1
|
Blaha G, Nierhaus KH. Features and functions of the ribosomal E site. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2003; 66:135-46. [PMID: 12762016 DOI: 10.1101/sqb.2001.66.135] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
MESH Headings
- Binding Sites
- Cryoelectron Microscopy
- Crystallography, X-Ray
- Escherichia coli/chemistry
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Models, Genetic
- Models, Molecular
- Peptide Chain Elongation, Translational
- RNA, Transfer, Amino Acyl/chemistry
- RNA, Transfer, Amino Acyl/metabolism
- RNA, Transfer, Amino Acyl/ultrastructure
- Ribosomes/chemistry
- Ribosomes/metabolism
- Ribosomes/ultrastructure
Collapse
Affiliation(s)
- G Blaha
- Max-Planck-Institut für Molekulare Genetik, AG Ribosomen, D-14195 Berlin, Germany
| | | |
Collapse
|
2
|
Ganoza MC, Kiel MC, Aoki H. Evolutionary conservation of reactions in translation. Microbiol Mol Biol Rev 2002; 66:460-85, table of contents. [PMID: 12209000 PMCID: PMC120792 DOI: 10.1128/mmbr.66.3.460-485.2002] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Current X-ray diffraction and cryoelectron microscopic data of ribosomes of eubacteria have shed considerable light on the molecular mechanisms of translation. Structural studies of the protein factors that activate ribosomes also point to many common features in the primary sequence and tertiary structure of these proteins. The reconstitution of the complex apparatus of translation has also revealed new information important to the mechanisms. Surprisingly, the latter approach has uncovered a number of proteins whose sequence and/or structure and function are conserved in all cells, indicating that the mechanisms are indeed conserved. The possible mechanisms of a new initiation factor and two elongation factors are discussed in this context.
Collapse
Affiliation(s)
- M Clelia Ganoza
- C. H. Best Institute, Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada M5G 1L6.
| | | | | |
Collapse
|
3
|
Triana-Alonso FJ, Spahn CM, Burkhardt N, Röhrdanz B, Nierhaus KH. Experimental prerequisites for determination of tRNA binding to ribosomes from Escherichia coli. Methods Enzymol 2000; 317:261-76. [PMID: 10829285 DOI: 10.1016/s0076-6879(00)17019-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- F J Triana-Alonso
- Centro de Investigaciones Biomédicas, Universidad de Carabobo, LaMorita, Maracay, Venezuela
| | | | | | | | | |
Collapse
|
4
|
Dabrowski M, Spahn CM, Schäfer MA, Patzke S, Nierhaus KH. Protection patterns of tRNAs do not change during ribosomal translocation. J Biol Chem 1998; 273:32793-800. [PMID: 9830024 DOI: 10.1074/jbc.273.49.32793] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The translocation reaction of two tRNAs on the ribosome during elongation of the nascent peptide chain is one of the most puzzling reactions of protein biosynthesis. We show here that the ribosomal contact patterns of the two tRNAs at A and P sites, although strikingly different from each other, hardly change during the translocation reaction to the P and E sites, respectively. The results imply that the ribosomal micro-environment of the tRNAs remains the same before and after translocation and thus suggest that a movable ribosomal domain exists that tightly binds two tRNAs and carries them together with the mRNA during the translocation reaction from the A-P region to the P-E region. These findings lead to a new explanation for the translocation reaction.
Collapse
Affiliation(s)
- M Dabrowski
- Max-Planck-Institut für Molekulare Genetik, AG Ribosomen, Ihnestrasse 73, D-14195 Berlin, Germany
| | | | | | | | | |
Collapse
|
5
|
Abstract
The central process for the transfer of the genetic information from the nucleic acid world into the structure of proteins is the ribosomal elongation cycle, where the sequence of codons is translated into the sequence of amino acids. The nascent polypeptide chain is elongated by one amino acid during the reactions of one cycle. Essentially, three models for the elongation cycle have been proposed. The allosteric three-site model and the hybrid-site model describe different aspects of tRNA binding and do not necessarily contradict each other. However, the alpha-epsilon model is not compatible with both models. The three models are evaluated in the light of recent results on the tRNA localization within the ribosome: the tRNAs of the elongating ribosome could be localized by two different techniques, viz. an advanced method of small-angle neutron scattering and cryo-electron microscopy. The best fit with the biochemical and structural data is obtained with the alpha-epsilon model.
Collapse
Affiliation(s)
- C M Spahn
- Max-Planck-Institut für Molekulare Genetik, AG Ribosomen, Berlin, Germany
| | | |
Collapse
|
6
|
Burkhardt N, Jünemann R, Spahn CM, Nierhaus KH. Ribosomal tRNA binding sites: three-site models of translation. Crit Rev Biochem Mol Biol 1998; 33:95-149. [PMID: 9598294 DOI: 10.1080/10409239891204189] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The first models of translation described protein synthesis in terms of two operationally defined tRNA binding sites, the P-site for the donor substrate, the peptidyl-tRNA, and the A-site for the acceptor substrates, the aminoacyl-tRNAs. The discovery and analysis of the third tRNA binding site, the E-site specific for deacylated tRNAs, resulted in the allosteric three-site model, the two major features of which are (1) the reciprocal relationship of A-site and E-site occupation, and (2) simultaneous codon-anticodon interactions of both tRNAs present at the elongating ribosome. However, structural studies do not support the three operationally defined sites in a simple fashion as three topographically fixed entities, thus leading to new concepts of tRNA binding and movement: (1) the hybrid-site model describes the tRNAs' movement through the ribosome in terms of changing binding sites on the 30S and 50S subunits in an alternating fashion. The tRNAs thereby pass through hybrid binding states. (2) The alpha-epsilon model introduces the concept of a movable tRNA-binding domain comprising two binding sites, termed alpha and epsilon. The translocation movement is seen as a result of a conformational change of the ribosome rather than as a diffusion process between fixed binding sites. The alpha-epsilon model reconciles most of the experimental data currently available.
Collapse
MESH Headings
- Allosteric Site/genetics
- Animals
- Base Sequence
- Escherichia coli
- Humans
- Models, Biological
- Models, Molecular
- Molecular Sequence Data
- Peptide Chain Elongation, Translational/genetics
- Protein Biosynthesis
- RNA, Transfer, Amino Acid-Specific/chemistry
- RNA, Transfer, Amino Acid-Specific/genetics
- RNA, Transfer, Amino Acid-Specific/metabolism
- RNA, Transfer, Amino Acyl/chemistry
- RNA, Transfer, Amino Acyl/genetics
- RNA, Transfer, Amino Acyl/metabolism
- Ribosomes/chemistry
- Ribosomes/genetics
- Ribosomes/metabolism
- Structure-Activity Relationship
Collapse
Affiliation(s)
- N Burkhardt
- Max-Planck-Institut für Molekulare Genetik, Berlin, Germany
| | | | | | | |
Collapse
|
7
|
Nierhaus KH, Stuhrmann HB, Svergun D. The ribosomal elongation cycle and the movement of tRNAs across the ribosome. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1998; 59:177-204. [PMID: 9427843 DOI: 10.1016/s0079-6603(08)61032-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Ribosome research has reached an exciting state, where two lines of experimental research have considerably improved our understanding of the ribosomal functions. On one hand, functional analysis has elucidated principles of both the decoding process and the tRNA movement on the ribosome during translocation. Experimental data leading to current competing models of the ribosomal elongation cycle can be reconciled by a new model, the alpha-epsilon model, according to which both tRNAs are tightly bound to a movable ribosomal domain. This alpha-epsilon domain carries the tRNA2.mRNA complex from the A and P sites to the P and E sites in the course of translocation maintaining the binding of both tRNAs. On the other hand, the location of tRNAs within the elongating ribosome can be directly determined for the first time by neutron scattering and electron microscopy. Both lines of evidence complement each other and define a frame for the first experimentally sound functional model of the elongating ribosome.
Collapse
Affiliation(s)
- K H Nierhaus
- Max-Planck-Institut für Molekulare Genetik, Berlin, Germany
| | | | | |
Collapse
|
8
|
Triana-Alonso FJ, Chakraburtty K, Nierhaus KH. The elongation factor 3 unique in higher fungi and essential for protein biosynthesis is an E site factor. J Biol Chem 1995; 270:20473-8. [PMID: 7657623 DOI: 10.1074/jbc.270.35.20473] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Two elongation factors drive the ribosomal elongation cycle; elongation factor 1 alpha (EF-1 alpha) mediates the binding of an aminoacyl-tRNA to the ribosomal A site, whereas elongation factor 2 (EF-2) catalyzes the translocation reaction. Ribosomes from yeast and other higher fungi require a third elongation factor (EF-3) which is essential for the elongation process, but the step affected by EF-3 has not yet been identified. Here we demonstrate that the first and the third tRNA binding site (A and E sites, respectively) of yeast ribosomes are reciprocally linked; if the A site is occupied the E site has lost its binding capability, and vice versa, if the E site is occupied the A site has a low affinity for tRNAs. EF-3 is essential for EF-1 alpha-dependent A site binding of amino-acyl-tRNA only when the E site is occupied with a deacylated tRNA. The ATP-dependent activity of EF-3 is required for the release of deacylated tRNA from the E site during A site occupation.
Collapse
Affiliation(s)
- F J Triana-Alonso
- Max-Planck-Institut für Molekulare Genetik, AG Ribosomen, Berlin, Germany
| | | | | |
Collapse
|
9
|
Nierhaus KH. Solution of the ribosome riddle: how the ribosome selects the correct aminoacyl-tRNA out of 41 similar contestants. Mol Microbiol 1993; 9:661-9. [PMID: 7694034 DOI: 10.1111/j.1365-2958.1993.tb01726.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Three tRNA binding sites, the A, P and E sites, have been demonstrated on ribosomes of bacterial, archaebacterial and eukaryotic origin. In all these cases the first and the third site, the A and the E site, are allosterically coupled in the sense of a negative co-operativity. Therefore, the allosteric three-site model seems to be a generally valid description of the ribosomal elongation phase, where in a cycle of reactions the nascent peptide chain is prolonged by one amino acid. The molecular concept of the allosteric three-site model explains the astonishing ability of the ribosome to select the correct substrate out of a large number of very similar substrates, and it provides a framework within which the mechanisms of the elongation factors could be understood.
Collapse
MESH Headings
- Allosteric Regulation
- Anticodon
- Bacterial Proteins/metabolism
- Base Sequence
- Binding Sites
- Codon
- Guanosine Triphosphate/metabolism
- Models, Biological
- Molecular Sequence Data
- Nucleic Acid Conformation
- Peptide Chain Elongation, Translational
- Peptide Elongation Factors/metabolism
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Transfer, Amino Acyl/chemistry
- RNA, Transfer, Amino Acyl/genetics
- RNA, Transfer, Amino Acyl/metabolism
- Ribosomes/physiology
- Substrate Specificity
Collapse
Affiliation(s)
- K H Nierhaus
- Max-Planck-Institut für Molekulare Genetik, Berlin, Germany
| |
Collapse
|
10
|
Abstract
During the last decade, a new model for the ribosomal elongation cycle has emerged. It is based on the finding that eubacterial ribosomes possess 3 tRNA binding sites. More recently, this has been confirmed for archaebacterial and eukaryotic ribosomes as well, and thus appears to be a universal feature of the protein synthetic machinery. Ribosomes from organisms of all 3 kingdoms harbor, in addition to the classical P and A sites, an E site (E for exit), into which deacylated tRNA is displaced during translocation, and from which it is expelled by the binding of an aminoacyl-tRNA to the A site at the beginning of the subsequent elongation round. The main features of the allosteric 3-site model of ribosomal elongation are the following: first, the third tRNA binding site is located 'upstream' adjacent to the P site with respect to the messenger, ie on the 5'-side of the P site. Second, during translocation, deacylated tRNA does not leave the ribosome from the P site, but co-translocates from the P site to the E site--when peptidyl-tRNA translocates from the A site to the P site. Third, deacylated tRNA is tightly bound to the E site in the post-translocational state, where it undergoes codon--anticodon interaction. Fourth, the elongating ribosome oscillates between 2 main conformations: (i), the pre-translocational conformer, where aminoacyl-tRNA (or peptidyl-tRNA) and peptidyl-tRNA (or deacylated tRNA) are firmly bound to the A and P sites, respectively; and (ii), the post-translocational conformer, where peptidyl-tRNA and deacylated tRNA are firmly bound to the P and E sites, respectively. The transition between the 2 states is regulated in an allosteric manner via negative cooperatively. It is modulated in a symmetrical fashion by the 2 elongation factors Tu and G. An elongating ribosome always maintains 2 high-affinity tRNA binding sites with 2 adjacent codon--anticodon interactions. The allosteric transition from the post- to the pre-translocational state is involved in the accuracy of aminoacyl-tRNA selection, and the maintenance of 2 codon--anticodon interactions helps to keep the messenger in frame during translation.
Collapse
Affiliation(s)
- H J Rheinberger
- Max-Planck-Institut für Molekulare Genetik, Abteilung Wittmann, Berlin-Dahlem, Germany
| |
Collapse
|
11
|
Nierhaus KH. The allosteric three-site model for the ribosomal elongation cycle: features and future. Biochemistry 1990; 29:4997-5008. [PMID: 2198935 DOI: 10.1021/bi00473a001] [Citation(s) in RCA: 128] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The ribosome contains three binding sites for tRNA, viz., the A site for aminoacyl-tRNA (decoding site), the P site for peptidyl-tRNA, and the E site for deacylated tRNA (E for exit). The surprising finding of an allosteric linkage between the E and A sites in the sense of a negative cooperativity has three consequences: (a) it improves the proper selection of aminoacyl-tRNAs while preventing interference from noncognate aminoacyl-tRNAs in the decoding process, (b) it provides an explanation for the ribosomal accuracy without having to resort to the proofreading hypothesis, and (c) it has deepened our understanding of the mode of action of some antibiotics.
Collapse
Affiliation(s)
- K H Nierhaus
- Max-Planck-Institut für Molekulare Genetik, Abteilung Wittmann, Berlin-Dahlem, West Germany
| |
Collapse
|
12
|
Abstract
The release of deacylated tRNA from the ribosome as a result of translocation has been studied. Translating ribosomes prepared with poly(U)-S-S-Sepharose columns have been used. It has been shown that deacylated tRNA released from the ribosomal P site as a result of translocation rebinds with the vacated A site. Consistent with the known properties of the A site of the ribosome, this interaction is reversible, Mg2+-dependent, codon-specific and is inhibited by the antibiotic tetracycline. It has been concluded that the proposed three-site model of the ribosomal elongation cycle (Rheinberger and Nierhaus (1983) Proc. Natl. Acad. Sci. USA 80, 4213-4217) is not sound: the experimentally observed 'retention' of the deacylated tRNA on the ribosome after translocation can be explained by a codon-dependent rebinding to the A site, rather than by its transition to the 'E site', i.e., in terms of the classical two-site model.
Collapse
Affiliation(s)
- V I Baranov
- Institute of Protein Research, Academy of Sciences of the U.S.S.R., Moscow
| | | |
Collapse
|
13
|
Saruyama H, Sasaki S. Purification and characterization of peptide-elongation factor 2 (aEF-2) from an extremely halophilic archaebacterium Halobacterium halobium. EUROPEAN JOURNAL OF BIOCHEMISTRY 1988; 170:499-505. [PMID: 3338448 DOI: 10.1111/j.1432-1033.1988.tb13727.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A procedure is described for the purification of the archaebacterial peptide-elongation factor 2 (aEF-2) from an extremely halophilic archaebacterium Halobacterium halobium. The enrichment was about 530-fold, the obtained preparation practically homogeneous as judged by SDS-PAGE. The poly(U)-dependent poly(Phe) synthesis was completely dependent on aEF-2 in the presence of partially purified aEF-1, and the activity was equivalent to a poly(Phe)-synthesizing system containing unfractionated S-100 enzymes. aEF-2 consists of a single peptide with a relative molecular mass of 125,000 +/- 3000 and 100,000 +/- 3000 as determined by SDS-PAGE and gel filtration on Sephadex G-200 respectively. The isoelectric point was 5.7. The amino acid composition analysis indicated the predominance of acidic amino acids (aspartic acid and glutamic acid) and the low content of hydrophobic amino acid (phenylalanine) as compared with those of eukaryotes and prokaryotes. The factor was stable in a pH range from 6 to 8. 2-Mercaptoethanol and GTP but not GDP markedly protected aEF-2 from heat denaturation at 52 degrees C. aEF-2 became inactivated and insensitive to ADP-ribosylation by diphtheria toxin at low ionic strength but could be renatured by increasing ionic strength. Obviously higher concentrations of salts contribute to the conformational stability of aEF-2.
Collapse
Affiliation(s)
- H Saruyama
- Department of Biology, Faculty of Science, Hokkaido University, Sapporo, Japan
| | | |
Collapse
|
14
|
Geigenmüller U, Nierhaus KH. Tetracycline can inhibit tRNA binding to the ribosomal P site as well as to the A site. EUROPEAN JOURNAL OF BIOCHEMISTRY 1986; 161:723-6. [PMID: 3641718 DOI: 10.1111/j.1432-1033.1986.tb10499.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A and P sites of Escherichia coli ribosomes were titrated with AcPhe-tRNAPhe, in the absence or presence of tetracycline. The P-site location of the bound AcPhe-tRNA was assessed by means of a quantitative puromycin reaction. The results demonstrate that, in agreement with the generally held view, tetracycline exclusively inhibits the A-site binding, if the statistical number of bound acyl-tRNA molecules per ribosome does not exceed about 0.5. However, above this value the P site becomes sensitive to tetracycline as well. It follows that the tightly coupled 70S ribosomes used in functional studies appear to be functionally heterogeneous, i.e. those P sites which cannot be affected by tetracycline are preferentially occupied by AcPhe-tRNA, whereas higher concentrations of this tRNA species are required to fill tetracycline-sensitive P sites. Furthermore, the results imply that under tRNA saturation conditions the tetracycline inhibition cannot be used as an indicator for the site location of bound tRNA.
Collapse
|
15
|
Geigenmüller U, Hausner TP, Nierhaus KH. Analysis of the puromycin reaction. The ribosomal exclusion principle for AcPhe-tRNA binding re-examined. EUROPEAN JOURNAL OF BIOCHEMISTRY 1986; 161:715-21. [PMID: 3024981 DOI: 10.1111/j.1432-1033.1986.tb10498.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The standard technique for determination of the ribosomal site location of bound tRNA, viz. the puromycin reaction, has been analyzed with regard to its applicability under tRNA saturation conditions. The criteria derived have been used to re-examine the exclusion principle for peptidyl-tRNA binding, which states that only one peptidyl-tRNA (AcPhe-tRNA) can be bound per ribosome although in principle two sites (A and P site) are available. The following results were obtained. The puromycin reaction is only appropriate for a site determination if the reaction conditions prevent one ribosome from performing more than one puromycin reaction. With an excess of AcPhe-tRNA over ribosomes, and in the absence of EF-G, this criterion is fulfilled at 0 degree C, where the P-site-bound material reacts with puromycin (quantitative reaction after 50 h), while the A-site-bound material does not. In contrast, at 37 degrees C the extent of the puromycin reaction can exceed the binding values by 2-4-fold ('repetitive reaction'). In the presence of EF-G a repetitive puromycin reaction is seen even at 0 degree C, i.e. EF-G can already promote a translocation reaction at 0 degree C. However, the extent of translocation becomes negligibly low for short incubation times (up to 60 min) at 0 degree C, if only catalytic amounts of EF-G are used. Using the criteria outlined above, the validity of the exclusion principle for Escherichia coli ribosomes was confirmed pursuing two different experimental strategies. Ribosomes were saturated with AcPhe-tRNA at one molecule per 70S ribosome, and a quantitative puromycin reaction demonstrated the exclusive P-site location of the AcPhe-tRNA. The same result was also found in the presence of viomycin, which blocks the translocation reaction. These findings also indicate that here nearly 100% of the ribosomes participate in AcPhe-tRNA binding to the P site. Precharging the P sites of 70S ribosomes with one Ac[14C]Phe-tRNA molecule per ribosome prevented additional Ac[3H]Phe-tRNA binding. In contrast, 70S particles carrying one molecule of [14C]tRNAPhe per ribosome were able to bind up to a further 0.64 molecule Ac[3H]Phe-tRNA per ribosome.
Collapse
|