1
|
Sun C, Yao GF, Li LX, Li TT, Zhao YQ, Hu KD, Zhang C, Zhang H. E3 ligase BRG3 persulfidation delays tomato ripening by reducing ubiquitination of the repressor WRKY71. PLANT PHYSIOLOGY 2023; 192:616-632. [PMID: 36732924 PMCID: PMC10152667 DOI: 10.1093/plphys/kiad070] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 05/03/2023]
Abstract
Hydrogen sulfide (H2S) is a gaseous signaling molecule reported to play multiple roles in fruit ripening. However, the molecular mechanisms underlying H2S-mediated delay in fruit ripening remain to be established. Here, the gene encoding a WRKY transcription factor, WRKY71, was identified as substantially upregulated in H2S-treated tomato (Solanum lycopersicum) via transcriptome profiling. The expression of WRKY71 was negatively associated with that of CYANOALANINE SYNTHASE1 (CAS1). Transient and stable genetic modification experiments disclosed that WRKY71 acts as a repressor of the tomato ripening process. CAS1 appears to play an opposite role, based on the finding that the ripening process was delayed in the cas1 mutant and accelerated in CAS1-OE tomatoes. Dual-luciferase reporter assay, yeast one-hybrid, electrophoretic mobility shift assay, and transient transformation experiments showed that WRKY71 bound to the CAS1 promoter and suppressed its activation. Moreover, the persulfidation of WRKY71 enhanced its binding ability to the CAS1 promoter. Data from luciferase complementation and Y2H assays confirmed that WRKY71 interacts with a BOI-related E3 ubiquitin-protein ligase 3 (BRG3) and is ubiquitinated in vitro. Further experiments showed that modification of BRG3 via persulfidation at Cys206 and Cys212 led to reduced ubiquitination activity. Our findings support a model whereby BRG3 undergoes persulfidation at Cys206 and Cys212, leading to reduced ubiquitination activity and decreased interactions with the WRKY71 transcript, with a subsequent increase in binding activity of the persulfidated WRKY71 to the CAS1 promoter, resulting in its transcriptional inhibition and thereby delayed ripening of tomatoes. Our collective findings provide insights into a mechanism of H2S-mediated regulation of tomato fruit ripening.
Collapse
Affiliation(s)
- Chen Sun
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Gai-fang Yao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Li-xia Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Ting-ting Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yu-qi Zhao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Kang-di Hu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Conghe Zhang
- Department of Agriculture Sciences, Winall Hi-Tech Seed Co., Ltd, Hefei 230009, China
| | - Hua Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
2
|
Cyanide produced with ethylene by ACS and its incomplete detoxification by β-CAS in mango inflorescence leads to malformation. Sci Rep 2019; 9:18361. [PMID: 31797981 PMCID: PMC6892883 DOI: 10.1038/s41598-019-54787-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 11/14/2019] [Indexed: 01/07/2023] Open
Abstract
Malformation of mango inflorescences (MMI) disease causes severe economic losses worldwide. Present research investigates the underlying causes of MMI. Results revealed significantly higher levels of cyanide, a by-product of ethylene biosynthesis, in malformed inflorescences (MI) of mango cultivars. There was a significant rise in ACS transcripts, ACS enzyme activity and cyanide and ethylene levels in MI as compared to healthy inflorescences (HI). Significant differences in levels of methionine, phosphate, S-adenosyl-L-methionine, S-adenosyl-L-homocysteine, ascorbate and glutathione, and activities of dehydroascorbate reductase and glutathione reductase were seen in MI over HI. Further, a lower expression of β-cyanoalanine synthase (β-CAS) transcript was associated with decreased cellular β-CAS activity in MI, indicating accumulation of unmetabolized cyanide. TEM studies showed increased gum-resinosis and necrotic cell organelles, which might be attributed to unmetabolized cyanide. In field trials, increased malformed-necrotic-inflorescence (MNI) by spraying ethrel and decreased MNI by treating with ethylene inhibitors (silver and cobalt ions) further confirmed the involvement of cyanide in MMI. Implying a role for cyanide in MMI at the physiological and molecular level, this study will contribute to better understanding of the etiology of mango inflorescence malformation, and also help manipulate mango varieties genetically for resistance to malformation.
Collapse
|
3
|
Keisham M, Jain P, Singh N, von Toerne C, Bhatla SC, Lindermayr C. Deciphering the nitric oxide, cyanide and iron-mediated actions of sodium nitroprusside in cotyledons of salt stressed sunflower seedlings. Nitric Oxide 2019; 88:10-26. [DOI: 10.1016/j.niox.2019.03.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/27/2019] [Accepted: 03/14/2019] [Indexed: 11/29/2022]
|
4
|
Purification and biochemical characterization of a β-cyanoalanine synthase expressed in germinating seeds of Sorghum bicolor (L.) moench. ACTA ACUST UNITED AC 2018. [DOI: 10.1515/tjb-2017-0214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Background
β-Cyanoalanine synthase plays essential roles in germinating seeds, such as in cyanide homeostasis.
Methods
β-Cyanoalanine synthase was isolated from sorghum seeds, purified using chromatographic techniques and its biochemical and catalytic properties were determined.
Results
The purified enzyme had a yield of 61.74% and specific activity of 577.50 nmol H2S/min/mg of protein. The apparent and subunit molecular weight for purified β-cyanoalanine synthase were 58.26±2.41 kDa and 63.4 kDa, respectively. The kinetic parameters with sodium cyanide as substrate were 0.67±0.08 mM, 17.60±0.50 nmol H2S/mL/min, 2.97×10−1 s−1 and 4.43×102 M−1 s−1 for KM, Vmax, kcat and kcat/KM, respectively. With L-cysteine as substrate, the kinetic parameters were 2.64±0.37 mM, 63.41±4.04 nmol H2S/mL/min, 10.71×10−1 s−1 and 4.06×102 M−1 s−1 for KM, Vmax, kcat and kcat/KM, respectively. The optimum temperature and pH for activity were 35°C and 8.5, respectively. The enzyme retained more than half of its activity at 40°C. Inhibitors such as HgCl2, EDTA, glycine and iodoacetamide reduced enzyme activity.
Conclusion
The biochemical properties of β-cyanoalanine synthase in germinating sorghum seeds highlights its roles in maintaining cyanide homeostasis.
Collapse
|
5
|
Rehman HM, Shah ZH, Nawaz MA, Ahmad MQ, Yang SH, Kho KH, Chung G. RETRACTED ARTICLE: Beta-cyanoalanine synthase pathway as a homeostatic mechanism for cyanide detoxification as well as growth and development in higher plants. PLANTA 2017; 245:235. [PMID: 27744484 DOI: 10.1007/s00425-016-2606-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/09/2016] [Indexed: 06/06/2023]
Affiliation(s)
- Hafiz Mamoon Rehman
- Department of Biotechnology, Chonnam National University, Yeosu, Chonnam, 59626, South Korea
| | - Zahid Hussain Shah
- Department of Arid Land Agriculture, King Abdul-Aziz University, Jeddah, 21577, Saudi Arabia
| | - Muhammad Amjad Nawaz
- Department of Biotechnology, Chonnam National University, Yeosu, Chonnam, 59626, South Korea
| | - Muhammad Qadir Ahmad
- Department of Plant Breeding and Genetics, Bahauddin Zakariya University, Multan, 6000, Pakistan
| | - Seung Hwan Yang
- Department of Biotechnology, Chonnam National University, Yeosu, Chonnam, 59626, South Korea
| | - Kang Hee Kho
- Department of Aquatic Biology, Chonnam National University, Yeosu, Chonnam, 59626, South Korea
| | - Gyuhwa Chung
- Department of Biotechnology, Chonnam National University, Yeosu, Chonnam, 59626, South Korea.
| |
Collapse
|
6
|
Machingura M, Salomon E, Jez JM, Ebbs SD. The β-cyanoalanine synthase pathway: beyond cyanide detoxification. PLANT, CELL & ENVIRONMENT 2016; 39:2329-41. [PMID: 27116378 DOI: 10.1111/pce.12755] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 04/04/2016] [Accepted: 04/06/2016] [Indexed: 05/21/2023]
Abstract
Production of cyanide through biological and environmental processes requires the detoxification of this metabolic poison. In the 1960s, discovery of the β-cyanoalanine synthase (β-CAS) pathway in cyanogenic plants provided the first insight on cyanide detoxification in nature. Fifty years of investigations firmly established the protective role of the β-CAS pathway in cyanogenic plants and its role in the removal of cyanide produced from ethylene synthesis in plants, but also revealed the importance of this pathway for plant growth and development and the integration of nitrogen and sulfur metabolism. This review describes the β-CAS pathway, its distribution across and within higher plants, and the diverse biological functions of the pathway in cyanide assimilation, plant growth and development, stress tolerance, regulation of cyanide and sulfide signalling, and nitrogen and sulfur metabolism. The collective roles of the β-CAS pathway highlight its potential evolutionary and ecological importance in plants.
Collapse
Affiliation(s)
- Marylou Machingura
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Eitan Salomon
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Joseph M Jez
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Stephen D Ebbs
- Department of Plant Biology and Center for Ecology, Southern Illinois University, Carbondale, IL, 62901, USA.
| |
Collapse
|
7
|
Manning K. Detoxification of cyanide by plants and hormone action. CIBA FOUNDATION SYMPOSIUM 2007; 140:92-110. [PMID: 3073064 DOI: 10.1002/9780470513712.ch7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In higher plants cyanide is a co-product of ethylene synthesis. The increase in ethylene production that occurs during the senescence of certain flowers and the ripening of climacteric fruit is accompanied by a rise in beta-cyanoalanine synthase activity. Although these events correlate temporally and spatially, the potential for cyanide detoxification in these tissues is high compared with the expected rate of cyanide formation from the ethylene pathway. However, in stigmas and styles of Petunia flowers a semi-quantitative relationship exists between the activity of beta-cyanoalanine synthase and the activity of ACC (1-aminocyclopropane-1-carboxylic acid) oxidase, the last enzyme in the ethylene pathway. To account for these observations it is proposed that ACC oxidase can react with other amino acids by a general mechanism that liberates cyanide. This hypothesis could also account for the substrate stereospecificity of ACC oxidase, for the extreme lability of this enzyme and for the high accumulation of asparagine in some tissues.
Collapse
Affiliation(s)
- K Manning
- Institute of Horticultural Research, Littlehampton, West Sussex, UK
| |
Collapse
|
8
|
|
9
|
|
10
|
Mizutani F, Hirota R, Amano S, Hino A, Kadoya K. Changes in Cyanogenic Glycoside Content and ^|^beta;-Cyanoalanine Synthase Activity in Flesh and Seeds of Japanese Plum (Prunus salicina Lindl.) during Development. ACTA ACUST UNITED AC 1991. [DOI: 10.2503/jjshs.59.863] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Biosynthetic mechanism and physiological role of heterocyclic ß-substituted alanines in higher plants. Amino Acids 1990. [DOI: 10.1007/978-94-011-2262-7_130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|