1
|
Ellis TP, Lukins HB, Nagley P, Corner BE. Suppression of a nuclear aep2 mutation in Saccharomyces cerevisiae by a base substitution in the 5'-untranslated region of the mitochondrial oli1 gene encoding subunit 9 of ATP synthase. Genetics 1999; 151:1353-63. [PMID: 10101162 PMCID: PMC1460560 DOI: 10.1093/genetics/151.4.1353] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mutations in the nuclear AEP2 gene of Saccharomyces generate greatly reduced levels of the mature form of mitochondrial oli1 mRNA, encoding subunit 9 of mitochondrial ATP synthase. A series of mutants was isolated in which the temperature-sensitive phenotype resulting from the aep2-ts1 mutation was suppressed. Three strains were classified as containing a mitochondrial suppressor: these lost the ability to suppress aep2-ts1 when their mitochondrial genome was replaced with wild-type mitochondrial DNA (mtDNA). Many other isolates were classified as containing dominant nuclear suppressors. The three mitochondrion-encoded suppressors were localized to the oli1 region of mtDNA using rho- genetic mapping techniques coupled with PCR analysis; DNA sequencing revealed, in each case, a T-to-C nucleotide transition in mtDNA 16 nucleotides upstream of the oli1 reading frame. It is inferred that the suppressing mutation in the 5' untranslated region of oli1 mRNA restores subunit 9 biosynthesis by accommodating the modified structure of Aep2p generated by the aep2-ts1 mutation (shown here to cause the substitution of proline for leucine at residue 413 of Aep2p). This mode of mitochondrial suppression is contrasted with that mediated by heteroplasmic rearranged rho- mtDNA genomes bypassing the participation of a nuclear gene product in expression of a particular mitochondrial gene. In the present study, direct RNA-protein interactions are likely to form the basis of suppression.
Collapse
Affiliation(s)
- T P Ellis
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3168, Australia
| | | | | | | |
Collapse
|
2
|
Lockshon D, Zweifel SG, Freeman-Cook LL, Lorimer HE, Brewer BJ, Fangman WL. A role for recombination junctions in the segregation of mitochondrial DNA in yeast. Cell 1995; 81:947-55. [PMID: 7781070 DOI: 10.1016/0092-8674(95)90014-4] [Citation(s) in RCA: 137] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In S. cerevisiae, mitochondrial DNA (mtDNA) molecules, in spite of their high copy number, segregate as if there were a small number of heritable units. The rapid segregation of mitochondrial genomes can be analyzed using mtDNA deletion variants. These small, amplified genomes segregate preferentially from mixed zygotes relative to wild-type mtDNA. This segregation advantage is abolished by mutations in a gene, MGT1, that encodes a recombination junction-resolving enzyme. We show here that resolvase deficiency causes a larger proportion of molecules to be linked together by recombination junctions, resulting in the aggregation of mtDNA into a small number of cytological structures. This change in mtDNA structure can account for the increased mitotic loss of mtDNA and the altered pattern of mtDNA segregation from zygotes. We propose that the level of unresolved recombination junctions influences the number of heritable units of mtDNA.
Collapse
MESH Headings
- Cytoplasm/metabolism
- DNA, Fungal/genetics
- DNA, Fungal/isolation & purification
- DNA, Fungal/metabolism
- DNA, Mitochondrial/genetics
- DNA, Mitochondrial/isolation & purification
- DNA, Mitochondrial/metabolism
- Electrophoresis, Agar Gel
- Gene Deletion
- Genes, Fungal
- Mitosis
- Models, Genetic
- Recombination, Genetic
- Saccharomyces cerevisiae/cytology
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
Collapse
Affiliation(s)
- D Lockshon
- Department of Genetics SK-50, University of Washington, Seattle 98195, USA
| | | | | | | | | | | |
Collapse
|
3
|
Payne MJ, Schweizer E, Lukins HB. Properties of two nuclear pet mutants affecting expression of the mitochondrial oli1 gene of Saccharomyces cerevisiae. Curr Genet 1991; 19:343-51. [PMID: 1833077 DOI: 10.1007/bf00309594] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
This study details the characteristics of two temperature-conditional pet mutants of yeast, strains ts1860 and ts379, which at the non-permissive temperature show deficiencies in the formation of three mitochondrially encoded subunits of the ATP synthase complex. By analysis of mitochondrial translation products, and of mitochondrial transcription in temperature shift experiments from the permissive (22 degrees C) to the non-permissive (36 degrees C) temperature, it was concluded that the nuclear mutations in both mutants primarily inhibit synthesis of ATP synthase subunit 9, and that reductions in subunit 8 and 6 synthesis are secondary pleiotropic effects. Following transfer to 36 degrees C, cells of mutant ts379 display a near complete inhibition of subunit 9 synthesis within 1 h, coincident with a marked reduction in the level of the cognate oli1 mRNA. On the other hand, near complete inhibition of subunit 9 synthesis in strain ts1860 occurs after 3 h at 36 degrees C, at which time there is little change in the level of subunit 9 mRNA. In both mutants the mRNA levels for subunits 6 and 8 are not significantly affected at the time of inhibition of subunit 9 synthesis. Provision of an alternative source of subunit 8, translated extra-mitochondrially for import into the organelle, does not overcome the mutant phenotype of either mutant at 36 degrees C, confirming that subunit 8 is not the sole or primary deficiency in each mutant. The mutants indicate that the products of a least two nuclear genes (designated AEP1 and AEP2) are required for the expression of the mitochondrial oli1 gene and the synthesis of subunit 9. (ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- M J Payne
- Department of Biochemistry, Monash University, Clayton, Victoria, Australia
| | | | | |
Collapse
|
4
|
Mittelmeier TM, Dieckmann CL. CBP1 function is required for stability of a hybrid cob-oli1 transcript in yeast mitochondria. Curr Genet 1990; 18:421-8. [PMID: 2150347 DOI: 10.1007/bf00309911] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The nuclear gene product CBP1 stabilizes cytochrome b transcripts in yeast mitochondria. In cbp1 mutant strains, cytochrome b gene (cob) transcripts are not detectable by Northern blot analysis. The results of previous studies led to the hypothesis that CBP1 interacts with the 5'-untranslated sequence of the cob mRNA, or pre-mRNA, to stabilize the message. To determine what portion of the cob leader is sufficient for interaction with CBP1, we have investigated the stability of transcripts from a novel hybrid gene, cob-oli1, in which the 5'-terminal third of the cob leader sequence was fused to the coding sequence of the gene for ATP synthase subunit 9, oli1. The hybrid cob-oli1 transcript was stable in a strain wild-type at the CBP1 locus, but was undetectable in the cbp1 mutant background. That the cob-oli1 transcript was translated to produce ATP synthase subunit 9 in CBP1 strains containing the cob-oli1 gene was verified by 35S-methionine labeling of mitochondrial proteins. We conclude that the 5'-terminal portion of the cob message is sufficient for CBP1 function and discuss the hypothesis that CBP1 interacts directly with this region of the transcript to promote cob mRNA stability.
Collapse
Affiliation(s)
- T M Mittelmeier
- Department of Molecular and Cellular Biology, University of Arizona, Tucson 85721
| | | |
Collapse
|
5
|
Abstract
Small deletion variants ([rho-] mutants) derived from the wild-type ([ rho+]) Saccharomyces cerevisiae mitochondrial genome were isolated and characterized. The mutant mitochondrial DNAs (mtDNAs) examined retained as little as 35 base pairs of one section of intergenic DNA, were composed entirely of A.T base pairs, and were stably maintained. These simple mtDNAs existed in tandemly repeated arrays at an amplified level that made up approximately 15% of the total cellular DNA and, as judged by fluorescence microscopy, had a nearly normal mitochondrial arrangement throughout the cell cytoplasm. The simple nature of these [rho-] genomes indicates that the sequences required to maintain mtDNA must be extremely simple.
Collapse
|
6
|
Fangman WL, Henly JW, Churchill G, Brewer BJ. Stable maintenance of a 35-base-pair yeast mitochondrial genome. Mol Cell Biol 1989; 9:1917-21. [PMID: 2664462 PMCID: PMC362982 DOI: 10.1128/mcb.9.5.1917-1921.1989] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Small deletion variants ([rho-] mutants) derived from the wild-type ([ rho+]) Saccharomyces cerevisiae mitochondrial genome were isolated and characterized. The mutant mitochondrial DNAs (mtDNAs) examined retained as little as 35 base pairs of one section of intergenic DNA, were composed entirely of A.T base pairs, and were stably maintained. These simple mtDNAs existed in tandemly repeated arrays at an amplified level that made up approximately 15% of the total cellular DNA and, as judged by fluorescence microscopy, had a nearly normal mitochondrial arrangement throughout the cell cytoplasm. The simple nature of these [rho-] genomes indicates that the sequences required to maintain mtDNA must be extremely simple.
Collapse
Affiliation(s)
- W L Fangman
- Department of Genetics, University of Washington, Seattle 98195
| | | | | | | |
Collapse
|
7
|
Smooker PM, Wright JF, Linnane AW, Lukins HB. A mitochondrial intergenic mutation affecting processing of specific yeast mitochondrial transcripts. Nucleic Acids Res 1988; 16:9081-95. [PMID: 2845366 PMCID: PMC338693 DOI: 10.1093/nar/16.19.9081] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The mutation in the temperature-conditional mit- mutant h56, mapped previously to the var1 gene region of Saccharomyces cerevisiae mitochondrial DNA, results in a specific inhibition of var1 protein synthesis in cells incubated at the non-permissive temperature, 36 degrees C (1). We have now characterized the mutation present in mutant h56 by DNA sequencing and found it to be an A to T transversion located 109 nucleotides upstream of the var1 reading frame. Two spontaneous revertants of mutant h56 restore the parental strain sequence at residue -109, confirming that this single base change within the 5'-untranslated region of the var1 mRNA is responsible for defective synthesis of the var1 protein. A comparison of var1 transcripts in the parental and mutant strains has shown that the mutation specifically blocks formation of var1 mRNA at 36 degrees C and leads to accumulation of precursor transcripts. Expression of the oli1 gene, co-transcribed with the var1 gene in primary transcripts, is not affected. It is concluded that the mutation in mutant h56 alters the secondary structure of the precursor RNA, inhibiting an endonucleolytic cleavage required to generate the 5' end of var1 mRNA.
Collapse
Affiliation(s)
- P M Smooker
- Department of Biochemistry, Monash University, Clayton, Victoria, Australia
| | | | | | | |
Collapse
|
8
|
Wolf K, Del Giudice L. The variable mitochondrial genome of ascomycetes: organization, mutational alterations, and expression. ADVANCES IN GENETICS 1988; 25:185-308. [PMID: 3057820 DOI: 10.1016/s0065-2660(08)60460-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- K Wolf
- Institut für Genetik und Mikrobiologie, Universität München, Munich, Federal Republic of Germany
| | | |
Collapse
|
9
|
Willson TA, Nagley P. Amino acid substitutions in subunit 9 of the mitochondrial ATPase complex of Saccharomyces cerevisiae. Sequence analysis of a series of revertants of an oli1 mit- mutant carrying an amino acid substitution in the hydrophilic loop of subunit 9. EUROPEAN JOURNAL OF BIOCHEMISTRY 1987; 167:291-7. [PMID: 2957197 DOI: 10.1111/j.1432-1033.1987.tb13335.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
This work concerns a biochemical genetic study of subunit 9 of the mitochondrial ATPase complex of Saccharomyces cerevisiae. Subunit 9, encoded by the mitochondrial oli1 gene, contains a hydrophilic loop connecting two transmembrane stems. In one particular oli1 mit- mutant 2422, the substitution of a positively charged amino acid in this loop (Arg39----Met) renders the ATPase complex non-functional. A series of 20 revertants, selected for their ability to grow on nonfermentable substrates, has been isolated from mutant 2422. The results of DNA sequence analysis of the oli1 gene in each revertant have led to the recognition of three groups of revertants. Class I revertants have undergone a same-site reversion event: the mutant Met39 is replaced either by arginine (as in wild-type) or lysine. Class II revertants maintain the mutant Met39 residue, but have undergone a second-site reversion event (Asn35----Lys). Two revertants showing an oligomycin-resistant phenotype carry this same second-site reversion in the loop region together with a further amino acid substitution in either of the two membrane-spanning segments of subunit 9 (either Gly23----Ser or Leu53----Phe). Class III revertants contain subunit 9 with the original mutant 2422 sequence, and additionally carry a recessive nuclear suppressor, demonstrated to represent a single gene. The results on the revertants in classes I and II indicate that there is a strict requirement for a positively charged residue in the hydrophilic loop close to the boundary of the lipid bilayer. The precise location of this positive charge is less stringent; in functional ATPase complexes it can be found at either residue 39 or 35. This charged residue is possibly required to interact with some other component of the mitochondrial ATPase complex. These findings, together with hydropathy plots of subunit 9 polypeptides from normal, mutant and revertant strains, led to the conclusion that the hydrophilic loop in normal subunit 9 extends further than previously suggested, with the boundary of the N-terminal membrane-embedded stem lying at residue 34. The possibility is raised that the observed suppression of the 2422 mutant phenotype in class III revertants is manifested through an accommodating change in a nuclear-encoded subunit of the ATPase complex.
Collapse
|
10
|
Ooi BG, Lukins HB, Linnane AW, Nagley P. Biogenesis of mitochondria: a mutation in the 5'-untranslated region of yeast mitochondrial oli1 mRNA leading to impairment in translation of subunit 9 of the mitochondrial ATPase complex. Nucleic Acids Res 1987; 15:1965-77. [PMID: 2951651 PMCID: PMC340611 DOI: 10.1093/nar/15.5.1965] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
A temperature-conditional mit- mutant of Saccharomyces cerevisiae has been characterized; the mutant strain h45 cannot grow at 36 degrees C on nonfermentable substrates yet appears to be normal at 28 degrees C. The mutation in strain h45 maps genetically to the oli1 region of the mitochondrial DNA (mtDNA) genome, and prevents the synthesis at 36 degrees C of the oli1 gene product, subunit 9 of the mitochondrial ATPase complex. Since the level of oli1 mRNA in mutant h45 is close to normal at 36 degrees C, it is concluded that there is a specific block in translation of this mRNA at the non-permissive temperature. DNA sequence analysis of mtDNA from strain h45 reveals an additional T residue inserted 88 bp upstream of the oli1 coding region, in the A,T-rich sequence that is transcribed into the 5'-untranslated region of the oli1 mRNA. Sequence data on two revertants show that one returns to wild-type parental (J69-1B) mtDNA sequence, whilst the other contains an inserted A residue adjacent to the T inserted in the original h45 mutant. The results are discussed in terms of the stability of folds in RNA upstream of putative ribosome-binding sites in mitochondrial mRNA, and the potential action of nuclear-coded proteins that might be activators of the translation of specific mitochondrial mRNAs in yeast mitochondria.
Collapse
|
11
|
Post-transcriptional defects in the synthesis of the mitochondrial H+-ATPase subunit 6 in yeast mutants with lesions in the subunit 9 structural gene. ACTA ACUST UNITED AC 1986. [DOI: 10.1016/0167-4781(86)90020-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
John UP, Nagley P. Amino acid substitutions in mitochondrial ATPase subunit 6 of Saccharomyces cerevisiae leading to oligomycin resistance. FEBS Lett 1986; 207:79-83. [PMID: 2876917 DOI: 10.1016/0014-5793(86)80016-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The amino acid substitutions in subunit 6 of the mitochondrial ATPase complex have been determined for 4 oligomycin resistant mutants of Saccharomyces cerevisiae. The data were obtained for each mutant by nucleotide sequence analysis of the mitochondrial oli2 gene. Amino acid substitutions conferring oligomycin resistance in subunit 6 are located in two conserved regions that are thought to form domains which span the inner mitochondrial membrane. The disposition of these amino acid substitutions is consistent with the view that these two membrane-spanning domains interact structurally and functionally with the DCCD-binding proteolipid subunit 9 in the Fo-sector.
Collapse
|
13
|
de Zamaroczy M, Bernardi G. The primary structure of the mitochondrial genome of Saccharomyces cerevisiae--a review. Gene X 1986; 47:155-77. [PMID: 3549452 DOI: 10.1016/0378-1119(86)90060-0] [Citation(s) in RCA: 115] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We have collated and compiled all the available primary structure data on the mitochondrial genome of Saccharomyces cerevisiae. Data concern 78,500 bp, namely 92% of the 'long' genomes; they are derived from several laboratory strains. Interstrain differences belong to three classes: a small number of large deletions/additions, mainly concerning introns; a large number of small (10-150 bp) deletions/additions located in the intergenic sequences; 1-3 bp deletions/additions and point mutations; the interstrain sequence divergence due to the latter, is of the order of 2% for the strains compared; this low value is, however, an overestimate because of sequence mistakes.
Collapse
|