabolism (CAM), it has been proposed that the requirement for nocturnal provision of phosphoenolpyruvate as a substrate for CO2 uptake has resulted in a re-routing of chloroplastic starch degradation from the amylolytic route to the phosphorolytic route. To test this hypothesis, we generated and characterized four independent RNAi lines of the obligate CAM species Kalanchoë fedtschenkoi with a >10-fold reduction in transcript abundance of plastidic α-glucan phosphorylase (PHS1). The rPHS1 lines showed diminished nocturnal starch degradation, reduced dark CO2 uptake, a reduction in diel water use efficiency (WUE), and an overall reduction in growth. A re-routing of starch degradation via the hydrolytic/amylolytic pathway was indicated by hyperaccumulation of maltose in all rPHS1 lines. Further examination indicated that whilst operation of the core circadian clock was not compromised, plasticity in modulating net dark CO2 uptake in response to changing photoperiods was curtailed. The data show that phosphorolytic starch degradation is critical for efficient operation of the CAM cycle and for optimizing WUE. This finding has clear relevance for ongoing efforts to engineer CAM into non-CAM species as a means of boosting crop WUE for a warmer, drier future.
Collapse
Affiliation(s)
- Nathalie Ceusters
- Faculty of Engineering Technology, Department of Biosystems, Division of Crop Biotechnics, Campus Geel, KU Leuven, Kleinhoefstraat 4, 2440 Geel, Belgium
| | - Johan Ceusters
- Faculty of Engineering Technology, Department of Biosystems, Division of Crop Biotechnics, Campus Geel, KU Leuven, Kleinhoefstraat 4, 2440 Geel, Belgium
- UHasselt, Centre for Environmental Sciences, Environmental Biology, Campus Diepenbeek, Agoralaan Building D, 3590 Diepenbeek, Belgium
| | - Natalia Hurtado-Castano
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | - Louisa V Dever
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Susanna F Boxall
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Jana Kneřová
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Jade L Waller
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Rebecca Rodick
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Wim Van den Ende
- Faculty of Science, Department of Biology, Laboratory of Molecular Plant Biology, KU Leuven, Kasteelpark Arenberg 31, B-3001 Heverlee, Belgium
| | - James Hartwell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Anne M Borland
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
2
|
|
3
|
Taybi T, Patil S, Chollet R, Cushman JC. A minimal serine/threonine protein kinase circadianly regulates phosphoenolpyruvate carboxylase activity in crassulacean acid metabolism-induced leaves of the common ice plant. PLANT PHYSIOLOGY 2000; 123:1471-82. [PMID: 10938363 PMCID: PMC59103 DOI: 10.1104/pp.123.4.1471] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2000] [Accepted: 04/22/2000] [Indexed: 05/17/2023]
Abstract
Plant phosphoenolpyruvate carboxylase (PEPc) activity and allosteric properties are regulated by PEPc kinase (PPcK) through reversible phosphorylation of a specific serine (Ser) residue near the N terminus. We report the molecular cloning of PPcK from the facultative Crassulacean acid metabolism (CAM) common ice plant (Mesembryanthemum crystallinum), using a protein-kinase-targeted differential display reverse transcriptase-polymerase chain reaction approach. M. crystallinum PPcK encodes a minimal, Ca(2+)-independent Ser/threonine protein kinase that is most closely related to calcium-dependent protein kinases, yet lacks both the calmodulin-like and auto-inhibitory domains typical of plant calcium-dependent protein kinase. In the common ice plant PPcK belongs to a small gene family containing two members. McPPcK transcript accumulation is controlled by a circadian oscillator in a light-dependent manner. McPPcK encodes a 31.8-kD polypeptide (279 amino acids), making it among the smallest protein kinases characterized to date. Initial biochemical analysis of the purified, recombinant McPPcK gene product documented that this protein kinase specifically phosphorylates PEPc from CAM and C(4) species at a single, N-terminal Ser (threonine) residue but fails to phosphorylate mutated forms of C(4) PEPc in which this specific site has been changed to tyrosine or aspartate. McPPcK activity was specific for PEPc, Ca(2+)-insensitive, and displayed an alkaline pH optimum. Furthermore, recombinant McPPcK was shown to reverse the sensitivity of PEPc activity to L-malate inhibition in CAM-leaf extracts prepared during the day, but not at night, documenting that PPcK contributes to the circadian regulation of photosynthetic carbon flux in CAM plants.
Collapse
Affiliation(s)
- T Taybi
- Department of Biochemistry and Molecular Biology, 147 Noble Research Center, Oklahoma State University, Stillwater, Oklahoma 74078-3035, USA
| | | | | | | |
Collapse
|
4
|
|
5
|
Abstract
▪ Abstract Crassulacean acid metabolism (CAM) is an adaptation of photosynthesis to limited availability of water or CO2. CAM is characterized by nocturnal CO2 fixation via the cytosolic enzyme PEP carboxylase (PEPC), formation of PEP by glycolysis, malic acid accumulation in the vacuole, daytime decarboxylation of malate and CO2 re-assimilation via ribulose-1,5-bisphosphate carboxylase (RUBISCO), and regeneration of storage carbohydrates from pyruvate and/or PEP by gluconeogenesis. Within this basic framework, the pathway exhibits an extraordinary range of metabolic plasticity governed by environmental, developmental, tissue-specific, hormonal, and circadian cues. Characterization of genes encoding key CAM enzymes has shown that a combination of transcriptional, posttranscriptional, translational, and posttranslational regulatory events govern the expression of the pathway. Recently, this information has improved our ability to dissect the regulatory and signaling events that mediate the expression and operation of the pathway. Molecular analysis and sequence information have also provided new ways of assessing the evolutionary origins of CAM. Genetic and physiological analysis of transgenic plants currently under development will improve our further understanding of the molecular genetics of CAM.
Collapse
Affiliation(s)
- John C. Cushman
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma 74078-0454; e-mail: , Department of Biochemistry, The University of Arizona, Tucson, Arizona 85721-0088; e-mail:
| | | |
Collapse
|
6
|
Wilkins MB. Tansley Review No. 37 Circadian rhythms: their origin and control. THE NEW PHYTOLOGIST 1992; 121:347-375. [PMID: 33874151 DOI: 10.1111/j.1469-8137.1992.tb02936.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This article reviews the circadian rhythm of carbon dioxide metabolism in leaves of the Crassulacean plant Bryophyllum (Kalanchoë) fedtsckenkoi which persists both in continuous darkness and a CO2 -free atmosphere, and in continuous light and normal air. Under both conditions the rhythm is due to the periodic activity of the enzyme phosphoenolpyruvate carboxylase (PEPc). The physiological characteristics of the rhythm are described in detail and, from these characteristics, hypotheses are advanced to account for both the generation of the rhythm and the regulation of its phase and period by environmental factors. The periodic activity of PEPc is ascribed to the periodic accumulation of an allosteric inhibitor, malate, in the cytoplasm and its subsequent removal either to the vacuole in continuous darkness, or by metabolism in continuous light. Also involved in the generation of the rhythm is a periodic change in the sensitivity of PEPc to malate inhibition due to the periodic phosphorylation and dephosphorylation of PEPc which changes its K1 by a factor of 10 from 30 to 0.3 mM and vice versa. This periodic phosphorylation of PEPc is apparently achieved by the periodic synthesis and breakdown of a PEPc kinase which phosphorylates the enzyme on a serine residue; dephosphorylation is achieved by a type 2A phosphatase which shows no rhythmic variation. The induction of phase shifts in the rhythm in continuous darkness and CO2 -free air has been explained in terms of light and high-temperature activated gates or channels in the tonoplast which, when open, allow malate to diffuse between the vacuole and cytoplasm. For the rhythm in continuous light and normal air phase, control by environmental signals can be attributed to changes in the malate levels in critical cell compartments, or in particular cell populations such as the stomatal guard cells, due to regulation of the malate synthesizing enzyme system involving PEPc, and malic enzyme which is responsible for malate metabolism. The role of the stomata in the generation of the rhythm is also discussed. The biochemical events which appear to give rise to the well-studied circadian rhythms in leaf movement in Samanea and Albizza, in luminescence in Gonyaulax polyedra and in the synthesis of the chlorophyll a/b binding protein are also reviewed in an attempt to identify similarities between these events and those involved in the Bryophyllum rhythm. Finally, the somewhat similar nature of the genes apparently responsible for circadian rhythmicity in Neurospora and Drosophila are discussed, and suggestions made for utilizing anti-sense nucleic acid technology in the further elucidation of the critical biochemical events involved in the basic, temperature-compensated circadian oscillator in living organisms. CONTENTS Summary 347 I. Introduction 348 II. Occurrence of circadian rhythms 348 III. Physiological characteristics of circadian rhythms 349 IV. Biochemical and molecular events involved in the circadian rhythm in Bryophyllum leaves 362 V. Biochemical and molecular events involved in the origin and control of circadian rhythmicity in other organisms 366 VI. Genetic studies 370 VII. Conclusion 371 References 372.
Collapse
|
7
|
Nimmo HG, Carter PJ, Fewson CA, McNaughton GA, Nimmo GA, Wilkins MB. Regulation of phosphoenolpyruvate carboxylase: an example of signal transduction via protein phosphorylation in higher plants. ADVANCES IN ENZYME REGULATION 1990; 30:121-31. [PMID: 2169694 DOI: 10.1016/0065-2571(90)90013-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
There is now good evidence that the malate sensitivity of PEPc is regulated by phosphorylation/dephosphorylation in the leaf tissue of C4 and CAM plants. This statement is based on the assessment of the phosphorylation state of PEPc in [32P]-labeled intact tissue by immunoprecipitation and the correlation between phosphorylation state and malate sensitivity that has been observed during incubation of purified PEPc in vitro with protein kinases or protein phosphatases. The phosphorylation of PEPc in the CAM plant B. fedtschenkoi is controlled by an endogenous rhythm whereas that of PEPc in the C4 plant maize is triggered directly by light. In neither case has the mechanism of signal transduction been identified. It is hoped that further work on the protein kinases and protein phosphatases involved will reveal the nature of the signalling systems. Preliminary work suggests that plant protein phosphatases are very similar to their mammalian counterparts. It is also noteworthy that higher plant genes very similar to the genes encoding the cyclic nucleotide-dependent protein kinases and the protein kinase C family have recently been identified. It is interesting to speculate that the protein kinases and phosphatases involved in signal transduction systems in plants may prove to be closely related to well-studied mammalian enzymes.
Collapse
Affiliation(s)
- H G Nimmo
- Department of Biochemistry, University of Glasgow, Scotland
| | | | | | | | | | | |
Collapse
|
8
|
Anderson CM, Wilkins MB. Phase resetting of the circadian rhythm of carbon dioxide assimilation inBryophyllum leaves in relation to their malate content following brief exposure to high and low temperatures, darkness and 5% carbon dioxide. PLANTA 1989; 180:61-73. [PMID: 24201845 DOI: 10.1007/bf02411411] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/1989] [Accepted: 08/15/1989] [Indexed: 06/02/2023]
Abstract
Leaves ofBryophyllum fedtschenkoi show a persistent circadian rhythm in CO2 assimilation when kept in continuous illumination and normal air at 15°C. The induction of phase shifts in this rhythm by exposing the leaves for four hours at different times in the circadian cycle to 40° C, 2° C, darkness and 5% CO2 have been investigated. Exposure to high temperature has no effect on the phase at the apex of the peak but is effective at all other times in the cycle, whereas exposure to low temperature, darkness or 5% CO2 is without effect between the peaks and induces a phase shift at all other times. The next peak of the rhythm occurs 17 h after a 40° C treatment and 7-10 h after a 2° C, dark or 5% CO2 treatment regardless of their position in the cycle. When these treatments are given at times in the cycle when they induce maximum phase shifts, they cause no change in the gross malate status of the leaf. The gross malate content of the leaf in continuous light and normal air at 15% shows a heavily damped circadian oscillation which virtually disappears by the time of the third cycle, but the CO2 assimilation rhythm persists for many days. The generation of the rhythm, and the control of its phase by environmental factors are discussed in terms of mechanisms that involve the synthesis and metabolism of malate in specific localised pools in the cytoplasm of the leaf cells.
Collapse
Affiliation(s)
- C M Anderson
- Botany Department, Glasgow University, G128QQ, Glasgow, UK
| | | |
Collapse
|
9
|
Anderson CM, Wilkins MB. Period and phase control by temperature in the circadian rhythm of carbon dioxide fixation in illuminated leaves of Bryophyllum fedtschenkoi. PLANTA 1989; 177:456-469. [PMID: 24212487 DOI: 10.1007/bf00392613] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/1988] [Accepted: 11/17/1988] [Indexed: 06/02/2023]
Abstract
The rhythm of CO2 assimilation exhibited by leaves of Bryophyllum fedtschenkoi maintained in light and normal air occurs only at constant ambient temperatures between 10°C and 30°C. Over this range the period increases linearly with increasing temperature from the extremely low value of 15.7 h to 23.3 h, but shows a considerable degree of temperature compensation. Outside the range 10°C-30°C the rhythm is inhibited but re-starts on changing the temperature to 15°C. Prolonged exposure of leaves to high (40°C) and low (2°C) temperature inhibits the rhythm by driving the basic oscillator to fixed phase points in the cycle which differ by 180°, and which have been characterised in terms of the malate status of the leaf cells. At both temperatures loss of the circadian rhythm of CO2 assimilation is due to the inhibition of phosphoenolpyruvate carboxylase (PEPCase) activity, but the inhibition is apparently achieved in different ways at 40°C and 2°C. High temperature appears to inhibit directly PEPCase activity, but not the activity of the enzymes responsible for the breakdown of malate, with the result that the leaf acquires a low malate status. In contrast, low temperature does not directly inhibit PEPCase activity, but does inhibit enzymes responsible for malate breakdown, so that the malate level in the leaf increases to a high value and PEPCase is eventually allosterically inhibited. The different malate status of leaves held at these two temperatures accounts for the phases of the rhythms being reversed on returning the leaves to 15°C. After exposure to high temperature, CO2 fixation by PEPCase activity can begin immediately, whereas after exposure to low temperature, the large amount of malate accumulated in the leaves has to be decarboxylated before CO2 fixation can begin.
Collapse
Affiliation(s)
- C M Anderson
- Department of Botany, Glasgow University, G128QQ, Glasgow, UK
| | | |
Collapse
|
10
|
Anderson CM, Wilkins MB. Control of the circadian rhythm of carbon dioxide assimilation in Bryophyllum leaves by exposure to darkness and high carbon dioxide concentrations. PLANTA 1989; 177:401-408. [PMID: 24212434 DOI: 10.1007/bf00403599] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/1988] [Accepted: 11/17/1988] [Indexed: 06/02/2023]
Abstract
The circadian rhythm of CO2 assimilation in detached leaves of Bryophyllum fedtschenkoi at 15° C in normal air and continuous illumination is inhibited both by exposure to darkness, and to an atmosphere enriched with 5% CO2. During such exposures substantial fixation of CO2 takes place, and the malate concentration in the cell sap increases from about 20 mM to a constant value of 40-50 mM after 16 h. On transferring the darkened leaves to light, and those exposed to 5% CO2 to normal air, a circadian rhythm of CO2 assimilation begins again. The phase of this rhythm is determined by the time the transfer is made since the first peak occurs about 24 h afterwards. This finding indicates that the circadian oscillator is driven to, and held at, an identical, fixed phase point in its cycle after 16 h exposure to darkness or to 5% CO2, and it is from this phase point that oscillation begins after the inhibiting condition is removed. This fixed phase point is characterised by the leaves having acquired a high malate content. The rhythm therefore begins with a period of malate decarboxylation which lasts for about 8 h, during which time the malate content of the leaf cells must be reduced to a value that allows phosphoenolpyruvate carboxylase to become active. Inhibition of the rhythm in darkness, and on exposure to 5% CO2 in continuous illumination, appears to be due to the presence of a high concentration of CO2 within the leaf inhibiting malic enzyme which leads to the accumulation of high concentrations of malate in the leaf cells. The malate then allosterically inhibits phosphoenolpyruvate carboxylase upon which the rhythm depends. The results give support to the view that malate synthesis and breakdown form an integral part of the circadian oscillator in this tissue.
Collapse
Affiliation(s)
- C M Anderson
- Botany Department, Glasgow University, G12 8QQ, Glasgow, UK
| | | |
Collapse
|
11
|
Lüttge U. CARBON DIOXIDE AND WATER DEMAND: CRASSULACEAN ACID METABOLISM (CAM), A VERSATILE ECOLOGICAL ADAPTATION EXEMPLIFYING THE NEED FOR INTEGRATION IN ECOPHYSIOLOGICAL WORK. THE NEW PHYTOLOGIST 1987; 106:593-629. [PMID: 33874076 DOI: 10.1111/j.1469-8137.1987.tb00163.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Plants having crassulacean acid metabolism (CAM) tend to occupy habitats where the prevailing environmental stress is scarcity of water. These are semi-arid or arid regions, salinas or epiphytic sites. CAM plants manage the dilemma of desiccation or starvation by nocturnal malic acid accumulation in the vacuoles. Malic acid serves as a form of CO2 storage and as an osmoticum. In this way malic acid accumulation allows, firstly, separation of uptake and assimilation of atmospheric CO2 with water-saving daytime stomatal closure and, secondly, osmotic acquisition of water. There is no very special trait which is specific for CAM. An array of biophysical and biochemical functional elements, which are also found in other plants, is integrated in CAM performance. This leads to a large diversity of behaviour which makes CAM plants highly versatile in their response to environmental variables. Besides CO2 dark fixation, transport of malic acid across the tonoplast is one of the key elements in CAM function. This is examined in detail at the level of membrane biophysics and biochemistry. The versatility of CAM is illustrated by examples from field work, with comparisons involving different species, seasons, modes of photosynthesis (CAM vs C3 ), kinds of stress and ways of stress imposition. Contents Summary 593 I. Studies of CAM: an example for the ecophysiological approach 594 II. Malic acid transport at the tonoplast 602 III. Regulation 605 IV. Desiccation or starvation 610 V. Comparative autecology 614 VI. Ecology: promise of integration 621 Acknowledgements 622 References 622.
Collapse
Affiliation(s)
- U Lüttge
- Institut fuUr Botanik, Technische Hochschule Darmstadt, D-6100 Darmstadt, FRG
| |
Collapse
|
12
|
Nimmo GA, Wilkins MB, Fewson CA, Nimmo HG. Persistent circadian rhythms in the phosphorylation state of phosphoenolpyruvate carboxylase from Bryophyllum fedtschenkoi leaves and in its sensitivity to inhibition by malate. PLANTA 1987; 170:408-415. [PMID: 24232972 DOI: 10.1007/bf00395034] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/1986] [Accepted: 11/24/1986] [Indexed: 06/02/2023]
Abstract
Phosphoenolpyruvate carboxylase (EC 4.1.1.31; PEPCase) from Bryophyllum fedtschenkoi leaves has previously been shown to exist in two forms in vivo. During the night the enzyme is phosphorylated and relatively insensitive to feedback inhibition by malate whereas during the day the enzyme is dephosphorylated and more sensitive to inhibition by malate. These properties of PEPCase have now been investigated in leaves maintained under constant conditions of temperature and lighting. When leaves were maintained in continuous darkness and CO2-free air at 15°C, PEPCase exhibited a persistent circadian rhythm of interconversion between the two forms. There was a good correlation between periods during which the leaves were fixing respiratory CO2 and periods during which PEPCase was in the form normally observed at night. When leaves were maintained in continuous light and normal air at 15°C, starting at the end of a night or the end of a day, a circadian rhythm of net uptake of CO2 was observed. Only when these constant conditions were applied at the end of a day was a circadian rhythm of interconversions between the two forms of PEPCase observed and the rhythms of enzyme interconversion and CO2 uptake did not correlate in phase or period.
Collapse
Affiliation(s)
- G A Nimmo
- Department of Botany, Glasgow University, G12 8QQ, Glasgow, UK
| | | | | | | |
Collapse
|