1
|
Ford S, Moeskjær S, Young P, Santamaría RI, Harrison E. Introducing a Novel, Broad Host Range Temperate Phage Family Infecting Rhizobium leguminosarum and Beyond. Front Microbiol 2021; 12:765271. [PMID: 34858375 PMCID: PMC8631192 DOI: 10.3389/fmicb.2021.765271] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/13/2021] [Indexed: 02/01/2023] Open
Abstract
Temperate phages play important roles in bacterial communities but have been largely overlooked, particularly in non-pathogenic bacteria. In rhizobia the presence of temperate phages has the potential to have significant ecological impacts but few examples have been described. Here we characterize a novel group of 5 Rhizobium leguminosarum prophages, capable of sustaining infections across a broad host range within their host genus. Genome comparisons identified further putative prophages infecting multiple Rhizobium species isolated globally, revealing a wider family of 10 temperate phages including one previously described lytic phage, RHEph01, which appears to have lost the ability to form lysogens. Phylogenetic discordance between prophage and host phylogenies suggests a history of active mobilization between Rhizobium lineages. Genome comparisons revealed conservation of gene content and order, with the notable exception of an approximately 5 kb region of hypervariability, containing almost exclusively hypothetical genes. Additionally, several horizontally acquired genes are present across the group, including a putative antirepressor present only in the RHEph01 genome, which may explain its apparent inability to form lysogens. In summary, both phenotypic and genomic comparisons between members of this group of phages reveals a clade of viruses with a long history of mobilization within and between Rhizobium species.
Collapse
Affiliation(s)
- Sam Ford
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Sara Moeskjær
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Peter Young
- Department of Biology, University of York, York, United Kingdom
| | - Rosa I Santamaría
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, México City, Mexico
| | - Ellie Harrison
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
2
|
Abstract
Phages are viruses of bacteria and are the smallest and most common biological entities in the environment. They can reproduce immediately after infection or integrate as a prophage into their host genome. SPβ is a prophage of the Gram-positive model organism Bacillus subtilis 168, and it has been known for more than 50 years. It is sensitive to dsDNA damage and is induced through exposure to mitomycin C or UV radiation. When induced from the prophage, SPβ requires 90 min to produce and release about 30 virions. Genomes of sequenced related strains range between 128 and 140 kb, and particle-packed dsDNA exhibits terminal redundancy. Formed particles are of the Siphoviridae morphotype. Related isolates are known to infect other B. subtilis clade members. When infecting a new host, SPβ presumably follows a two-step strategy, adsorbing primarily to teichoic acid and secondarily to a yet unknown factor. Once in the host, SPβ-related phages pass through complex lysis-lysogeny decisions and either enter a lytic cycle or integrate as a dormant prophage. As prophages, SPβ-related phages integrate at the host chromosome's replication terminus, and frequently into the spsM or kamA gene. As a prophage, it imparts additional properties to its host via phage-encoded proteins. The most notable of these functional proteins is sublancin 168, which is used as a molecular weapon by the host and ensures prophage maintenance. In this review, we summarise the existing knowledge about the biology of the phage regarding its life cycle and discuss its potential as a research object.
Collapse
Affiliation(s)
- Katharina Kohm
- FG Synthetic Microbiology, Institute for Biotechnology, BTU Cottbus-Senftenberg, 01968, Senftenberg, Germany
| | - Robert Hertel
- FG Synthetic Microbiology, Institute for Biotechnology, BTU Cottbus-Senftenberg, 01968, Senftenberg, Germany.
| |
Collapse
|
3
|
Kelleher P, Murphy J, Mahony J, van Sinderen D. Identification of DNA Base Modifications by Means of Pacific Biosciences RS Sequencing Technology. Methods Mol Biol 2018; 1681:127-137. [PMID: 29134592 DOI: 10.1007/978-1-4939-7343-9_10] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Whole phage genomes can be sequenced readily using one or a combination of next generation sequencing (NGS) technologies. One of the most recently developed NGS platforms, the so-called Single-Molecule Real-Time (SMRT) sequencing approach provided by the PacBio RS platform, is particularly useful in providing complete (i.e., un-gapped) genome sequences, but differs from other technologies in that the platform also allows for downstream analysis to identify nucleotides that have been modified by DNA methylation. Here, we describe the methodological approach for the detection of genomic methylation motifs by means of SMRT sequencing.
Collapse
Affiliation(s)
- Philip Kelleher
- School of Microbiology, University College Cork, Cork, Ireland
| | - James Murphy
- School of Microbiology, University College Cork, Cork, Ireland
| | - Jennifer Mahony
- School of Microbiology, University College Cork, Cork, Ireland.,Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Douwe van Sinderen
- School of Microbiology, University College Cork, Cork, Ireland. .,Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland.
| |
Collapse
|
4
|
Ee R, Lim YL, Yin WF, See-Too WS, Roberts RJ, Chan KG. Novel Methyltransferase Recognition Motif Identified in Chania multitudinisentens RB-25(T) gen. nov., sp. nov. Front Microbiol 2016; 7:1362. [PMID: 27630623 PMCID: PMC5005818 DOI: 10.3389/fmicb.2016.01362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 08/17/2016] [Indexed: 11/13/2022] Open
Affiliation(s)
- Robson Ee
- Division of Genetics and Molecular Biology, Faculty of Science, Institute of Biological Sciences, University of Malaya Kuala Lumpur, Malaysia
| | - Yan-Lue Lim
- Division of Genetics and Molecular Biology, Faculty of Science, Institute of Biological Sciences, University of Malaya Kuala Lumpur, Malaysia
| | - Wai-Fong Yin
- Division of Genetics and Molecular Biology, Faculty of Science, Institute of Biological Sciences, University of Malaya Kuala Lumpur, Malaysia
| | - Wah-Seng See-Too
- Division of Genetics and Molecular Biology, Faculty of Science, Institute of Biological Sciences, University of Malaya Kuala Lumpur, Malaysia
| | | | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Faculty of Science, Institute of Biological Sciences, University of Malaya Kuala Lumpur, Malaysia
| |
Collapse
|
5
|
Bacteriophage orphan DNA methyltransferases: insights from their bacterial origin, function, and occurrence. Appl Environ Microbiol 2013; 79:7547-55. [PMID: 24123737 DOI: 10.1128/aem.02229-13] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Type II DNA methyltransferases (MTases) are enzymes found ubiquitously in the prokaryotic world, where they play important roles in several cellular processes, such as host protection and epigenetic regulation. Three classes of type II MTases have been identified thus far in bacteria which function in transferring a methyl group from S-adenosyl-l-methionine (SAM) to a target nucleotide base, forming N-6-methyladenine (class I), N-4-methylcytosine (class II), or C-5-methylcytosine (class III). Often, these MTases are associated with a cognate restriction endonuclease (REase) to form a restriction-modification (R-M) system protecting bacterial cells from invasion by foreign DNA. When MTases exist alone, which are then termed orphan MTases, they are believed to be mainly involved in regulatory activities in the bacterial cell. Genomes of various lytic and lysogenic phages have been shown to encode multi- and mono-specific orphan MTases that have the ability to confer protection from restriction endonucleases of their bacterial host(s). The ability of a phage to overcome R-M and other phage-targeting resistance systems can be detrimental to particular biotechnological processes such as dairy fermentations. Conversely, as phages may also be beneficial in certain areas such as phage therapy, phages with additional resistance to host defenses may prolong the effectiveness of the therapy. This minireview will focus on bacteriophage-encoded MTases, their prevalence and diversity, as well as their potential origin and function.
Collapse
|
6
|
Bioinformatic analysis of the Acinetobacter baumannii phage AB1 genome. Gene 2012; 507:125-34. [PMID: 22868206 DOI: 10.1016/j.gene.2012.07.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 06/18/2012] [Accepted: 07/17/2012] [Indexed: 11/21/2022]
Abstract
As one of the pathogens of hospital-acquired infections, Acinetobacter baumannii poses great challenges to the public health. A. baumannii phage could be an effective way to fight multi-resistant A. baumannii. Here, we completed the whole genome sequencing of the complete genome of A. baumannii phage AB1, which consists of 45,159 bp and is a double-stranded DNA molecule with an average GC content of 37.7%. The genome encodes one tRNA gene and 85 open reading frames (ORFs) and the average size of the ORF is 531 bp in length. Among 85 ORFs, only 14 have been identified to share significant sequence similarities to the genes with known functions, while 28 are similar in sequence to the genes with function-unknown genes in the database and 43 ORFs are uniquely present in the phage AB1 genome. Fourteen function-assigned genes with putative functions include five phage structure proteins, an RNA polymerase, a big sub-unit and a small sub-unit of a terminase, a methylase and a recombinase and the proteins involved in DNA replication and so on. Multiple sequence alignment was conducted among those homologous proteins and the phylogenetic trees were reconstructed to analyze the evolutionary courses of these essential genes. From comparative genomics analysis, it turned out clearly that the frame of the phage genome mainly consisted of genes from Xanthomonas phages, Burkholderia ambifaria phages and Enterobacteria phages and while it comprises genes of its host A. baumannii only sporadically. The mosaic feature of the phage genome suggested that the horizontal gene transfer occurred among the phage genomes and between the phages and the host bacterium genomes. Analyzing the genome sequences of the phages should lay sound foundation to investigate how phages adapt to the environment and infect their hosts, and even help to facilitate the development of biological agents to deal with pathogenic bacteria.
Collapse
|
7
|
Fossil record of an archaeal HK97-like provirus. Virology 2011; 417:362-8. [DOI: 10.1016/j.virol.2011.06.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 06/17/2011] [Accepted: 06/21/2011] [Indexed: 11/19/2022]
|
8
|
Yee LM, Matsuoka S, Yano K, Sadaie Y, Asai K. Inhibitory effect of prophage SPβ fragments on phage SP10 ribonucleotide reductase function and its multiplication in Bacillus subtilis. Genes Genet Syst 2011; 86:7-18. [PMID: 21498918 DOI: 10.1266/ggs.86.7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Bacteria have evolved various kinds of defense mechanisms against phage infection and multiplication. Analysis of these mechanisms is important for medical and industrial application of phages as well as for their scientific study. Strains of Bacillus subtilis Marburg strain carrying both nonA and nonB mutations are susceptible to the Bacillus phage SP10. The nonB mutation has been shown to have a compromised intrinsic restriction system. The nonA mutation represents the cured state of prophage SPβ whose genome is 135 kb in length and contains 187 ORFs. For this study we investigated the molecular mechanism behind the inhibitory activity of the wild type nonA function against phage SP10 development. The progression of phage-developmental stages was examined in cells harboring wild type nonA, i.e. prophage SPβ. After phage adsorption and DNA injection into host cells, the synthesis of phage specific mRNA proceeded normally. However, phage DNA synthesis was severely inhibited by some effect of wild type nonA. We thus systematically deleted portions of the prophage SPβ region from the B. subtilis genome and the resultant mutant strains were examined as to whether they still retained sufficient wild type nonA functionality to inhibit SP10 phage development. The SPβ region encompassing the bnrdEF gene, which codes for a putative ribonucleotide reductase (RRase), turned out to be responsible for the wild type nonA function. The phage SP10 possesses its own xnrdE gene coding for a putative RRase that complements the temperature-sensitive mutation of the host RRase gene nrdE. This complementation was blocked by an artificially induced transcription from a non-coding strand of the bnrdEF region. It is thus likely that the transcript from the bnrdEF region of SPβ inhibits ribonucleotide reductase function of SP10, resulting in arrest of DNA synthesis during phage SP10 development.
Collapse
Affiliation(s)
- Lii Mien Yee
- Area of Biochemistry and Molecular Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, Japan
| | | | | | | | | |
Collapse
|
9
|
The Orf18 gene product from conjugative transposon Tn916 is an ArdA antirestriction protein that inhibits type I DNA restriction-modification systems. J Mol Biol 2008; 383:970-81. [PMID: 18838147 DOI: 10.1016/j.jmb.2008.06.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Revised: 05/30/2008] [Accepted: 06/02/2008] [Indexed: 11/20/2022]
Abstract
Gene orf18, which is situated within the intercellular transposition region of the conjugative transposon Tn916 from the bacterial pathogen Enterococcus faecalis, encodes a putative ArdA (alleviation of restriction of DNA A) protein. Conjugative transposons are generally resistant to DNA restriction upon transfer to a new host. ArdA from Tn916 may be responsible for the apparent immunity of the transposon to DNA restriction and modification (R/M) systems and for ensuring that the transposon has a broad host range. The orf18 gene was engineered for overexpression in Escherichia coli, and the recombinant ArdA protein was purified to homogeneity. The protein appears to exist as a dimer at nanomolar concentrations but can form larger assemblies at micromolar concentrations. R/M assays revealed that ArdA can efficiently inhibit R/M by all four major classes of Type I R/M enzymes both in vivo and in vitro. These R/M systems are present in over 50% of sequenced prokaryotic genomes. Our results suggest that ArdA can overcome the restriction barrier following conjugation and so helps increase the spread of antibiotic resistance genes by horizontal gene transfer.
Collapse
|
10
|
Liu M, Gingery M, Doulatov SR, Liu Y, Hodes A, Baker S, Davis P, Simmonds M, Churcher C, Mungall K, Quail MA, Preston A, Harvill ET, Maskell DJ, Eiserling FA, Parkhill J, Miller JF. Genomic and genetic analysis of Bordetella bacteriophages encoding reverse transcriptase-mediated tropism-switching cassettes. J Bacteriol 2004; 186:1503-17. [PMID: 14973019 PMCID: PMC344406 DOI: 10.1128/jb.186.5.1503-1517.2004] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Liu et al. recently described a group of related temperate bacteriophages that infect Bordetella subspecies and undergo a unique template-dependent, reverse transcriptase-mediated tropism switching phenomenon (Liu et al., Science 295: 2091-2094, 2002). Tropism switching results from the introduction of single nucleotide substitutions at defined locations in the VR1 (variable region 1) segment of the mtd (major tropism determinant) gene, which determines specificity for receptors on host bacteria. In this report, we describe the complete nucleotide sequences of the 42.5- to 42.7-kb double-stranded DNA genomes of three related phage isolates and characterize two additional regions of variability. Forty-nine coding sequences were identified. Of these coding sequences, bbp36 contained VR2 (variable region 2), which is highly dynamic and consists of a variable number of identical 19-bp repeats separated by one of three 5-bp spacers, and bpm encodes a DNA adenine methylase with unusual site specificity and a homopolymer tract that functions as a hotspot for frameshift mutations. Morphological and sequence analysis suggests that these Bordetella phage are genetic hybrids of P22 and T7 family genomes, lending further support to the idea that regions encoding protein domains, single genes, or blocks of genes are readily exchanged between bacterial and phage genomes. Bordetella bacteriophages are capable of transducing genetic markers in vitro, and by using animal models, we demonstrated that lysogenic conversion can take place in the mouse respiratory tract during infection.
Collapse
Affiliation(s)
- Minghsun Liu
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California 90095, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Madsen A, Josephsen J. Cloning and characterization of the lactococcal plasmid-encoded type II restriction/modification system, LlaDII. Appl Environ Microbiol 1998; 64:2424-31. [PMID: 9647810 PMCID: PMC106406 DOI: 10.1128/aem.64.7.2424-2431.1998] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The LlaDII restriction/modification (R/M) system was found on the naturally occurring 8.9-kb plasmid pHW393 in Lactococcus lactis subsp. cremoris W39. A 2.4-kb PstI-EcoRI fragment inserted into the Escherichia coli-L. lactis shuttle vector pCI3340 conferred to L. lactis LM2301 and L. lactis SMQ86 resistance against representatives of the three most common lactococcal phage species: 936, P335, and c2. The LlaDII endonuclease was partially purified and found to recognize and cleave the sequence 5'-GC decreases NGC-3', where the arrow indicates the cleavage site. It is thus an isoschizomer of the commercially available restriction endonuclease Fnu4HI. Sequencing of the 2.4-kb PstI-EcoRI fragment revealed two open reading frames arranged tandemly and separated by a 105-bp intergenic region. The endonuclease gene of 543 bp preceded the methylase gene of 954 bp. The deduced amino acid sequence of the LlaDII R/M system showed high homology to that of its only sequenced isoschizomer, Bsp6I from Bacillus sp. strain RFL6, with 41% identity between the endonucleases and 60% identity between the methylases. The genetic organizations of the LlaDII and Bsp6I R/M systems are identical. Both methylases have two recognition sites (5'-GCGGC-3' and 5'-GCCGC-3') forming a putative stemloop structure spanning part of the presumed -35 sequence and part of the intervening region between the -35 and -10 sequences. Alignment of the LlaDII and Bsp6I methylases with other m5C methylases showed that the protein primary structures possessed the same organization.
Collapse
Affiliation(s)
- A Madsen
- Department of Dairy and Food Science, Royal Veterinary and Agricultural University, Frederiksberg, Denmark
| | | |
Collapse
|
12
|
Magrini V, Salmi D, Thomas D, Herbert SK, Hartzell PL, Youderian P. Temperate Myxococcus xanthus phage Mx8 encodes a DNA adenine methylase, Mox. J Bacteriol 1997; 179:4254-63. [PMID: 9209041 PMCID: PMC179247 DOI: 10.1128/jb.179.13.4254-4263.1997] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Temperate bacteriophage Mx8 of Myxococcus xanthus encapsidates terminally repetitious DNA, packaged as circular permutations of its 49-kbp genome. During both lytic and lysogenic development, Mx8 expresses a nonessential DNA methylase, Mox, which modifies adenine residues in occurrences of XhoI and PstI recognition sites, CTCGAG and CTGCAG, respectively, on both phage DNA and the host chromosome. The mox gene is necessary for methylase activity in vivo, because an amber mutation in the mox gene abolishes activity. The mox gene is the only phage gene required for methylase activity in vivo, because ectopic expression of mox as part of the M. xanthus mglBA operon results in partial methylation of the host chromosome. The predicted amino acid sequence of Mox is related most closely to that of the methylase involved in the cell cycle control of Caulobacter crescentus. We speculate that Mox acts to protect Mx8 phage DNA against restriction upon infection of a subset of natural M. xanthus hosts. One natural isolate of M. xanthus, the lysogenic source of related phage Mx81, produces a restriction endonuclease with the cleavage specificity of endonuclease BstBI.
Collapse
Affiliation(s)
- V Magrini
- Department of Microbiology, Molecular Biology, and Biochemistry, University of Idaho, Moscow 83844-3052, USA
| | | | | | | | | | | |
Collapse
|
13
|
McClelland M, Nelson M, Raschke E. Effect of site-specific modification on restriction endonucleases and DNA modification methyltransferases. Nucleic Acids Res 1994; 22:3640-59. [PMID: 7937074 PMCID: PMC308336 DOI: 10.1093/nar/22.17.3640] [Citation(s) in RCA: 300] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Restriction endonucleases have site-specific interactions with DNA that can often be inhibited by site-specific DNA methylation and other site-specific DNA modifications. However, such inhibition cannot generally be predicted. The empirically acquired data on these effects are tabulated for over 320 restriction endonucleases. In addition, a table of known site-specific DNA modification methyltransferases and their specificities is presented along with EMBL database accession numbers for cloned genes.
Collapse
Affiliation(s)
- M McClelland
- California Institute of Biological Research, La Jolla 92037
| | | | | |
Collapse
|
14
|
Nelson M, Raschke E, McClelland M. Effect of site-specific methylation on restriction endonucleases and DNA modification methyltransferases. Nucleic Acids Res 1993; 21:3139-54. [PMID: 8392715 PMCID: PMC309743 DOI: 10.1093/nar/21.13.3139] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Affiliation(s)
- M Nelson
- California Institute of Biological Research, La Jolla 92037
| | | | | |
Collapse
|
15
|
McClelland M, Nelson M. Effect of site-specific methylation on DNA modification methyltransferases and restriction endonucleases. Nucleic Acids Res 1992; 20 Suppl:2145-57. [PMID: 1317957 PMCID: PMC333989 DOI: 10.1093/nar/20.suppl.2145] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- M McClelland
- California Institute of Biological Research, La Jolla, CA 92037
| | | |
Collapse
|
16
|
Hill C, Miller LA, Klaenhammer TR. In vivo genetic exchange of a functional domain from a type II A methylase between lactococcal plasmid pTR2030 and a virulent bacteriophage. J Bacteriol 1991; 173:4363-70. [PMID: 1906061 PMCID: PMC208097 DOI: 10.1128/jb.173.14.4363-4370.1991] [Citation(s) in RCA: 107] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The conjugative plasmid pTR2030 confers bacteriophage resistance to lactococci by two independent mechanisms, an abortive infection mechanism (Hsp+) and a restriction and modification system (R+/M+). pTR2030 transconjugants of lactococcal strains are used in the dairy industry to prolong the usefulness of mesophilic starter cultures. One bacteriophage which has emerged against a pTR2030 transconjugant is not susceptible to either of the two defense systems encoded by the plasmid. Phage nck202.50 (phi 50) is completely resistant to restriction by pTR2030. A region of homology between pTR2030 and phi 50 was subcloned, physically mapped, and sequenced. A region of 1,273 bp was identical in both plasmid and phage, suggesting that the fragment had recently been transferred between the two genomes. Sequence analysis confirmed that the transferred region encoded greater than 55% of the amino domain of the structural gene for a type II methylase designated LlaI. The LlaI gene is 1,869 bp in length and shows organizational similarities to the type II A methylase FokI. In addition to the amino domain, upstream sequences, possibly containing the expression signals, were present on the phage genome. The phage phi 50 fragment containing the methylase amino domain, designated LlaPI, when cloned onto the shuttle vector pSA3 was capable of modifying another phage genome in trans. This is the first report of the genetic exchange between a bacterium and a phage which confers a selective advantage on the phage. Definition of the LlaI system on pTR2030 provides the first evidence that type II systems contribute to restriction and modification phenotypes during host-dependent replication of phages in lactococci.
Collapse
Affiliation(s)
- C Hill
- Department of Food Science, Southeast Dairy Foods Research Center, North Carolina State University, Raleigh 27695-7624
| | | | | |
Collapse
|
17
|
Nelson M, McClelland M. Site-specific methylation: effect on DNA modification methyltransferases and restriction endonucleases. Nucleic Acids Res 1991; 19 Suppl:2045-71. [PMID: 1645875 PMCID: PMC331346 DOI: 10.1093/nar/19.suppl.2045] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- M Nelson
- California Institute of Biological Research, La Jolla 92037
| | | |
Collapse
|
18
|
Prevots F, Mata M, Ritzenthaler P. Taxonomic differentiation of 101 lactococcal bacteriophages and characterization of bacteriophages with unusually large genomes. Appl Environ Microbiol 1990; 56:2180-5. [PMID: 2167627 PMCID: PMC184580 DOI: 10.1128/aem.56.7.2180-2185.1990] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Sixty-three virulent bacteriophages of Lactococcus lactis were differentiated by DNA-DNA hybridization. The results, including those of a previous classification of 38 phages of the same bacterial species (P. Relano, M. Mata, M. Bonneau, and P. Ritzenthaler, J. Gen. Microbiol. 133:3053-3063, 1987) show that 48% of the phages analyzed belong to a unique DNA homology group (group III). Phages of this most abundant group had small isometric heads. Group I comprised 29% of the phages analyzed and was characterized by a small phage genome (19 to 22 kilobases) and a particular morphology with a prolate head. Like group III, this group contained representative phages of other classifications. Group II (21%) included virulent and temperate phages with small isometric heads. Two large isometric-headed phages, phi 109 and phi 111, were not related to the three DNA homology groups I, II, and III. The genome of phi 111 was unusually large (134 kilobases) and revealed partial DNA homology with another large isometric phage, 1289, described by Jarvis (type e) (A. W. Jarvis, Appl. Environ. Microbiol. 47:343-349, 1984). The protein compositions of phi 111 and 1289 were similar (three common major proteins of 21, 28, and 32 kilodaltons).
Collapse
Affiliation(s)
- F Prevots
- Centre de Recherche de Biochimie et de Génétique Cellulaire, CTBM-INSA, Toulouse, France
| | | | | |
Collapse
|
19
|
Nelson M, McClelland M. Effect of site-specific methylation on DNA modification methyltransferases and restriction endonucleases. Nucleic Acids Res 1989; 17 Suppl:r389-415. [PMID: 2541418 PMCID: PMC334788 DOI: 10.1093/nar/17.suppl.r389] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- M Nelson
- Department of Biochemistry, University of Chicago, IL 60637
| | | |
Collapse
|
20
|
Barbes C, Hardisson C, Novella IS, Jesus Yebra M, Sanchez J. DNA-methyltransferase activities inStreptomyces antibioticus. FEMS Microbiol Lett 1988. [DOI: 10.1111/j.1574-6968.1988.tb02798.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
21
|
Günthert U, Reiners L. Bacillus subtilis phage SPR codes for a DNA methyltransferase with triple sequence specificity. Nucleic Acids Res 1987; 15:3689-702. [PMID: 3108859 PMCID: PMC340776 DOI: 10.1093/nar/15.9.3689] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
SPR, a temperate Bacillus subtilis phage, codes for a DNA methyltransferase that can methylate the sequences GGCC (or GGCC) and CCGG at the cytosines indicated. We show here that it can also methylate the sequence CC(A/T)GG and protect it from cleavage with EcoRII and ApyI. This methylation can be seen in vivo as well as in vitro with purified SPR methyltransferase. SPR19 and SPR83 are two mutant phages, defective in GGCC or CCGG methylation, respectively. These mutants have not lost their ability to methylate CC(A/T)GG sites. Mutation SPR26 has lost the ability to methylate all three sites. Thus the SPR methyltransferase codes for three genetically distinguishable methylation abilities.
Collapse
|
22
|
Noyer-Weidner M, Diaz R, Reiners L. Cytosine-specific DNA modification interferes with plasmid establishment in Escherichia coli K12: involvement of rglB. MOLECULAR & GENERAL GENETICS : MGG 1986; 205:469-75. [PMID: 3550384 DOI: 10.1007/bf00338084] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Several chimeric pBR322/328 derivatives containing genes for cytosine-specific DNA methyltransferases (Mtases) can be transformed into the Escherichia coli K12/E. coli B hybrid strains HB101 and RR1 but not into other commonly used E. coli K12 strains. In vitro methylation of cytosine residues in pBR328 and other unrelated plasmids also reduces their potential to transform such methylation sensitive strains, albeit to a lesser degree than observed with plasmids containing Mtase genes. The extent of reduced transformability depends on the target specificity of the enzyme used for in vitro modification. The role of a host function in the discrimination against methylated plasmids was verified by the isolation of K12 mutants which tolerate cytosine methylated DNA. The mutations map in the vicinity of the serB locus. This and other data indicate that the host rglB function is involved in the discrimination against modified DNA.
Collapse
|
23
|
Günthert U, Lauster R, Reiners L. Multispecific DNA methyltransferases from Bacillus subtilis phages. Properties of wild-type and various mutant enzymes with altered DNA affinity. EUROPEAN JOURNAL OF BIOCHEMISTRY 1986; 159:485-92. [PMID: 3093230 DOI: 10.1111/j.1432-1033.1986.tb09912.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Temperate Bacillus subtilis phages SPR, phi 3T, rho 11 and SP beta code for DNA methyltransferases, each having multiple sequence specificities. The SPR wild-type and various mutant methyltransferases were overproduced 1000-fold in Escherichia coli and were purified by three consecutive chromatographic steps. The stable form of these multispecific enzymes in solution are monomers with a relative molecular mass (Mr) of about 50,000. The methyl-transfer kinetics of the SPR wild-type and mutant enzymes were determined with DNA substrates carrying either none or one of the three recognition sequences (GGCC, CCGG, CCATGG). Evaluation of the catalytic properties for DNA and S-adenosylmethionine binding suggested that the NH2-terminal part of the protein is important for both non-sequence-specific DNA binding and S-adenosylmethionine binding as well as transfer of methyl groups. On the other hand, mutations in the COOH-terminal part lead to weaker site-specific interactions of the enzyme. Antibodies raised against the purified SPR enzyme specifically immunoprecipitated the phi 3T, rho 11 and SP beta methyltransferases, bu failed to precipitate the chromosomally coded enzymes from B. subtilis (BsuRI) and B. sphaericus (BspRI). Immunoaffinity chromatography is an efficient purification step for the related phage methyltransferases.
Collapse
|
24
|
Allen ER, Orrego C, Wabiko H, Freese E. An ethA mutation in Bacillus subtilis 168 permits induction of sporulation by ethionine and increases DNA modification of bacteriophage phi 105. J Bacteriol 1986; 166:1-8. [PMID: 3082850 PMCID: PMC214547 DOI: 10.1128/jb.166.1.1-8.1986] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
In contrast to Escherichia coli and Salmonella typhimurium, Bacillus subtilis could convert ethionine to S-adenosylethionine (SAE), as can Saccharomyces cerevisiae. This conversion was essential for growth inhibition by ethionine because metE mutants which were deficient in S-adenosylmethionine synthetase activity, were resistant to 10 mM ethionine and converted only a small amount of ethionine to SAE. Another mutation (ethA1) produced partial resistance to ethionine (2 mM) and enabled continual sporulation in glucose medium containing 4 mM DL-ethionine. This sporulation induction probably resulted from the effect of SAE, since it was abolished by the addition of a metE1 mutation. The induction of sporulation was not simply controlled by the ratio of SAE to S-adenosylmethionine, but apparently depended on another effect of the ethA1 mutation, which could be demonstrated by comparing the restriction of clear plaque mutants of bacteriophage phi 105 grown in an ethA1 strain with the restriction of those grown in the standard strain. The phages grown in the ethA1 strain showed increased protection against BsuR restriction. We propose that SAE induces sporulation through the inhibition of a key methylation reaction.
Collapse
|
25
|
Abstract
The properties and sources of all known restriction endonucleases and methylases are listed. The enzymes are cross-indexed (Table I), classified according to their recognition sequence homologies (Table II), and characterized within Table II by the cleavage and methylation positions, the number of recognition sites on the double-stranded DNA of the bacteriophages lambda, phi X174 and M13mp7, the viruses Ad2 and SV40, the plasmids pBR322 and pBR328, and the microorganisms from which they originate. Other tabulated properties of the restriction endonucleases include relaxed specificities (integrated into Table II), the structure of the generated fragment ends (Table III), and the sensitivity to different kinds of DNA methylation (Table V). In Table IV the conversion of two- and four-base 5'-protruding ends into new recognition sequences is compiled which is obtained by the fill-in reaction with Klenow fragment of the Escherichia coli DNA polymerase I or additional nuclease S1 treatment followed by ligation of the modified fragment termini [P3]. Interconversion of restriction sites generates novel cloning sites without the need of linkers. This should improve the flexibility of genetic engineering experiments. Table VI classifies the restriction methylases according to the nature of the methylated base(s) within their recognition sequences. This table also comprises restriction endonucleases which are known to be inhibited or activated by the modified nucleotides. The detailed sequences of those overlapping restriction sites are also included which become resistant to cleavage after the sequential action of corresponding restriction methylases and endonucleases [N11, M21]. By this approach large DNA fragments can be generated which is helpful in the construction of genomic libraries. The data given in both Tables IV and VI allow the design of novel sequence specificities. These procedures complement the creation of universal cleavage specificities applying class IIS enzymes and bivalent DNA adapter molecules [P17, S82].
Collapse
|
26
|
Günthert U, Reiners L, Lauster R. Cloning and expression of Bacillus subtilis phage DNA methyltransferase genes in Escherichia coli and B. subtilis. Gene X 1986; 41:261-70. [PMID: 3011599 DOI: 10.1016/0378-1119(86)90106-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The DNA methyltransferase (Mtase) genes of the temperate Bacillus subtilis phages SPR (wild type and various mutants), phi 3T, rho 11 and SP beta have been cloned and expressed in Escherichia coli and B. subtilis host-plasmid vector systems. Mtase activity has been quantitated in these clones by performing in vitro methylation assays of cell-free extracts. The four-phage Mtase genes differ in the amount of Mtase synthesized when transcribed from their genuine promoters. In B. subtilis as well as in E. coli the SPR Mtase is always produced in smaller amounts than the other phage Mtases. Expression levels of the SPR Mtase are dependent on the strength of the upstream vector promoter sequences. Overproduction of the SPR wild-type and mutant enzymes was achieved in E. coli (inducible expression) by fusions to the lambda pL or the tac promoter and in B. subtilis (constitutive expression) by means of the phage SP02 promoter.
Collapse
|
27
|
Tran-Betcke A, Behrens B, Noyer-Weidner M, Trautner TA. DNA methyltransferase genes of Bacillus subtilis phages: comparison of their nucleotide sequences. Gene 1986; 42:89-96. [PMID: 3087819 DOI: 10.1016/0378-1119(86)90153-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The phi 3T DNA methyltransferase (Mtase) and most of the SP beta Mtase genes have been sequenced. With the exception of their promoters, no difference was found between the phi 3T and SP beta Mtase genes which code for an enzyme with a Mr of 50 507, consisting of 443 amino acids (aa). Comparison of the deduced aa sequence of the phi 3T/SP beta type Mtase (target specificity: GGCC and GCNGC) with that of the previously established sequence of the SPR Mtase (Buhk et al., 1984) which has the target specificity GGCC and CCGG, reveals strong similarities between these two types of enzymes. There is, however, one striking difference: both the phi 3T/SP beta and the SPR enzymes contain at different positions inserts of 33 aa, which have no homology to each other. We suggest that the methylation specificity unique to each of the two types of Mtases (GCNGC in phi 3T/SP beta; CCGG in SPR) depends on these inserts, while the GGCC-specific modification potential common to all Mtases is determined by structures conserved in both types of enzymes. A DNA fragment of non-modifying phage Z, which shows homology to both flanks of the SPR Mtase gene, was also sequenced. This segment can be described as a derivative of SPR DNA, in which the Mtase gene and sequences at its 5' end have been deleted, with the deletion extending between two direct repeats of 25 bp.
Collapse
|
28
|
Noyer-Weidner M, Jentsch S, Kupsch J, Bergbauer M, Trautner TA. DNA methyltransferase genes of Bacillus subtilis phages: structural relatedness and gene expression. Gene 1985; 35:143-50. [PMID: 3928442 DOI: 10.1016/0378-1119(85)90166-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The DNA methyltransferase (Mtase) genes of temperate Bacillus subtilis phages phi 3T, rho 11 and SP beta were cloned and expressed in Escherichia coli. Each gene specifies a 47-kDa1 protein, which modifies BsuR (GGCC) and Fnu4HI (GCNGC) target sequences. Transcription is controlled by phage promoters located on the cloned fragments. The direction of transcription and the approximate position of the Mtase genes were determined. DNA/DNA hybridization experiments revealed close structural relatedness of the phi 3T, rho 11 and SP beta genes. A significant degree of homology was also found among these genes and the Mtase gene of related phage SPR, which codes for an enzyme with different modification specificity. These results suggest a common ancestor of the different phage Mtase genes. Phage Z, the only BsuR-sensitive member of this phage group, lacks a modification gene, but contains regions homologous to sequences flanking the SPR, phi 3T, rho 11 and SP beta Mtase genes.
Collapse
|
29
|
Kessler C, Neumaier PS, Wolf W. Recognition sequences of restriction endonucleases and methylases--a review. Gene 1985; 33:1-102. [PMID: 2985469 DOI: 10.1016/0378-1119(85)90119-2] [Citation(s) in RCA: 104] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The properties and sources of all known endonucleases and methylases acting site-specifically on DNA are listed. The enzymes are crossindexed (Table I), classified according to homologies within their recognition sequences (Table II), and characterized within Table II by the cleavage and methylation positions, the number of recognition sites on the DNA of the bacteriophages lambda, phi X174 and M13mp7, the viruses Ad2 and SV40, the plasmids pBR322 and pBR328 and the microorganisms from which they originate. Other tabulated properties of the restriction endonucleases include relaxed specificities (Table III), the structure of the restriction fragment ends (Table IV), and the sensitivity to different kinds of DNA methylation (Table V). Table VI classifies the methylases according to the nature of the methylated base(s) within their recognition sequences. This table also comprises those restriction endonucleases, which are known to be inhibited by the modified nucleotides. Furthermore, this review includes a restriction map of bacteriophage lambda DNA based on sequence data. Table VII lists the exact nucleotide positions of the cleavage sites, the length of the generated fragments ordered according to size, and the effects of the Escherichia coli dam- and dcmI-coded methylases M X Eco dam and M X Eco dcmI on the particular recognition sites.
Collapse
|
30
|
Pósfai G, Baldauf F, Erdei S, Pósfai J, Venetianer P, Kiss A. Structure of the gene coding for the sequence-specific DNA-methyltransferase of the B. subtilis phage SPR. Nucleic Acids Res 1984; 12:9039-49. [PMID: 6096817 PMCID: PMC320436 DOI: 10.1093/nar/12.23.9039] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The nucleotide sequence of the gene coding for the 5'-GGCC and 5'-CCGG specific DNA methyltransferase of the Bacillus subtilis phage SPR was determined by the Maxam-Gilbert procedure. Transcriptional and translational signals of the sequence were assigned with the help of S1 mapping and translation in E. coli minicells. The gene codes for a 49 kd polypeptide. The amino acid sequence of the SPR methylase shows regions of homology with the sequence of the 5'-GGCC-specific BspRI modification methylase.
Collapse
|
31
|
Buhk HJ, Behrens B, Tailor R, Wilke K, Prada JJ, Günthert U, Noyer-Weidner M, Jentsch S, Trautner TA. Restriction and modification in Bacillus subtilis: nucleotide sequence, functional organization and product of the DNA methyltransferase gene of bacteriophage SPR. Gene X 1984; 29:51-61. [PMID: 6092231 DOI: 10.1016/0378-1119(84)90165-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Bacillus subtilis phage SPR codes for a DNA methyltransferase (Mtase) which methylates the 5' cytosine in the sequence GGCC and both cytosines in the sequence CCGG. A 2126-bp fragment of SPR DNA containing the Mtase gene has been sequenced. This fragment has only one significant open reading frame of 1347 bp, which corresponds to the Mtase gene. Within the sequence the Mtase promoter has been defined by S1 mapping. The size of the SPR Mtase predicted from the deduced amino acid composition is 49.9 kDal. This is in agreement with both the Mr of the purified enzyme and with that of the SPR Mtase gene product identified here by minicell technique. Base changes leading to mutants affected in Mtase activity were localized within the Mtase gene.
Collapse
|
32
|
|
33
|
Günthert U, Trautner TA. DNA methyltransferases of Bacillus subtilis and its bacteriophages. Curr Top Microbiol Immunol 1984; 108:11-22. [PMID: 6325095 DOI: 10.1007/978-3-642-69370-0_2] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
34
|
Jentsch S. Restriction and modification in Bacillus subtilis: sequence specificities of restriction/modification systems BsuM, BsuE, and BsuF. J Bacteriol 1983; 156:800-8. [PMID: 6195145 PMCID: PMC217898 DOI: 10.1128/jb.156.2.800-808.1983] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The sequence specificities of three Bacillus subtilis restriction/modification systems were established: (i) BsuM (CTCGAG), an isoschizomer to XhoI; (ii) BsuE (CGCG), an isoschizomer to FnuDII; and (iii) BsuF (CCGG), an isoschizomer to MspI, HpaII. The BsuM modification enzyme methylates the 3' cytosine of the recognition sequence. The BsuF modification enzyme methylates the 5' cytosine of the sequence, rendering such sites resistant to MspI degradation and leaving the majority of sites sensitive to HpaII degradation.
Collapse
|
35
|
Krüger DH, Bickle TA. Bacteriophage survival: multiple mechanisms for avoiding the deoxyribonucleic acid restriction systems of their hosts. Microbiol Rev 1983; 47:345-60. [PMID: 6314109 PMCID: PMC281580 DOI: 10.1128/mr.47.3.345-360.1983] [Citation(s) in RCA: 125] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
36
|
Bron S, Luxen E, Venema G. Resistance of bacteriophage H1 to restriction and modification by Bacillus subtilis R. J Virol 1983; 46:703-8. [PMID: 6406685 PMCID: PMC256546 DOI: 10.1128/jvi.46.3.703-708.1983] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
H1, a 5-hydroxymethyluracil (HMU)-containing Bacillus subtilis bacteriophage, was neither restricted nor modified upon infection of B. subtilis R cells. In vitro, H1 DNA was not restricted by BsuR under standard conditions (200 mM salt), although the expected frequency of -GGCC- cleavage sites was approximately 250. However, four specific sites were cleaved under nonstandard conditions (low salt or high pH) or in the presence of organic solvents, like dimethyl sulfoxide and glycerol. After the substitution of thymine for HMU by DNA cloning in B. subtilis, a BsuR cleavage site was restricted and modified under standard conditions. No additional sites were detected after shotgun-cloning of about 11% of the chromosome. The nucleotide sequence of a cleavage site was found to be 5'. .C-A-Hmu-A-A-C-Hmu-Hmu-Hmu-G-G-C-C-Hmu-A-G-. . .3', which shows the presence of a bona fide BsuR (GGCC) recognition sequence, flanked by (Hmu-A)-rich sequences. The results suggested that the resistance of H1 to restriction and modification by B. subtilis R was due to (i) a strong bias against the GGCC-recognition sequence and (ii) protection of the four remaining GGCC sites as a consequence of HMU-A base pairs flanking the sites.
Collapse
|
37
|
Fields PI, Yasbin RE. DNA repair in B. subtilis: an inducible dimer specific W-reactivation system. MOLECULAR & GENERAL GENETICS : MGG 1983; 190:475-80. [PMID: 6410153 DOI: 10.1007/bf00331079] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The W-reactivation system of Bacillus subtilis repairs pyrimidine dimers in bacteriophage DNA. This inducible repair system can be activated by treatment of the bacteria with UV, alkylating agents, cross-linking agents and gamma radiation. However, bacteriophage treated with agents other than those that cause pyrimidine dimers were not repaired by this unique form of W-reactivation. In contrast, the W-reactivation system of Escherichia coli repairs a variety of damages in the bacteriophage DNA.
Collapse
|
38
|
Noyer-Weidner M, Jentsch S, Pawlek B, Günthert U, Trautner TA. Restriction and modification in Bacillus subtilis: DNA methylation potential of the related bacteriophages Z, SPR, SP beta, phi 3T, and rho 11. J Virol 1983; 46:446-53. [PMID: 6302313 PMCID: PMC255146 DOI: 10.1128/jvi.46.2.446-453.1983] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The DNA methylation capacity and some other properties of the related temperate Bacillus subtilis phages Z, SPR, SP beta, phi 3T, and rho 11 are compared. With phage mutants affected in their methylation potential, we show that phage-coded methyltransferase genes are interchangeable among the phages studied. DNA/DNA hybridization experiments indicate that phage methyltransferase genes are structurally related, whereas no such relationship is observed to a bacterial gene, specifying a methyltransferase with the same specificity.
Collapse
|
39
|
Behrens B, Pawlek B, Morelli G, Trautner TA. Restriction and modification in Bacillus subtilis: Construction of hybrid λ and SPP1 phages containing a DNA methyltransferase gene from B. subtilis phage SPR. ACTA ACUST UNITED AC 1983. [DOI: 10.1007/bf00326048] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
40
|
Kiss A, Baldauf F. Molecular cloning and expression in Escherichia coli of two modification methylase genes of Bacillus subtilis. Gene 1983; 21:111-9. [PMID: 6301941 DOI: 10.1016/0378-1119(83)90153-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Two modification methylase genes of Bacillus subtilis R were cloned in Escherichia coli by using a selection procedure which is based on the expression of these genes. Both genes code for DNA-methyltransferases which render the DNA of the cloning host E. coli HB101 insensitive to the BspRI (5'-GGCC) endonuclease of Bacillus sphaericus R. One of the cloned genes is part of the restriction-modification (RM) system BsuRI of B. subtilis R with specificity for 5'-GGCC. The other one is associated with the lysogenizing phage SP beta B and produces the methylase M.BsuP beta BI with specificity for 5'-GGCC. The fragment carrying the SP beta B-derived gene also directs the synthesis in E. coli of a third methylase activity (M.BsuP beta BII), which protects the host DNA against HpaII and MspI cleavage within the sequence 5'-CCGG. Indirect evidence suggests that the two SP beta B modification activities are encoded by the same gene. No cross-hybridization was detected either between the M.BsuRI and M.BsuP beta B genes or between these and the modification methylase gene of B. sphaericus R, which codes for the enzyme M.BspRI with 5'-GGCC specificity.
Collapse
|
41
|
de Vos WM, Venema G. Transformation of Bacillus subtilis competent cells: identification of a protein involved in recombination. MOLECULAR & GENERAL GENETICS : MGG 1982; 187:439-45. [PMID: 6817034 DOI: 10.1007/bf00332625] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
With the use of two-dimensional gel electrophoresis, the proteins present in a transformation-proficient B. subtilis strain were compared with those present in an isogenic, recombination-deficient strain carrying the recE4 mutation. One protein (molecular weight 45 kD, iso-electric point 5.4) was found to be virtually absent in the recE4 strain. This 45 kD protein is a prominent protein predominantly present in the competent fraction of a competent culture. The synthesis of the protein is substantially stimulated by irradiation with ultraviolet light or treatment with mitomycin C and, to a lesser extent, by treatment with nalidixic acid. Since the protein is also observed in a strain cured for SP beta and carrying non-inducible PBS X, it is unlikely that this protein is a gene product specified by one of these prophages usually present in B. subtilis strain 168. Based on these results we conclude that the 45 kD protein is involved in recombination in B. subtilis.
Collapse
|
42
|
Thoms B, Wackernagel W. UV-induced allevation of lambda restriction in Escherichia coli K-12: kinetics of induction and specificity of this SOS function. MOLECULAR & GENERAL GENETICS : MGG 1982; 186:111-7. [PMID: 6213835 DOI: 10.1007/bf00422921] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In UV-irradiated cells of Escherichia coli K-12 a partial release of the restriction of non-modified phage lambda is observed when the cells are recA+ lexA+. We show here that the induction of this restriction allevation (RA) also depends on the recBC enzyme and that the expression of RA requires protein synthesis. Maximum expression was reached within 60 to 90 min after irradiation. Experiments are presented which show that upon UV-irradiation a signal is created which triggers the development of RA when protein synthesis is allowed. This signal decayed with a half-life of only a few minutes in cells treated with chloramphenicol. The decay kinetics were similar in uvr+ and uvrA mutants. RA appeared to be specific for EcoK insofar as no allevation of lambda restriction by EcoRI, EcoRII and EcoP1 occurred. During maximum expression of RA no gross reduction of the activities of the recBC enzyme (exonuclease V) and the restriction endonuclease EcoK was observed and no new DNA modifying activity appeared in the cells. Since, in fully expressed cells, up to 75% of the infecting lambda DNA was converted to acid-soluble material within 20 min after infection we suggest that only a small specific fraction of lambda infections may undergo RA.
Collapse
|
43
|
Abstract
DNAs were prepared from twenty-six bacterial species and digested with a variety of restriction endonucleases to determine what modifications the DNAs carry. Several general conclusions could be made: 1) First, in no instance was the DNA of a restriction enzyme. 2) The specificity of the DNA modification was the same as that of its restriction counterpart; there were no cases of the DNAs being modified against a less specific class of restriction enzymes. 3) In most (but not all) cases, the resistance of a bacterium's DNA to its own restriction enzyme could be generalized to include resistance to all other restriction enzymes with the same specificity (isoschizomers). 4) DNA modified within the central tetramer of a recognition sequence is usually protected against cleavage by all related hexameric enzymes possessing that central tetramer. Only three families of DNA presented in this study disobey this rule. 5) Finally, a significant number of cases emerge where bacterial DNA carries a modification but no corresponding restriction endonuclease activity.
Collapse
|
44
|
Restriction and modification in Bacillus subtilis: two DNA methyltransferases with BsuRI specificity. II. Catalytic properties, substrate specificity, and mode of action. J Biol Chem 1981. [DOI: 10.1016/s0021-9258(19)52554-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
45
|
Günthert U, Freund M, Trautner TA. Restriction and modification in Bacillus subtilis: two DNA methyltransferases with BsuRI specificity. I. Purification and physical properties. J Biol Chem 1981. [DOI: 10.1016/s0021-9258(19)52553-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
46
|
Jentsch S, Günthert U, Trautner TA. DNA methyltransferases affecting the sequence 5'CCGG. Nucleic Acids Res 1981; 9:2753-9. [PMID: 6269059 PMCID: PMC326890 DOI: 10.1093/nar/9.12.2753] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
B. subtilis phage SPbeta and Moraxella sp. code for DNA methyltransferases which methylate both cytosines of the sequence 5'CCGG. Experiments using a B. subtilis strain whose DNA is sensitive to HpaII and resistant to MspI degradation, indicated that methylation of the outer C of this sequence provides protection against the restriction enzyme MspI.
Collapse
|
47
|
Noyer-Weidner M, Pawlek B, Jentsch S, Günthert U, Trautner TA. Restriction and modification in Bacillus subtilis: gene coding for a BsuR-specific modification methyltransferase in the temperate bacteriophage phi 3T. J Virol 1981; 38:1077-80. [PMID: 6264152 PMCID: PMC171247 DOI: 10.1128/jvi.38.3.1077-1080.1981] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The resistance of Phi3T DNA to degradation by the restriction enzyme BsuR or its isoschizomer HaeIII is due to obligatory modification of such DNA. Biochemical and genetical experiments indicate that Phi3T codes for a methyltransferase, which methylates Phi3T DNA itself or heterologous DNA at target sites 5'-GG(*)CC.
Collapse
|