1
|
Ochoa JM, Bair K, Holton T, Bobik TA, Yeates TO. MCPdb: The bacterial microcompartment database. PLoS One 2021; 16:e0248269. [PMID: 33780471 PMCID: PMC8007038 DOI: 10.1371/journal.pone.0248269] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/24/2021] [Indexed: 12/15/2022] Open
Abstract
Bacterial microcompartments are organelle-like structures composed entirely of proteins. They have evolved to carry out several distinct and specialized metabolic functions in a wide variety of bacteria. Their outer shell is constructed from thousands of tessellating protein subunits, encapsulating enzymes that carry out the internal metabolic reactions. The shell proteins are varied, with single, tandem and permuted versions of the PF00936 protein family domain comprising the primary structural component of their polyhedral architecture, which is reminiscent of a viral capsid. While considerable amounts of structural and biophysical data have been generated in the last 15 years, the existing functionalities of current resources have limited our ability to rapidly understand the functional and structural properties of microcompartments (MCPs) and their diversity. In order to make the remarkable structural features of bacterial microcompartments accessible to a broad community of scientists and non-specialists, we developed MCPdb: The Bacterial Microcompartment Database (https://mcpdb.mbi.ucla.edu/). MCPdb is a comprehensive resource that categorizes and organizes known microcompartment protein structures and their larger assemblies. To emphasize the critical roles symmetric assembly and architecture play in microcompartment function, each structure in the MCPdb is validated and annotated with respect to: (1) its predicted natural assembly state (2) tertiary structure and topology and (3) the metabolic compartment type from which it derives. The current database includes 163 structures and is available to the public with the anticipation that it will serve as a growing resource for scientists interested in understanding protein-based metabolic organelles in bacteria.
Collapse
Affiliation(s)
- Jessica M. Ochoa
- UCLA Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Kaylie Bair
- UCLA-DOE Institute for Genomics and Proteomics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Thomas Holton
- UCLA Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, United States of America
| | - Thomas A. Bobik
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| | - Todd O. Yeates
- UCLA Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, United States of America
- UCLA-DOE Institute for Genomics and Proteomics, University of California Los Angeles, Los Angeles, California, United States of America
- UCLA Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
2
|
Changing surface grafting density has an effect on the activity of immobilized xylanase towards natural polysaccharides. Sci Rep 2019; 9:5763. [PMID: 30962508 PMCID: PMC6453946 DOI: 10.1038/s41598-019-42206-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 03/25/2019] [Indexed: 12/22/2022] Open
Abstract
Enzymes are involved in various types of biological processes. In many cases, they are part of multi-component machineries where enzymes are localized in close proximity to each-other. In such situations, it is still not clear whether inter-enzyme spacing actually plays a role or if the colocalization of complementary activities is sufficient to explain the efficiency of the system. Here, we focus on the effect of spatial proximity when identical enzymes are immobilized onto a surface. By using an innovative grafting procedure based on the use of two engineered protein fragments, Jo and In, we produce model systems in which enzymes are immobilized at surface densities that can be controlled precisely. The enzyme used is a xylanase that participates to the hydrolysis of plant cell wall polymers. By using a small chromogenic substrate, we first show that the intrinsic activity of the enzymes is fully preserved upon immobilization and does not depend on surface density. However, when using beechwood xylan, a naturally occurring polysaccharide, as substrate, we find that the enzymatic efficiency decreases by 10–60% with the density of grafting. This unexpected result is probably explained through steric hindrance effects at the nanoscale that hinder proper interaction between the enzymes and the polymer. A second effect of enzyme immobilization at high densities is the clear tendency for the system to release preferentially shorter oligosaccharides from beechwood xylan as compared to enzymes in solution.
Collapse
|
3
|
Buckel W, Thauer RK. Flavin-Based Electron Bifurcation, Ferredoxin, Flavodoxin, and Anaerobic Respiration With Protons (Ech) or NAD + (Rnf) as Electron Acceptors: A Historical Review. Front Microbiol 2018; 9:401. [PMID: 29593673 PMCID: PMC5861303 DOI: 10.3389/fmicb.2018.00401] [Citation(s) in RCA: 208] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 02/21/2018] [Indexed: 12/19/2022] Open
Abstract
Flavin-based electron bifurcation is a newly discovered mechanism, by which a hydride electron pair from NAD(P)H, coenzyme F420H2, H2, or formate is split by flavoproteins into one-electron with a more negative reduction potential and one with a more positive reduction potential than that of the electron pair. Via this mechanism microorganisms generate low- potential electrons for the reduction of ferredoxins (Fd) and flavodoxins (Fld). The first example was described in 2008 when it was found that the butyryl-CoA dehydrogenase-electron-transferring flavoprotein complex (Bcd-EtfAB) of Clostridium kluyveri couples the endergonic reduction of ferredoxin (E0′ = −420 mV) with NADH (−320 mV) to the exergonic reduction of crotonyl-CoA to butyryl-CoA (−10 mV) with NADH. The discovery was followed by the finding of an electron-bifurcating Fd- and NAD-dependent [FeFe]-hydrogenase (HydABC) in Thermotoga maritima (2009), Fd-dependent transhydrogenase (NfnAB) in various bacteria and archaea (2010), Fd- and H2-dependent heterodisulfide reductase (MvhADG-HdrABC) in methanogenic archaea (2011), Fd- and NADH-dependent caffeyl-CoA reductase (CarCDE) in Acetobacterium woodii (2013), Fd- and NAD-dependent formate dehydrogenase (HylABC-FdhF2) in Clostridium acidi-urici (2013), Fd- and NADP-dependent [FeFe]-hydrogenase (HytA-E) in Clostridium autoethanogrenum (2013), Fd(?)- and NADH-dependent methylene-tetrahydrofolate reductase (MetFV-HdrABC-MvhD) in Moorella thermoacetica (2014), Fd- and NAD-dependent lactate dehydrogenase (LctBCD) in A. woodii (2015), Fd- and F420H2-dependent heterodisulfide reductase (HdrA2B2C2) in Methanosarcina acetivorans (2017), and Fd- and NADH-dependent ubiquinol reductase (FixABCX) in Azotobacter vinelandii (2017). The electron-bifurcating flavoprotein complexes known to date fall into four groups that have evolved independently, namely those containing EtfAB (CarED, LctCB, FixBA) with bound FAD, a NuoF homolog (HydB, HytB, or HylB) harboring FMN, NfnB with bound FAD, or HdrA harboring FAD. All these flavoproteins are cytoplasmic except for the membrane-associated protein FixABCX. The organisms—in which they have been found—are strictly anaerobic microorganisms except for the aerobe A. vinelandii. The electron-bifurcating complexes are involved in a variety of processes such as butyric acid fermentation, methanogenesis, acetogenesis, anaerobic lactate oxidation, dissimilatory sulfate reduction, anaerobic- dearomatization, nitrogen fixation, and CO2 fixation. They contribute to energy conservation via the energy-converting ferredoxin: NAD+ reductase complex Rnf or the energy-converting ferredoxin-dependent hydrogenase complex Ech. This Review describes how this mechanism was discovered.
Collapse
Affiliation(s)
- Wolfgang Buckel
- Laboratory for Microbiology, Faculty of Biology, Philipps-Universität Marburg, Marburg, Germany
| | - Rudolf K Thauer
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| |
Collapse
|
4
|
Aussignargues C, Paasch BC, Gonzalez-Esquer R, Erbilgin O, Kerfeld CA. Bacterial microcompartment assembly: The key role of encapsulation peptides. Commun Integr Biol 2015; 8:e1039755. [PMID: 26478774 PMCID: PMC4594438 DOI: 10.1080/19420889.2015.1039755] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 04/03/2015] [Accepted: 04/06/2015] [Indexed: 12/14/2022] Open
Abstract
Bacterial microcompartments (BMCs) are proteinaceous organelles used by a broad range of bacteria to segregate and optimize metabolic reactions. Their functions are diverse, and can be divided into anabolic (carboxysome) and catabolic (metabolosomes) processes, depending on their cargo enzymes. The assembly pathway for the β-carboxysome has been characterized, revealing that biogenesis proceeds from the inside out. The enzymes coalesce into a procarboxysome, followed by encapsulation in a protein shell that is recruited to the procarboxysome by a short (∼17 amino acids) extension on the C-terminus of one of the encapsulated proteins. A similar extension is also found on the N- or C-termini of a subset of metabolosome core enzymes. These encapsulation peptides (EPs) are characterized by a primary structure predicted to form an amphipathic α-helix that interacts with shell proteins. Here, we review the features, function and widespread occurrence of EPs among metabolosomes, and propose an expanded role for EPs in the assembly of diverse BMCs.
Collapse
Affiliation(s)
| | - Bradley C Paasch
- DOE Plant Research Laboratory; Michigan State University ; East Lansing, MI USA
| | | | - Onur Erbilgin
- Department of Plant and Microbial Biology; University of California, Berkeley ; Berkeley, CA USA
| | - Cheryl A Kerfeld
- DOE Plant Research Laboratory; Michigan State University ; East Lansing, MI USA ; Department of Plant and Microbial Biology; University of California, Berkeley ; Berkeley, CA USA ; Physical Biosciences Division; Lawrence Berkeley National Laboratory ; Berkeley, CA USA ; Berkeley Synthetic Biology Institute ; Berkeley, CA USA
| |
Collapse
|
5
|
Axen SD, Erbilgin O, Kerfeld CA. A taxonomy of bacterial microcompartment loci constructed by a novel scoring method. PLoS Comput Biol 2014; 10:e1003898. [PMID: 25340524 PMCID: PMC4207490 DOI: 10.1371/journal.pcbi.1003898] [Citation(s) in RCA: 171] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 09/09/2014] [Indexed: 01/21/2023] Open
Abstract
Bacterial microcompartments (BMCs) are proteinaceous organelles involved in both autotrophic and heterotrophic metabolism. All BMCs share homologous shell proteins but differ in their complement of enzymes; these are typically encoded adjacent to shell protein genes in genetic loci, or operons. To enable the identification and prediction of functional (sub)types of BMCs, we developed LoClass, an algorithm that finds putative BMC loci and inventories, weights, and compares their constituent pfam domains to construct a locus similarity network and predict locus (sub)types. In addition to using LoClass to analyze sequences in the Non-redundant Protein Database, we compared predicted BMC loci found in seven candidate bacterial phyla (six from single-cell genomic studies) to the LoClass taxonomy. Together, these analyses resulted in the identification of 23 different types of BMCs encoded in 30 distinct locus (sub)types found in 23 bacterial phyla. These include the two carboxysome types and a divergent set of metabolosomes, BMCs that share a common catalytic core and process distinct substrates via specific signature enzymes. Furthermore, many Candidate BMCs were found that lack one or more core metabolosome components, including one that is predicted to represent an entirely new paradigm for BMC-associated metabolism, joining the carboxysome and metabolosome. By placing these results in a phylogenetic context, we provide a framework for understanding the horizontal transfer of these loci, a starting point for studies aimed at understanding the evolution of BMCs. This comprehensive taxonomy of BMC loci, based on their constituent protein domains, foregrounds the functional diversity of BMCs and provides a reference for interpreting the role of BMC gene clusters encoded in isolate, single cell, and metagenomic data. Many loci encode ancillary functions such as transporters or genes for cofactor assembly; this expanded vocabulary of BMC-related functions should be useful for design of genetic modules for introducing BMCs in bioengineering applications. Some enzymatic transformations have undesirable side reactions, produce toxic or volatile intermediates, or are inefficient; these shortcomings can be alleviated through their sequestration with their substrates in a confined space, as in the membrane-bound organelles of eukaryotes. Recently, it was discovered that bacteria also form organelles–bacterial microcompartments (BMCs)–composed of a protein shell that surrounds functionally related enzymes. BMCs long evaded detection because they typically form only in the presence of the substrate they metabolize, and they can only be visualized by electron microscopy. A few BMCs have been experimentally characterized; they have diverse functions in CO2 fixation, pathogenesis, and niche colonization. While the encapsulated enzymes differ among functionally distinct BMCs, the shell architecture is conserved. This enables their detection computationally, as genes for shell proteins are typically nearby genes for the encapsulated enzymes. We developed a novel algorithm to comprehensively identify and categorize BMCs in sequenced bacterial genomes. We show that BMCs are often encoded adjacent to genes that play supporting roles to the organelle's function. Our results provide the first glimpse of the extent of BMC metabolic diversity and will inform design of genetic modules encoding BMCs for introduction of new metabolic functions in a plug-and-play approach.
Collapse
Affiliation(s)
- Seth D. Axen
- DOE Joint Genome Institute, Walnut Creek, California, United States of America
| | - Onur Erbilgin
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Cheryl A. Kerfeld
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, United States of America
- DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, United States of America
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Berkeley Synthetic Biology Institute, Berkeley, California, United States of America
- * E-mail: ,
| |
Collapse
|
6
|
Characterization of a planctomycetal organelle: a novel bacterial microcompartment for the aerobic degradation of plant saccharides. Appl Environ Microbiol 2014; 80:2193-205. [PMID: 24487526 DOI: 10.1128/aem.03887-13] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Bacterial microcompartments (BMCs) are organelles that encapsulate functionally linked enzymes within a proteinaceous shell. The prototypical example is the carboxysome, which functions in carbon fixation in cyanobacteria and some chemoautotrophs. It is increasingly apparent that diverse heterotrophic bacteria contain BMCs that are involved in catabolic reactions, and many of the BMCs are predicted to have novel functions. However, most of these putative organelles have not been experimentally characterized. In this study, we sought to discover the function of a conserved BMC gene cluster encoded in the majority of the sequenced planctomycete genomes. This BMC is especially notable for its relatively simple genetic composition, its remote phylogenetic position relative to characterized BMCs, and its apparent exclusivity to the enigmatic Verrucomicrobia and Planctomycetes. Members of the phylum Planctomycetes are known for their morphological dissimilarity to the rest of the bacterial domain: internal membranes, reproduction by budding, and lack of peptidoglycan. As a result, they are ripe for many discoveries, but currently the tools for genetic studies are very limited. We expanded the genetic toolbox for the planctomycetes and generated directed gene knockouts of BMC-related genes in Planctomyces limnophilus. A metabolic activity screen revealed that BMC gene products are involved in the degradation of a number of plant and algal cell wall sugars. Among these sugars, we confirmed that BMCs are formed and required for growth on l-fucose and l-rhamnose. Our results shed light on the functional diversity of BMCs as well as their ecological role in the planctomycetes, which are commonly associated with algae.
Collapse
|
7
|
Eram MS, Ma K. Decarboxylation of pyruvate to acetaldehyde for ethanol production by hyperthermophiles. Biomolecules 2013; 3:578-96. [PMID: 24970182 PMCID: PMC4030962 DOI: 10.3390/biom3030578] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 08/02/2013] [Accepted: 08/15/2013] [Indexed: 11/16/2022] Open
Abstract
Pyruvate decarboxylase (PDC encoded by pdc) is a thiamine pyrophosphate (TPP)-containing enzyme responsible for the conversion of pyruvate to acetaldehyde in many mesophilic organisms. However, no pdc/PDC homolog has yet been found in fully sequenced genomes and proteomes of hyper/thermophiles. The only PDC activity reported in hyperthermophiles was a bifunctional, TPP- and CoA-dependent pyruvate ferredoxin oxidoreductase (POR)/PDC enzyme from the hyperthermophilic archaeon Pyrococcus furiosus. Another enzyme known to be involved in catalysis of acetaldehyde production from pyruvate is CoA-acetylating acetaldehyde dehydrogenase (AcDH encoded by mhpF and adhE). Pyruvate is oxidized into acetyl-CoA by either POR or pyruvate formate lyase (PFL), and AcDH catalyzes the reduction of acetyl-CoA to acetaldehyde in mesophilic organisms. AcDH is present in some mesophilic (such as clostridia) and thermophilic bacteria (e.g., Geobacillus and Thermoanaerobacter). However, no AcDH gene or protein homologs could be found in the released genomes and proteomes of hyperthermophiles. Moreover, no such activity was detectable from the cell-free extracts of different hyperthermophiles under different assay conditions. In conclusion, no commonly-known PDCs was found in hyperthermophiles. Instead of the commonly-known PDC, it appears that at least one multifunctional enzyme is responsible for catalyzing the non-oxidative decarboxylation of pyruvate to acetaldehyde in hyperthermophiles.
Collapse
Affiliation(s)
- Mohammad S Eram
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada.
| | - Kesen Ma
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada.
| |
Collapse
|
8
|
Abstract
Bacterial microcompartments (BMCs) are organelles composed entirely of protein. They promote specific metabolic processes by encapsulating and colocalizing enzymes with their substrates and cofactors, by protecting vulnerable enzymes in a defined microenvironment, and by sequestering toxic or volatile intermediates. Prototypes of the BMCs are the carboxysomes of autotrophic bacteria. However, structures of similar polyhedral shape are being discovered in an ever-increasing number of heterotrophic bacteria, where they participate in the utilization of specialty carbon and energy sources. Comparative genomics reveals that the potential for this type of compartmentalization is widespread across bacterial phyla and suggests that genetic modules encoding BMCs are frequently laterally transferred among bacteria. The diverse functions of these BMCs suggest that they contribute to metabolic innovation in bacteria in a broad range of environments.
Collapse
Affiliation(s)
- Cheryl A Kerfeld
- U.S. Department of Energy-Joint Genome Institute, Walnut Creek, California 94598, USA.
| | | | | |
Collapse
|
9
|
NADP+ reduction with reduced ferredoxin and NADP+ reduction with NADH are coupled via an electron-bifurcating enzyme complex in Clostridium kluyveri. J Bacteriol 2010; 192:5115-23. [PMID: 20675474 DOI: 10.1128/jb.00612-10] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It was recently found that the cytoplasmic butyryl-coenzyme A (butyryl-CoA) dehydrogenase-EtfAB complex from Clostridium kluyveri couples the exergonic reduction of crotonyl-CoA to butyryl-CoA with NADH and the endergonic reduction of ferredoxin with NADH via flavin-based electron bifurcation. We report here on a second cytoplasmic enzyme complex in C. kluyveri capable of energetic coupling via this novel mechanism. It was found that the purified iron-sulfur flavoprotein complex NfnAB couples the exergonic reduction of NADP+ with reduced ferredoxin (Fdred) and the endergonic reduction of NADP+ with NADH in a reversible reaction: Fdred2-+NADH+2 NADP++H+=Fdox+NAD++2 NADPH. The role of this energy-converting enzyme complex in the ethanol-acetate fermentation of C. kluyveri is discussed.
Collapse
|
10
|
Structure of a trimeric bacterial microcompartment shell protein, EtuB, associated with ethanol utilization in Clostridium kluyveri. Biochem J 2009; 423:199-207. [PMID: 19635047 DOI: 10.1042/bj20090780] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
It has been suggested that ethanol metabolism in the strict anaerobe Clostridium kluyveri occurs within a metabolosome, a subcellular proteinaceous bacterial microcompartment. Two bacterial microcompartment shell proteins [EtuA (ethanol utilization shell protein A) and EtuB] are found encoded on the genome clustered with the genes for ethanol utilization. The function of the bacterial microcompartment is to facilitate fermentation by sequestering the enzymes, substrates and intermediates. Recent structural studies of bacterial microcompartment proteins have revealed both hexamers and pentamers that assemble to generate the pseudo-icosahedral bacterial microcompartment shell. Some of these shell proteins have pores on their symmetry axes. Here we report the structure of the trimeric bacterial microcompartment protein EtuB, which has a tandem structural repeat within the subunit and pseudo-hexagonal symmetry. The pores in the EtuB trimer are within the subunits rather than between symmetry related subunits. We suggest that the evolutionary advantage of this is that it releases the pore from the rotational symmetry constraint allowing more precise control of the fluxes of asymmetric molecules, such as ethanol, across the pore. We also model EtuA and demonstrate that the two proteins have the potential to interact to generate the casing for a metabolosome.
Collapse
|
11
|
The genome of Clostridium kluyveri, a strict anaerobe with unique metabolic features. Proc Natl Acad Sci U S A 2008; 105:2128-33. [PMID: 18218779 DOI: 10.1073/pnas.0711093105] [Citation(s) in RCA: 306] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Clostridium kluyveri is unique among the clostridia; it grows anaerobically on ethanol and acetate as sole energy sources. Fermentation products are butyrate, caproate, and H2. We report here the genome sequence of C. kluyveri, which revealed new insights into the metabolic capabilities of this well studied organism. A membrane-bound energy-converting NADH:ferredoxin oxidoreductase (RnfCDGEAB) and a cytoplasmic butyryl-CoA dehydrogenase complex (Bcd/EtfAB) coupling the reduction of crotonyl-CoA to butyryl-CoA with the reduction of ferredoxin represent a new energy-conserving module in anaerobes. The genes for NAD-dependent ethanol dehydrogenase and NAD(P)-dependent acetaldehyde dehydrogenase are located next to genes for microcompartment proteins, suggesting that the two enzymes, which are isolated together in a macromolecular complex, form a carboxysome-like structure. Unique for a strict anaerobe, C. kluyveri harbors three sets of genes predicted to encode for polyketide/nonribosomal peptide synthetase hybrides and one set for a nonribosomal peptide synthetase. The latter is predicted to catalyze the synthesis of a new siderophore, which is formed under iron-deficient growth conditions.
Collapse
|
12
|
Membrillo-Hernandez J, Echave P, Cabiscol E, Tamarit J, Ros J, Lin EC. Evolution of the adhE gene product of Escherichia coli from a functional reductase to a dehydrogenase. Genetic and biochemical studies of the mutant proteins. J Biol Chem 2000; 275:33869-75. [PMID: 10922373 DOI: 10.1074/jbc.m005464200] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The multifunctional AdhE protein of Escherichia coli (encoded by the adhE gene) physiologically catalyzes the sequential reduction of acetyl-CoA to acetaldehyde and then to ethanol under fermentative conditions. The NH(2)-terminal region of the AdhE protein is highly homologous to aldehyde:NAD(+) oxidoreductases, whereas the COOH-terminal region is homologous to a family of Fe(2+)-dependent ethanol:NAD(+) oxidoreductases. This fusion protein also functions as a pyruvate formate lyase deactivase. E. coli cannot grow aerobically on ethanol as the sole carbon and energy source because of inadequate rate of adhE transcription and the vulnerability of the AdhE protein to metal-catalyzed oxidation. In this study, we characterized 16 independent two-step mutants with acquired and improved aerobic growth ability on ethanol. The AdhE proteins in these mutants catalyzed the sequential oxidation of ethanol to acetaldehyde and to acetyl-CoA. All first stage mutants grew on ethanol with a doubling time of about 240 min. Sequence analysis of a randomly chosen mutant revealed an Ala-267 --> Thr substitution in the acetaldehyde:NAD(+) oxidoreductase domain of AdhE. All second stage mutants grew on ethanol with a doubling time of about 90 min, and all of them produced an AdhE(A267T/E568K). Purified AdhE(A267T) and AdhE(A267T/E568K) showed highly elevated acetaldehyde dehydrogenase activities. It therefore appears that when AdhE catalyzes the two sequential reactions in the counter-physiological direction, acetaldehyde dehydrogenation is the rate-limiting step. Both mutant proteins were more thermosensitive than the wild-type protein, but AdhE(A267T/E568K) was more thermal stable than AdhE(A267T). Since both mutant enzymes exhibited similar kinetic properties, the second mutation probably conferred an increased growth rate on ethanol by stabilizing AdhE(A267T).
Collapse
Affiliation(s)
- J Membrillo-Hernandez
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
13
|
Söhling B, Gottschalk G. Molecular analysis of the anaerobic succinate degradation pathway in Clostridium kluyveri. J Bacteriol 1996; 178:871-80. [PMID: 8550525 PMCID: PMC177737 DOI: 10.1128/jb.178.3.871-880.1996] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A region of genomic DNA from Clostridium kluyveri was cloned in Escherichia coli by a screening strategy which was based on heterologous expression of the clostridial 4-hydroxybutyrate dehydrogenase gene. The gene region (6,575 bp) contained several open reading frames which encoded the coenzyme A (CoA)- and NADP+-dependent succinate-semialdehyde dehydrogenase (sucD), the 4-hydroxybutyrate dehydrogenase (4hbD), and a succinyl-CoA;CoA transferase (cat1), as analyzed by heterologous expression in E. coli. An open reading frame encoding a putative membrane protein (orfY) and the 5' region of a gene encoding a sigma 54-homologous sigma factor (sigL) were identified as well. Transcription was investigated by Northern (RNA) blot analysis. Protein sequence comparisons of SucD and 4HbD revealed similarities to the adhE (aad) gene products from E. coli and Clostridium acetobutylicum and to enzymes of the novel class (III) of alcohol dehydrogenases. A comparison of CoA-dependent aldehyde dehydrogenases is presented.
Collapse
Affiliation(s)
- B Söhling
- Institut für Mikrobiologie, Georg-August-Universität Göttigen, Germany
| | | |
Collapse
|
14
|
Nair RV, Bennett GN, Papoutsakis ET. Molecular characterization of an aldehyde/alcohol dehydrogenase gene from Clostridium acetobutylicum ATCC 824. J Bacteriol 1994; 176:871-85. [PMID: 8300540 PMCID: PMC205125 DOI: 10.1128/jb.176.3.871-885.1994] [Citation(s) in RCA: 113] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
A gene (aad) coding for an aldehyde/alcohol dehydrogenase (AAD) was identified immediately upstream of the previously cloned ctfA (J. W. Cary, D. J. Petersen, E. T. Papoutsakis, and G. N. Bennett, Appl. Environ. Microbiol. 56:1576-1583, 1990) of Clostridium acetobutylicum ATCC 824 and sequenced. The 2,619-bp aad codes for a 96,517-Da protein. Primer extension analysis identified two transcriptional start sites 83 and 243 bp upstream of the aad start codon. The N-terminal section of AAD shows homology to aldehyde dehydrogenases of bacterial, fungal, mammalian, and plant origin, while the C-terminal section shows homology to alcohol dehydrogenases of bacterial (which includes three clostridial alcohol dehydrogenases) and yeast origin. AAD exhibits considerable amino acid homology (56% identity) over its entire sequence to the trifunctional protein encoded by adhE from Escherichia coli. Expression of aad from a plasmid in C. acetobutylicum showed that AAD, which appears as a approximately 96-kDa band in denaturing protein gels, provides elevated activities of NADH-dependent butanol dehydrogenase, NAD-dependent acetaldehyde dehydrogenase and butyraldehyde dehydrogenase, and a small increase in NADH-dependent ethanol dehydrogenase. A 957-bp open reading frame that could potentially encode a 36,704-Da protein was identified upstream of aad.
Collapse
Affiliation(s)
- R V Nair
- Department of Chemical Engineering, Northwestern University, Evanston, Illinois 60208
| | | | | |
Collapse
|
15
|
Söhling B, Gottschalk G. Purification and characterization of a coenzyme-A-dependent succinate-semialdehyde dehydrogenase from Clostridium kluyveri. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 212:121-7. [PMID: 8444151 DOI: 10.1111/j.1432-1033.1993.tb17641.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Cell extracts of Clostridium kluyveri, grown on ethanol plus succinate contained a succinyl-CoA:CoA transferase (0.28 U/mg), a coenzyme-A-dependent succinate-semialdehyde dehydrogenase (0.73 U/mg) and a NAD(+)-dependent 4-hydroxybutyrate dehydrogenase (0.25 U/mg). The semialdehyde dehydrogenase, which catalyzed the NADPH-dependent reduction of succinyl-CoA to succinate semialdehyde, was purified 59-fold to homogeneity. A molecular mass of 115000 Da was determined for the native enzyme; SDS/PAGE revealed one protein band at 55,000, indicating that the active form is a dimer. The enzyme was highly specific for succinyl-CoA and succinate semialdehyde. The pH optimum was 7.0 for the reduction of succinyl-CoA, and 8.5 for the reverse reaction. Km values were determined for both the forward and reverse directions. The kinetic data suggest a ping-pong mechanism.
Collapse
Affiliation(s)
- B Söhling
- Institut für Mikrobiologie, Georg-August-Universität Göttingen, Federal Republic of Germany
| | | |
Collapse
|
16
|
|
17
|
Yan RT, Chen JS. Coenzyme A-acylating aldehyde dehydrogenase from Clostridium beijerinckii NRRL B592. Appl Environ Microbiol 1990; 56:2591-9. [PMID: 2275527 PMCID: PMC184801 DOI: 10.1128/aem.56.9.2591-2599.1990] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Acetaldehyde and butyraldehyde are substrates for alcohol dehydrogenase in the production of ethanol and 1-butanol by solvent-producing clostridia. A coenzyme A (CoA)-acylating aldehyde dehydrogenase (ALDH), which also converts acyl-CoA to aldehyde and CoA, has been purified under anaerobic conditions from Clostridium beijerinckii NRRL B592. The ALDH showed a native molecular weight (Mr) of 100,000 and a subunit Mr of 55,000, suggesting that ALDH is dimeric. Purified ALDH contained no alcohol dehydrogenase activity. Activities measured with acetaldehyde and butyraldehyde as alternative substrates were copurified, indicating that the same ALDH can catalyze the formation of both aldehydes for ethanol and butanol production. Based on the Km and Vmax values for acetyl-CoA and butyryl-CoA, ALDH was more effective for the production of butyraldehyde than for acetaldehyde. ALDH could use either NAD(H) or NADP(H) as the coenzyme, but the Km for NAD(H) was much lower than that for NADP(H). Kinetic data suggest a ping-pong mechanism for the reaction. ALDH was more stable in Tris buffer than in phosphate buffer. The apparent optimum pH was between 6.5 and 7 for the forward reaction (the physiological direction; aldehyde forming), and it was 9.5 or higher for the reverse reaction (acyl-CoA forming). The ratio of NAD(H)/NADP(H)-linked activities increased with decreasing pH. ALDH was O2 sensitive, but it could be protected against O2 inactivation by dithiothreitol. The O2-inactivated enzyme could be reactivated by incubating the enzyme with CoA in the presence or absence of dithiothreitol prior to assay.
Collapse
Affiliation(s)
- R T Yan
- Department of Anaerobic Microbiology, Virginia Polytechnic Institute and State University, Blacksburg 24061
| | | |
Collapse
|
18
|
Hommel R, Kleber HP. Selective and rapid solubilization of the microbial membrane enzyme aldehyde dehydrogenase. J Basic Microbiol 1990; 30:297-300. [PMID: 2384875 DOI: 10.1002/jobm.3620300418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
An improved solubilization procedure for the membrane-bound quinoprotein aldehyde dehydrogenase from Acetobacter rancens CCM 1774 was established. After the first solubilization of membrane enzymes by Brij 35 which provided important extraction of membrane proteins other than aldehyde dehydrogenase, the application of Trition X-100 resulted in an almost 20-fold purification of quinoprotein aldehyde dehydrogenase. The optimal solubilization was closely connected with definite detergent/protein ratios.
Collapse
Affiliation(s)
- R Hommel
- Bereich Biochemie der Sektion Biowissenschaften der Karl-Marx-Universität Leipzig, DDR
| | | |
Collapse
|
19
|
Goodlove PE, Cunningham PR, Parker J, Clark DP. Cloning and sequence analysis of the fermentative alcohol-dehydrogenase-encoding gene of Escherichia coli. Gene X 1989; 85:209-14. [PMID: 2695398 DOI: 10.1016/0378-1119(89)90483-6] [Citation(s) in RCA: 100] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
A 6-kb fragment of DNA, which complemented defects in the alcohol dehydrogenase (ADH)-encoding gene (adhE) of Escherichia coli, was cloned into a multicopy vector. Both ADH and coenzyme-A-linked acetaldehyde dehydrogenase (ACDH) activities were encoded by the plasmid, pHIL8. The adhE gene was identified as an open reading frame of 891 codons encoding an Mr 96,008 protein (minus the initiating methionine). Codon usage analysis indicates that adhE should be highly expressed. This gene shows no significant homology to any previously sequenced ADH-encoding gene.
Collapse
Affiliation(s)
- P E Goodlove
- Department of Microbiology, Southern Illinois University, Carbondale 62901
| | | | | | | |
Collapse
|
20
|
|
21
|
Palosaari NR, Rogers P. Purification and properties of the inducible coenzyme A-linked butyraldehyde dehydrogenase from Clostridium acetobutylicum. J Bacteriol 1988; 170:2971-6. [PMID: 3384801 PMCID: PMC211236 DOI: 10.1128/jb.170.7.2971-2976.1988] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The coenzyme A (CoA)-linked butyraldehyde dehydrogenase (BAD) from Clostridium acetobutylicum was characterized and purified to homogeneity. The enzyme was induced over 200-fold, coincident with a shift from an acidogenic to a solventogenic fermentation, during batch culture growth. The increase in enzyme activity was found to require new protein synthesis since induction was blocked by the addition of rifampin and antibody against the purified enzyme showed the appearance of enzyme antigen beginning at the shift of the fermentation and increasing coordinately with the increase in enzyme specific activity. The CoA-linked acetaldehyde dehydrogenase was copurified with BAD during an 89-fold purification, indicating that one enzyme accounts for the synthesis of the two aldehyde intermediates for both butanol and ethanol production. Butanol dehydrogenase activity was clearly separate from the BAD enzyme activity on TEAE cellulose. A molecular weight of 115,000 was determined for the native enzyme, and the enzyme subunit had a molecular weight of 56,000 indicating that the active form is a homodimer. Kinetic constants were determined in both the forward and reverse directions. In the reverse direction both the Vmax and the apparent affinity for butyraldehyde and caproaldehyde were significantly greater than they were for acetaldehyde, while in the forward direction, the Vmax for butyryl-CoA was fivefold that for acetyl-CoA. These and other properties of BAD indicate that this enzyme is distinctly different from other reported CoA-dependent aldehyde dehydrogenases.
Collapse
Affiliation(s)
- N R Palosaari
- Department of Microbiology, University of Minnesota, Minneapolis 55455
| | | |
Collapse
|
22
|
Cunningham PR, Clark DP. The use of suicide substrates to select mutants of Escherichia coli lacking enzymes of alcohol fermentation. MOLECULAR & GENERAL GENETICS : MGG 1986; 205:487-93. [PMID: 3550385 DOI: 10.1007/bf00338087] [Citation(s) in RCA: 36] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Mutants of Escherichia coli resistant to chloroethanol or to chloroacetaldehyde were selected. Such mutants were found to lack the fermentative coenzyme A (CoA) linked acetaldehyde dehydrogenase activity. Most also lacked the associated fermentative enzyme alcohol dehydrogenase. Both types of mutants, those lacking acetaldehyde dehydrogenase alone or lacking both enzymes, mapped close to the regulatory adhC gene at 27 min on the E. coli genetic map. The previously described acd mutants which lack acetaldehyde dehydrogenase and which map at 63 min were shown to be pleiotropic, affecting respiration and growth on a variety of substrates. It therefore seems likely that the structural genes for both the acetaldehyde and alcohol dehydrogenases lie in the adhCE operon. This interpretation was confirmed by the isolation of temperature sensitive chloracetaldehyde-resistant mutants, some of which produced thermolabile acetaldehyde dehydrogenase and alcohol dehydrogenase and were also found to map at the adh locus. Reversion analysis indicated that mutants lacking one or both enzymes carried single mutations. The gene order in the adh region was determined by three point crosses to be trp-zch::Tn10-adh-galU-bglY-tyrT-chlC.
Collapse
|