1
|
Rivera D, Moreno-Switt AI, Denes TG, Hudson LK, Peters TL, Samir R, Aziz RK, Noben JP, Wagemans J, Dueñas F. Novel Salmonella Phage, vB_Sen_STGO-35-1, Characterization and Evaluation in Chicken Meat. Microorganisms 2022; 10:606. [PMID: 35336181 PMCID: PMC8954984 DOI: 10.3390/microorganisms10030606] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/03/2022] [Accepted: 03/10/2022] [Indexed: 02/05/2023] Open
Abstract
Salmonellosis is one of the most frequently reported zoonotic foodborne diseases worldwide, and poultry is the most important reservoir of Salmonella enterica serovar Enteritidis. The use of lytic bacteriophages (phages) to reduce foodborne pathogens has emerged as a promising biocontrol intervention for Salmonella spp. Here, we describe and evaluate the newly isolated Salmonella phage STGO-35-1, including: (i) genomic and phenotypic characterization, (ii) an analysis of the reduction of Salmonella in chicken meat, and (iii) genome plasticity testing. Phage STGO-35-1 represents an unclassified siphovirus, with a length of 47,483 bp, a G + C content of 46.5%, a headful strategy of packaging, and a virulent lifestyle. Phage STGO-35-1 reduced S. Enteritidis counts in chicken meat by 2.5 orders of magnitude at 4 °C. We identified two receptor-binding proteins with affinity to LPS, and their encoding genes showed plasticity during an exposure assay. Phenotypic, proteomic, and genomic characteristics of STGO-35-1, as well as the Salmonella reduction in chicken meat, support the potential use of STGO-35-1 as a targeted biocontrol agent against S. Enteritidis in chicken meat. Additionally, computational analysis and a short exposure time assay allowed us to predict the plasticity of genes encoding putative receptor-binding proteins.
Collapse
Affiliation(s)
- Dácil Rivera
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8320000, Chile;
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago 7550000, Chile;
| | - Andrea I. Moreno-Switt
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago 7550000, Chile;
- Escuela de Medicina Veterinaria, Facultad de Agronomía e Ingeniería Forestal, Facultad de Ciencias Biológicas, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 7810000, Chile
| | - Thomas G. Denes
- Department of Food Science, University of Tennessee, Knoxville, TN 37996, USA; (T.G.D.); (L.K.H.); (T.L.P.)
| | - Lauren K. Hudson
- Department of Food Science, University of Tennessee, Knoxville, TN 37996, USA; (T.G.D.); (L.K.H.); (T.L.P.)
| | - Tracey L. Peters
- Department of Food Science, University of Tennessee, Knoxville, TN 37996, USA; (T.G.D.); (L.K.H.); (T.L.P.)
| | - Reham Samir
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, 11562 Cairo, Egypt; (R.S.); (R.K.A.)
| | - Ramy K. Aziz
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, 11562 Cairo, Egypt; (R.S.); (R.K.A.)
- Microbiology and Immunology Research Program, Children’s Cancer Hospital Egypt 57357, 11617 Cairo, Egypt
| | - Jean-Paul Noben
- Biomedical Research Institute and Transnational University Limburg, Hasselt University, Agoralaan D, 3590 Hasselt, Belgium;
| | | | - Fernando Dueñas
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8320000, Chile;
| |
Collapse
|
2
|
Wangchuk J, Chatterjee A, Patil S, Madugula SK, Kondabagil K. The coevolution of large and small terminases of bacteriophages is a result of purifying selection leading to phenotypic stabilization. Virology 2021; 564:13-25. [PMID: 34598064 DOI: 10.1016/j.virol.2021.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 10/20/2022]
Abstract
Genome packaging in many dsDNA phages requires a series of precisely coordinated actions of two phage-coded proteins, namely, large terminase (TerL) and small terminase (TerS) with DNA and ATP, and with each other. Despite the strict functional conservation, TerL and TerS homologs exhibit large sequence variations. We investigated the sequence variability across eight phage types and observed a coevolutionary framework wherein the genealogy of TerL homologs mirrored that of the corresponding TerS homologs. Furthermore, a high purifying selection observed (dN/dS«1) indicated strong structural constraints on both TerL and TerS, and identify coevolving residues in TerL and TerS of phage T4 and lambda. Using the highly coevolving (correlation coefficient of 0.99) TerL and TerS of phage N4, we show that their biochemical features are similar to the phylogenetically divergent phage λ terminases. We also demonstrate using the Surface Plasma Resonance (SPR) technique that phage N4 TerL transiently interacts with TerS.
Collapse
Affiliation(s)
- Jigme Wangchuk
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Anirvan Chatterjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Supriya Patil
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Santhosh Kumar Madugula
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Kiran Kondabagil
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India.
| |
Collapse
|
3
|
DNA Packaging and Genomics of the Salmonella 9NA-Like Phages. J Virol 2019; 93:JVI.00848-19. [PMID: 31462565 DOI: 10.1128/jvi.00848-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/26/2019] [Indexed: 12/14/2022] Open
Abstract
We present the genome sequences of Salmonella enterica tailed phages Sasha, Sergei, and Solent. These phages, along with Salmonella phages 9NA, FSL_SP-062, and FSL_SP-069 and the more distantly related Proteus phage PmiS-Isfahan, have similarly sized genomes of between 52 and 57 kbp in length that are largely syntenic. Their genomes also show substantial genome mosaicism relative to one another, which is common within tailed phage clusters. Their gene content ranges from 80 to 99 predicted genes, of which 40 are common to all seven and form the core genome, which includes all identifiable virion assembly and DNA replication genes. The total number of gene types (pangenome) in the seven phages is 176, and 59 of these are unique to individual phages. Their core genomes are much more closely related to one another than to the genome of any other known phage, and they comprise a well-defined cluster within the family Siphoviridae To begin to characterize this group of phages in more experimental detail, we identified the genes that encode the major virion proteins and examined the DNA packaging of the prototypic member, phage 9NA. We show that it uses a pac site-directed headful packaging mechanism that results in virion chromosomes that are circularly permuted and about 13% terminally redundant. We also show that its packaging series initiates with double-stranded DNA cleavages that are scattered across a 170-bp region and that its headful measuring device has a precision of ±1.8%.IMPORTANCE The 9NA-like phages are clearly highly related to each other but are not closely related to any other known phage type. This work describes the genomes of three new 9NA-like phages and the results of experimental analysis of the proteome of the 9NA virion and DNA packaging into the 9NA phage head. There is increasing interest in the biology of phages because of their potential for use as antibacterial agents and for their ecological roles in bacterial communities. 9NA-like phages that infect two bacterial genera have been identified to date, and related phages infecting additional Gram-negative bacterial hosts are likely to be found in the future. This work provides a foundation for the study of these phages, which will facilitate their study and potential use.
Collapse
|
4
|
PhageTerm: a tool for fast and accurate determination of phage termini and packaging mechanism using next-generation sequencing data. Sci Rep 2017; 7:8292. [PMID: 28811656 PMCID: PMC5557969 DOI: 10.1038/s41598-017-07910-5] [Citation(s) in RCA: 399] [Impact Index Per Article: 49.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 07/04/2017] [Indexed: 02/04/2023] Open
Abstract
The worrying rise of antibiotic resistance in pathogenic bacteria is leading to a renewed interest in bacteriophages as a treatment option. Novel sequencing technologies enable description of an increasing number of phage genomes, a critical piece of information to understand their life cycle, phage-host interactions, and evolution. In this work, we demonstrate how it is possible to recover more information from sequencing data than just the phage genome. We developed a theoretical and statistical framework to determine DNA termini and phage packaging mechanisms using NGS data. Our method relies on the detection of biases in the number of reads, which are observable at natural DNA termini compared with the rest of the phage genome. We implemented our method with the creation of the software PhageTerm and validated it using a set of phages with well-established packaging mechanisms representative of the termini diversity, i.e. 5′cos (Lambda), 3′cos (HK97), pac (P1), headful without a pac site (T4), DTR (T7) and host fragment (Mu). In addition, we determined the termini of nine Clostridium difficile phages and six phages whose sequences were retrieved from the Sequence Read Archive. PhageTerm is freely available (https://sourceforge.net/projects/phageterm), as a Galaxy ToolShed and on a Galaxy-based server (https://galaxy.pasteur.fr).
Collapse
|
5
|
Xu L, Wang T, Li F, Yang F. Isolation and preliminary characterization of a new pathogenic iridovirus from redclaw crayfish Cherax quadricarinatus. DISEASES OF AQUATIC ORGANISMS 2016; 120:17-26. [PMID: 27304867 DOI: 10.3354/dao03007] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We report the preliminary characterization of a new iridovirus detected in diseased Cherax quadricarinatus collected from a farm in Fujian, China. Transmission electron microscopy identified numerous icosahedral particles (~150 nm in diameter) in the cytoplasm and budding from the plasma membrane of hematopoietic tissue cells. SDS-PAGE of virions semi-purified from the hemolymph of moribund C. quadricarinatus identified 24 proteins including a 50 kDa major capsid protein (MCP). By summing the sizes of DNA restriction endonuclease fragments, the viral genome was estimated to be ~150 kb in length. A 34 amino acid sequence deduced from a 103 bp MCP gene region amplified by PCR using degenerate primers targeted to MCP gene regions conserved among iridoviruses and chloriridoviruses was most similar (55% identity) to Sergestid iridovirus. Based on virion morphology, protein composition, DNA genome length, and MCP sequence relatedness, the virus identified has tentatively been named Cherax quadricarinatus iridovirus (CQIV). In addition, experimental infection of healthy C. quadricarinatus, Procambarus clarkii, and Litopenaeus vannamei with CQIV caused the same disease and high mortality, suggesting that CQIV poses a potential threat to cultured and wild crayfish and shrimp.
Collapse
Affiliation(s)
- Limei Xu
- Key Laboratory of Marine Genetic Resources, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, PR China
| | | | | | | |
Collapse
|
6
|
Bacteriophage P1 pac sites inserted into the chromosome greatly increase packaging and transduction of Escherichia coli genomic DNA. Virology 2014; 468-470:274-282. [PMID: 25213407 DOI: 10.1016/j.virol.2014.07.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 03/29/2014] [Accepted: 07/17/2014] [Indexed: 11/20/2022]
Abstract
The Escherichia coli bacteriophage P1 packages host chromosome separately from phage DNA, and transfers it to recipient cells at low frequency in a process called generalized transduction. Phage genomes are packaged from concatemers beginning at a specific site, pac. To increase transduction rate, we have inserted pac into the chromosome at up to five equally spaced positions; at least this many are fully tolerated in the absence of P1 infection. A single chromosomal pac greatly increases transduction of downstream markers without decreasing phage yields; 3.5 × as much total chromosomal DNA is packaged. Additional insertions decrease phage yield by > 90% and also decrease phage DNA synthesis, although less dramatically. Packaging of chromosomal markers near to and downstream of each inserted pac site is, at the same time, increased by greater than 10 fold. Transduction of markers near an inserted pac site can be increased by over 1000-fold, potentially allowing identification of such transductants by screening.
Collapse
|
7
|
Rao DN, Dryden DTF, Bheemanaik S. Type III restriction-modification enzymes: a historical perspective. Nucleic Acids Res 2014; 42:45-55. [PMID: 23863841 PMCID: PMC3874151 DOI: 10.1093/nar/gkt616] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 05/28/2013] [Accepted: 06/24/2013] [Indexed: 11/12/2022] Open
Abstract
Restriction endonucleases interact with DNA at specific sites leading to cleavage of DNA. Bacterial DNA is protected from restriction endonuclease cleavage by modifying the DNA using a DNA methyltransferase. Based on their molecular structure, sequence recognition, cleavage position and cofactor requirements, restriction-modification (R-M) systems are classified into four groups. Type III R-M enzymes need to interact with two separate unmethylated DNA sequences in inversely repeated head-to-head orientations for efficient cleavage to occur at a defined location (25-27 bp downstream of one of the recognition sites). Like the Type I R-M enzymes, Type III R-M enzymes possess a sequence-specific ATPase activity for DNA cleavage. ATP hydrolysis is required for the long-distance communication between the sites before cleavage. Different models, based on 1D diffusion and/or 3D-DNA looping, exist to explain how the long-distance interaction between the two recognition sites takes place. Type III R-M systems are found in most sequenced bacteria. Genome sequencing of many pathogenic bacteria also shows the presence of a number of phase-variable Type III R-M systems, which play a role in virulence. A growing number of these enzymes are being subjected to biochemical and genetic studies, which, when combined with ongoing structural analyses, promise to provide details for mechanisms of DNA recognition and catalysis.
Collapse
Affiliation(s)
- Desirazu N. Rao
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India and School of Chemistry, The King’s Buildings, The University of Edinburgh, Edinburgh EH9 3JJ, Scotland, UK
| | - David T. F. Dryden
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India and School of Chemistry, The King’s Buildings, The University of Edinburgh, Edinburgh EH9 3JJ, Scotland, UK
| | - Shivakumara Bheemanaik
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India and School of Chemistry, The King’s Buildings, The University of Edinburgh, Edinburgh EH9 3JJ, Scotland, UK
| |
Collapse
|
8
|
Abstract
A total of 103 amber mutants of coliphage P1 were tested for lysis of nonpermissive cells. Of these, 83 caused cell lysis at the normal lysis time and have defects in particle morphogenesis. Five amber mutants, with mutations in the same gene (gene 2), caused premature lysis and may have a defect in a lysis regulator. Fifteen amber mutants were unable to cause cell lysis. Artificially lysed cells infected with five of these mutants produced viable phage particles, and phage particles were seen in thin sections of unlysed, infected cells. However, phage production by these mutants was not continued after the normal lysis time. We conclude that the defect of these five mutants is in a lysis function. The five mutations were found to be in the same gene (designated gene 17). The remaining 10 amber mutants, whose mutations were found to be in the same gene (gene 10), were also unable to cause cell lysis. They differed from those in gene 17 in that no viable phage particles were produced from artificially lysed cells, and no phage particles were seen in thin sections of unlysed, infected cells. We conclude that the gene 10 mutants cannot synthesize late proteins, and it is possible that gene 10 may code for a regulator of late gene expression for P1.
Collapse
Affiliation(s)
- J T Walker
- Department of Microbiology, University of Iowa, Iowa City, Iowa 52242
| | | |
Collapse
|
9
|
Deichelbohrer I, Messer W, Trautner TA. Genome of Bacillus subtilis Bacteriophage SPP1: Structure and Nucleotide Sequence of pac, the Origin of DNA Packaging. J Virol 2010; 42:83-90. [PMID: 16789222 PMCID: PMC256047 DOI: 10.1128/jvi.42.1.83-90.1982] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The DNA of Bacillus subtilis bacteriophage SPP1 is terminally redundant and partially circularly permuted. To explain these parameters, we followed the Streisinger-Botstein models of phage maturation and assumed that packaging of SPP1 DNA begins at a unique genomic site ("pac") and proceeds sequentially from there. We describe the sequence of about 1,000 nucleotides surrounding pac. This together with size determinations of small, pac-terminated restriction fragments has revealed heterogeneity of the natural pac ends of SPP1 DNA. Such ends fell in each DNA strand into a region of five to seven nucleotides. However, within this range more than 50% of all molecules terminated with defined cytosines on both strands, generating a 3' protruding terminus. The nucleotide sequence of the DNA segment surrounding pac did not reveal any features which would distinguish this region.
Collapse
Affiliation(s)
- I Deichelbohrer
- Max-Planck-Institut für Molekulare Genetik, Abteilung Trautner, D-1000 Berlin 33, Germany
| | | | | |
Collapse
|
10
|
Casjens SR, Gilcrease EB. Determining DNA packaging strategy by analysis of the termini of the chromosomes in tailed-bacteriophage virions. Methods Mol Biol 2009; 502:91-111. [PMID: 19082553 DOI: 10.1007/978-1-60327-565-1_7] [Citation(s) in RCA: 221] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Tailed-bacteriophage virions contain a single linear dsDNA chromosome which can range in size from about 18 to 500 kbp across the known tailed-phage types. These linear chromosomes can have one of several known types of termini as follows: cohesive ends (5'- or 3'-single-strand extensions), circularly permuted direct terminal repeats, short or long exact direct terminal repeats, terminal host DNA sequences, or covalently bound terminal proteins. These different types of ends reflect differing DNA replication strategies and especially differing terminase actions during DNA packaging. In general, complete genome sequence determination does not by itself elucidate the nature of these ends, so directed experimental analysis is usually required to understand the nature of the virion chromosome ends. This chapter discusses these methods.
Collapse
Affiliation(s)
- Sherwood R Casjens
- Division of Cell Biology and Immunology, Department of Pathology, University of Utah Medical School, Salt Lake City, UT, USA
| | | |
Collapse
|
11
|
Casjens SR, Gilcrease EB, Winn-Stapley DA, Schicklmaier P, Schmieger H, Pedulla ML, Ford ME, Houtz JM, Hatfull GF, Hendrix RW. The generalized transducing Salmonella bacteriophage ES18: complete genome sequence and DNA packaging strategy. J Bacteriol 2005; 187:1091-104. [PMID: 15659686 PMCID: PMC545730 DOI: 10.1128/jb.187.3.1091-1104.2005] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2004] [Accepted: 11/03/2004] [Indexed: 11/20/2022] Open
Abstract
The generalized transducing double-stranded DNA bacteriophage ES18 has an icosahedral head and a long noncontractile tail, and it infects both rough and smooth Salmonella enterica strains. We report here the complete 46,900-bp genome nucleotide sequence and provide an analysis of the sequence. Its 79 genes and their organization clearly show that ES18 is a member of the lambda-like (lambdoid) phage group; however, it contains a novel set of genes that program assembly of the virion head. Most of its integration-excision, immunity, Nin region, and lysis genes are nearly identical to those of the short-tailed Salmonella phage P22, while other early genes are nearly identical to Escherichia coli phages lambda and HK97, S. enterica phage ST64T, or a Shigella flexneri prophage. Some of the ES18 late genes are novel, while others are most closely related to phages HK97, lambda, or N15. Thus, the ES18 genome is mosaically related to other lambdoid phages, as is typical for all group members. Analysis of virion DNA showed that it is circularly permuted and about 10% terminally redundant and that initiation of DNA packaging series occurs across an approximately 1-kbp region rather than at a precise location on the genome. This supports a model in which ES18 terminase can move substantial distances along the DNA between recognition and cleavage of DNA destined to be packaged. Bioinformatic analysis of large terminase subunits shows that the different functional classes of phage-encoded terminases can usually be predicted from their amino acid sequence.
Collapse
Affiliation(s)
- Sherwood R Casjens
- Department of Pathology, University of Utah Medical School, Salt Lake City, UT 84132, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Łobocka MB, Rose DJ, Plunkett G, Rusin M, Samojedny A, Lehnherr H, Yarmolinsky MB, Blattner FR. Genome of bacteriophage P1. J Bacteriol 2004; 186:7032-68. [PMID: 15489417 PMCID: PMC523184 DOI: 10.1128/jb.186.21.7032-7068.2004] [Citation(s) in RCA: 203] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2004] [Accepted: 07/09/2004] [Indexed: 11/20/2022] Open
Abstract
P1 is a bacteriophage of Escherichia coli and other enteric bacteria. It lysogenizes its hosts as a circular, low-copy-number plasmid. We have determined the complete nucleotide sequences of two strains of a P1 thermoinducible mutant, P1 c1-100. The P1 genome (93,601 bp) contains at least 117 genes, of which almost two-thirds had not been sequenced previously and 49 have no homologs in other organisms. Protein-coding genes occupy 92% of the genome and are organized in 45 operons, of which four are decisive for the choice between lysis and lysogeny. Four others ensure plasmid maintenance. The majority of the remaining 37 operons are involved in lytic development. Seventeen operons are transcribed from sigma(70) promoters directly controlled by the master phage repressor C1. Late operons are transcribed from promoters recognized by the E. coli RNA polymerase holoenzyme in the presence of the Lpa protein, the product of a C1-controlled P1 gene. Three species of P1-encoded tRNAs provide differential controls of translation, and a P1-encoded DNA methyltransferase with putative bifunctionality influences transcription, replication, and DNA packaging. The genome is particularly rich in Chi recombinogenic sites. The base content and distribution in P1 DNA indicate that replication of P1 from its plasmid origin had more impact on the base compositional asymmetries of the P1 genome than replication from the lytic origin of replication.
Collapse
Affiliation(s)
- Małgorzata B Łobocka
- Department of Microbial Biochemistry, Institute of Biochemistry and Biophysics of the Polish Academy of Sciences, Ul. Pawinskiego 5A, 02-106 Warsaw, Poland.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Casjens S, Winn-Stapley DA, Gilcrease EB, Morona R, Kühlewein C, Chua JEH, Manning PA, Inwood W, Clark AJ. The chromosome of Shigella flexneri bacteriophage Sf6: complete nucleotide sequence, genetic mosaicism, and DNA packaging. J Mol Biol 2004; 339:379-94. [PMID: 15136040 DOI: 10.1016/j.jmb.2004.03.068] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2004] [Accepted: 03/22/2004] [Indexed: 11/28/2022]
Abstract
Shigella flexneri temperate bacteriophage Sf6 is of interest in part because its prophage expresses the oac gene that alters the antigenic properties of the surface O-antigen polysaccharide of its host bacterium. We have determined the complete sequence of its 39,044 bp genome. The sequence shows that Sf6 is a member of the canonical lambdoid phage group, and like other phages of this type has a highly mosaic genome. It has chromosomal regions that encode proteins >80% identical with at least 15 different previously characterized lambdoid phages and prophages, but 43% of the genome, including the virion assembly genes, is homologous to the genome of one phage, HK620. An analysis of the nucleotide differences between Sf6 and HK620 indicates that even these similar regions are highly mosaic. This mosaicism suggests ways in which the virion structural proteins might interact with each other. The Sf6 early operons are arranged like a typical lambdoid phage, with "boundary sequences" often found between functional modules in the "metabolic" genome domain. By virtue of high degree of similarity in the encoding genes and their DNA target sites, we predict that the integrase, early transcription anti-terminator, CI and Cro repressors, and CII protein of Sf6 have DNA binding specificities very similar to the homologous proteins encoded by phages HK620, lambda, 434 and P22, respectively. The late operon contains two tRNA genes. The Sf6 terminase genes are unusual. Analysis of in vivo initiation of the DNA packaging series showed that the Sf6 apparatus that recognizes DNA for packaging appears to cleave DNA for initiation of packaging series at many sites within a large region of about 1800 bp that includes a possible pac site. This is unlike previously characterized phage packaging mechanisms.
Collapse
Affiliation(s)
- Sherwood Casjens
- Department of Pathology, University of Utah Medical School, Salt Lake City, UT 84132, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Wu H, Sampson L, Parr R, Casjens S. The DNA site utilized by bacteriophage P22 for initiation of DNA packaging. Mol Microbiol 2002; 45:1631-46. [PMID: 12354230 DOI: 10.1046/j.1365-2958.2002.03114.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Virion proteins recognize their cognate nucleic acid for encapsidation into virions through recognition of a specific nucleotide sequence contained within that nucleic acid. Viruses like bacteriophage P22, which have partially circularly permuted, double-stranded virion DNAs, encapsidate DNA through processive series of packaging events in which DNA is recognized for packaging only once at the beginning of the series. Thus a single DNA recognition event programmes the encapsidation of multiple virion chromosomes. The protein product of P22 gene 3, a terminase component, is thought to be responsible for this recognition. The site on the P22 genome that is recognized by the gene 3 protein to initiate packaging series is called the pac site. We report here a strategy for assaying pac site activity in vivo, and the utilization of this system to identify and characterize the site genetically. It is an asymmetric site that spans 22 basepairs and is located near the centre of P22 gene 3.
Collapse
Affiliation(s)
- Hongyu Wu
- Department of Pathology, University of Utah Medical Center, Salt Lake City 84132, USA
| | | | | | | |
Collapse
|
15
|
Lehnherr H, Jensen CD, Stenholm AR, Dueholm A. Dual regulatory control of a particle maturation function of bacteriophage P1. J Bacteriol 2001; 183:4105-9. [PMID: 11418548 PMCID: PMC95297 DOI: 10.1128/jb.183.14.4105-4109.2001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2001] [Accepted: 04/19/2001] [Indexed: 11/20/2022] Open
Abstract
A unique arrangement of promoter elements was found upstream of the bacteriophage P1 particle maturation gene (mat). A P1-specific late-promoter sequence with conserved elements located at positions -22 and -10 was expected from the function of the gene in phage morphogenesis. In addition to a late-promoter sequence, a -35 element and an operator sequence for the major repressor protein, C1, were found. The -35 and -10 elements constituted an active Escherichia coli sigma(70) consensus promoter, which was converted into a P1-regulated early promoter by the superimposition of a C1 operator. This combination of early- and late-promoter elements regulates and fine-tunes the expression of the particle maturation gene. During lysogenic growth the gene is turned off by P1 immunity functions. Upon induction of lytic growth, the expression of mat starts simultaneously with the expression of other C1-regulated P1 early functions. However, while most of the latter functions are downregulated during late stages of lytic growth the expression of mat continues throughout the entire lytic growth cycle of bacteriophage P1. Thus, the maturation function has a head start on the structural components of the phage particle.
Collapse
Affiliation(s)
- H Lehnherr
- Department of Genetics and Biochemistry, Institute of Microbiology, Ernst-Moritz-Arndt-University Greifswald, D-17487 Greifswald, Germany.
| | | | | | | |
Collapse
|
16
|
Physical mapping and characterization of bacteriophage 9NA genome. J Biosci 1998. [DOI: 10.1007/bf02703007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
17
|
Tavares P, Lurz R, Stiege A, Rückert B, Trautner TA. Sequential headful packaging and fate of the cleaved DNA ends in bacteriophage SPP1. J Mol Biol 1996; 264:954-67. [PMID: 9000623 DOI: 10.1006/jmbi.1996.0689] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The virulent Bacillus subtilis bacteriophage SPP1 packages its DNA from a precursor concatemer by a headful mechanism. Following disruption of mature virions with chelating agents the chromosome end produced by the headful cut remains stably bound to the phage tail. Cleavage of this tail-chromosome complex with restriction endonucleases that recognize single asymmetric positions within the SPP1 genome yields several distinct classes of DNA molecules whose size reflects the packaging cycle they were generated from. A continuous decrease in the number of molecules within each class derived from successive encapsidation rounds indicates that there are several packaging series which end after each headful packaging cycle. The frequency of molecules in each packaging class follows the distribution expected for a sequential mechanism initiated unidirectionally at a defined position in the genome (pac). The heterogeneity of the DNA fragment sizes within each class reveals an imprecision in headful cleavage of approximately 2.5 kb (5.6% of the genome size). The number of encapsidation events in a packaging series (processivity) was observed to increase with time during the infection process. DNA ejection through the tail can be induced in vitro by a variety of mild denaturing conditions. The first DNA extremity to exit the virion is invariably the same that was observed to be bound to the tail, implying that the viral chromosome is ejected with a specific polarity to penetrate the host. In mature virions a short segment of this chromosome end (55 to 67 bp equivalent to 187 to 288 A) is fixed to the tail area proximal to the head (connector). Upon ejection this extremity is the first to move along the tail tube to exit from the virion through the region where the tail spike was attached.
Collapse
Affiliation(s)
- P Tavares
- Max-Planck-Institut für Molekulare Genetik, Berlin, Germany
| | | | | | | | | |
Collapse
|
18
|
|
19
|
Tavares P, Santos MA, Lurz R, Morelli G, de Lencastre H, Trautner TA. Identification of a gene in Bacillus subtilis bacteriophage SPP1 determining the amount of packaged DNA. J Mol Biol 1992; 225:81-92. [PMID: 1583695 DOI: 10.1016/0022-2836(92)91027-m] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The virulent Bacillus subtilis bacteriophage SPP1 encapsidates its DNA by a headful mechanism. Analyzing phage missense mutants, which package less DNA than SPP1 wild-type but show no other affected properties, we have identified a gene whose product is involved in the sizing of phage DNA during maturation. Characterization of this gene and its product provides an experimental access to the poorly understood mechanism of DNA sizing in packaging. The gene (gene 6 or siz) was cloned and sequenced. An open reading frame (ORF) coding for a 57.3 kDa polypeptide was identified. All the single nucleotide substitutions present in different siz mutants affect the net charge of that protein. The gene was further characterized by assignment of several nonsense mutations (sus) to the ORF. Phages carrying the latter type of mutations could be complemented in trans when gene 6 is provided by a plasmid.
Collapse
Affiliation(s)
- P Tavares
- Departamento Genética Molecular, Centro de Tecnologia Química e Biológica, Oeiras, Portugal
| | | | | | | | | | | |
Collapse
|
20
|
Skorupski K, Pierce JC, Sauer B, Sternberg N. Bacteriophage P1 genes involved in the recognition and cleavage of the phage packaging site (pac). J Mol Biol 1992; 223:977-89. [PMID: 1538406 DOI: 10.1016/0022-2836(92)90256-j] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The packaging of bacteriophage P1 DNA is initiated by cleavage of the viral DNA at a specific site, designated pac. The proteins necessary for that cleavage, and the genes that encode those proteins, are described in this report. By sequencing wild-type P1 DNA and DNA derived from various P1 amber mutants that are deficient in pac cleavage, two distinct genes, referred to as pacA and pacB, were identified. These genes appear to be coordinately transcribed with an upstream P1 gene that encodes a regulator of late P1 gene expression (gene 10). pacA is located upstream from pacB and contains the 161 base-pair pac cleavage site. The predicted sizes of the PacA and PacB proteins are 45 kDa and 56 kDa, respectively. These proteins have been identified on SDS-polyacrylamide gels using extracts derived from Escherichia coli cells that express these genes under the control of a bacteriophage T7 promoter. Extracts prepared from cells expressing both PacA and PacB are proficient for site-specific cleavage of the P1 packaging site, whereas those lacking either protein are not. However, the two defective extracts can complement each other to restore functional pac cleavage activity. Thus, PacA and PacB are two essential bacteriophage proteins required for recognition and cleavage of the P1 packaging site. PacB extracts also contain a second P1 protein that is encoded within the pacB gene. We have identified this protein on SDS-polyacrylamide gels and have shown that it is translated in the same reading frame as is PacB. Its role, if any, in pac cleavage is yet to be determined.
Collapse
Affiliation(s)
- K Skorupski
- Du Pont Merck Pharmaceutical Co., Du Pont Experimental Station, Wilmington, DE 19880-0328
| | | | | | | |
Collapse
|
21
|
Pierce JC, Sternberg NL. Using bacteriophage P1 system to clone high molecular weight genomic DNA. Methods Enzymol 1992; 216:549-74. [PMID: 1336104 DOI: 10.1016/0076-6879(92)16049-p] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- J C Pierce
- Cancer Therapeutic Program, Du Pont Merck Pharmaceutical Company, Wilmington, Delaware 19880
| | | |
Collapse
|
22
|
Clark CA, Beltrame J, Manning PA. The oac gene encoding a lipopolysaccharide O-antigen acetylase maps adjacent to the integrase-encoding gene on the genome of Shigella flexneri bacteriophage Sf6. Gene 1991; 107:43-52. [PMID: 1720755 DOI: 10.1016/0378-1119(91)90295-m] [Citation(s) in RCA: 88] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Lysogens of Shigella flexneri harbouring the temperate bacteriophage, Sf6, have been previously shown to undergo a serotype conversion due to O-acetylation of the O-antigen of the lipopolysaccharide. A partial physical map of the phage genome has been constructed. Analysis of the phage DNA suggests that the phage packages by a headful mechanism and that the mature DNA molecules are terminally redundant. Cloning of the PstI fragments of Sf6 enabled the region encoding the serotype conversion to be localized, showing that this was clearly phage-encoded. The gene was further localized by mutagenesis with Tn5 and the nucleotide sequence of the entire 2693-bp PstI fragment was determined. Two major open reading frames (ORFs) were found capable of encoding proteins of 44.1 and 37.2 kDa. The latter corresponds to the O-antigen acetylase and its gene has been designated oac. The oac gene is capable of converting Sh. flexneri serotypes X, Y, 1a and 4a to 3a, 3b, 1b and 4b, respectively. The Oac protein bears a high degree of homology to the NodX protein of Rhizobium leguminosarum suggesting that it, too, may be a sugar acetylase. The second ORF immediately upstream from oac corresponds to the bacteriophage Sf6 integrase responsible for chromosomal integration and is highly homologous to the integrases of Escherichia coli bacteriophages P4 and phi 80, but less closely related to those of P1, P2, P22, 186 and lambda.
Collapse
Affiliation(s)
- C A Clark
- Department of Microbiology and Immunology, University of Adelaide, Australia
| | | | | |
Collapse
|
23
|
Lehnherr H, Guidolin A, Arber W. Bacteriophage P1 gene 10 encodes a trans-activating factor required for late gene expression. J Bacteriol 1991; 173:6438-45. [PMID: 1917870 PMCID: PMC208978 DOI: 10.1128/jb.173.20.6438-6445.1991] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Amber mutants of bacteriophage P1 were used to identify functions involved in late regulation of the P1 lytic growth cycle. A single function has been genetically identified to be involved in activation of the phage-specific late promoter sequence Ps. In vivo, P1 gene 10 amber mutants fail to trans activate a lacZ operon fusion under the transcriptional control of promoter Ps. Several P1 segments, mapping around position 95 on the P1 chromosome, were cloned into multicopy plasmid vectors. Some of the cloned DNA segments had a deleterious effect on host cells unless they were propagated in a P1 lysogenic background. By deletion and sequence analysis, the harmful effect could be delimited to a 869-bp P1 fragment, containing a 453-bp open reading frame. This open reading frame was shown to be gene 10 by sequencing the amber mutation am10.1 and by marker rescue experiments with a number of other gene 10 amber mutants. Gene 10 codes for an 18.1-kDa protein showing an unusually high density of charged amino acid residues. No significant homology to sequences present in the EMBL/GenBank data base was found, and the protein contained none of the currently known DNA-binding motifs. An in vivo trans activation assay system, consisting of gene 10 under the transcriptional control of an inducible promoter and a gene S/lacZ fusion transcribed from Ps, was used to show that gene 10 is the only phage-encoded function required for late promoter activation.
Collapse
Affiliation(s)
- H Lehnherr
- Department of Microbiology, University of Basel, Switzerland
| | | | | |
Collapse
|
24
|
Sternberg NL, Maurer R. Bacteriophage-mediated generalized transduction in Escherichia coli and Salmonella typhimurium. Methods Enzymol 1991; 204:18-43. [PMID: 1943777 DOI: 10.1016/0076-6879(91)04004-8] [Citation(s) in RCA: 186] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
25
|
Baumstark BR, Stovall SR, Bralley P. The ImmC region of phage P1 codes for a gene whose product promotes lytic growth. Virology 1990; 179:217-27. [PMID: 2120849 DOI: 10.1016/0042-6822(90)90291-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The ImmC region of the temperate bacteriophage P1 contains c1, a gene that codes for a repressor of lytic growth. Located in the region upstream of c1 are four open reading frames capable of coding for low-molecular-weight proteins. The efficiency of lysogeny by P1+Cm was found to be reduced by almost 10(5)-fold when the host cells carry this region of ImmC on a multicopy plasmid. The sequences responsible for interfering with lysogen formation were localized to one of the small open reading frames (orf4) within ImmC. Insertions and deletions within orf4 suppress the virulent phenotype of P1virC mutants when introduced into the phage by recombination. These virC-suppressed mutant phage were found to be incapable of lytic growth unless the product of orf4 is provided in trans. The presence of orf4 was observed to interfere with repression by the c1 protein of ImmC-encoded promoters fused to lacZ. For this reason, we suggest that orf4 corresponds to coi, a gene previously proposed to code for an inactivator of c1-mediated repression.
Collapse
Affiliation(s)
- B R Baumstark
- Department of Biology, Georgia State University, Atlanta 30303
| | | | | |
Collapse
|
26
|
Sternberg N, Coulby J. Cleavage of the bacteriophage P1 packaging site (pac) is regulated by adenine methylation. Proc Natl Acad Sci U S A 1990; 87:8070-4. [PMID: 2236019 PMCID: PMC54894 DOI: 10.1073/pnas.87.20.8070] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The packaging of bacteriophage PI DNA is initiated when the phage packaging site (pac) is recognized and cleaved and continues until the phage head is full. We have previously shown that pac is a 162-base-pair segment of P1 DNA that contains seven DNA adenine methyltransferase methylation sites (5'-GATC). We show here that cleavage of pac is methylation sensitive. Both in vivo and in vitro experiments indicate that methylated pac is cleavable, whereas unmethylated pac is not. Moreover, DNA isolated from P1 phage and containing an uncut pac site was a poor substrate for in vitro cleavage until it was methylated by the Escherichia coli DNA adenine methyltransferase. Comparison of that uncut pac DNA with other viral DNA fragments by digestion with methylation-sensitive restriction enzymes indicated that the uncut pac DNA was preferentially undermethylated. In contrast, virion DNA containing a cut pac site was not undermethylated. We believe these results indicate that pac cleavage is regulated by adenine methylation during the phage lytic cycle.
Collapse
Affiliation(s)
- N Sternberg
- E. I. duPont de Nemours & Co. Inc., Central Research and Development Department, Wilmington, DE 19880-0328
| | | |
Collapse
|
27
|
Velleman M, Heirich M, Günther A, Schuster H. A bacteriophage P1-encoded modulator protein affects the P1 c1 repression system. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(17)44781-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
28
|
Maillou J, Dreiseikelmann B. The sim gene of Escherichia coli phage P1: nucleotide sequence and purification of the processed protein. Virology 1990; 175:500-7. [PMID: 2327075 DOI: 10.1016/0042-6822(90)90434-s] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The sim gene of bacteriophage P1 causes exclusion of a superinfecting P1 phage. We determined the nucleotide sequence of a 1.9-kb DNA fragment that, in plasmids, causes Sim phenotype. There are two open reading frames within this region for proteins of 82 and 259 amino acids. A 1.3-kb fragment containing the larger open reading frame was inserted into an expression vector. Induced cells carrying the hybrid plasmid, termed pBD5, were not infected by phage P1 and produced a 24-kDa protein and, to a smaller extent, a 25-kDa protein. The 24-kDa protein was purified. Comparison of its amino-terminal amino acid sequence with the nucleotide sequence indicated that it is processed from a precursor protein by removal of a hydrophobic leader peptide of 20 amino acids. In vivo processing depends on secA gene function and is necessary for Sim interference with P1 infection. The data are discussed with respect to the function of the sim gene in superinfection exclusion.
Collapse
Affiliation(s)
- J Maillou
- Universität Bielefeld, Fakultät für Biologie, Lehrstuhl für Gentechnologie/Mikrobiologie, Federal Republic of Germany
| | | |
Collapse
|
29
|
Rao DN, Page MG, Bickle TA. Cloning, over-expression and the catalytic properties of the EcoP15 modification methylase from Escherichia coli. J Mol Biol 1989; 209:599-606. [PMID: 2585503 DOI: 10.1016/0022-2836(89)90597-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The EcoP15 modification methylase gene from the p15B plasmid of Escherichia coli 15T-has been cloned and expressed at high levels in a plasmid vector system. We have purified the enzyme to near homogeneity in large amounts and have studied some of its enzymatic properties. Initial rates of methyl transfer are first order in methylase concentration and, with pUC19 DNA as substrate, the reaction proceeds by a random mechanism in which either DNA or S-adenosylmethionine can bind to the free enzyme. After methyltransfer to DNA, the methylated DNA and S-adenosylhomocysteine appear to dissociate in random order. As expected in such a mechanism, S-adenosylhomocysteine is a non-competitive inhibitor by S-adenosylmethionine at concentrations not much above its KM suggests that release of methylated DNA may be the rate-limiting step. This suggestion is strengthened by the fact that a mutant of the closely related EcoP1 does not show such substrate inhibition.
Collapse
Affiliation(s)
- D N Rao
- Department of Microbiology, University of Basel, Switzerland
| | | | | |
Collapse
|
30
|
Heisig A, Riedel HD, Dobrinski B, Lurz R, Schuster H. Organization of the immunity region immI of bacteriophage P1 and synthesis of the P1 antirepressor. J Mol Biol 1989; 209:525-38. [PMID: 2585500 DOI: 10.1016/0022-2836(89)90591-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The immI region of bacteriophage P1 includes the ant/reb gene, which encodes the antirepressor protein, and the c4 gene, which encodes a repressor molecule that negatively regulates antirepressor synthesis. The antirepressor interferes with the activity of the P1 repressor of lytic function, the product of the c1 gene. We have determined the DNA sequences of the immI region of P1 wild-type and the mutants virs, ant16, ant17, and reb22. Using suitable P1 immI DNA subfragments cloned into a vector of the T7 bacteriophage RNA polymerase expression system the antirepressor protein(s) was overproduced. On the basis of positions of immI mutations and the sizes of ant gene products, the following organizational feature of the P1 immI region is suggested: (1) the genes c4 and ant are cotranscribed in that order from the same promoter in the clockwise direction of the P1 genetic map; (2) an open reading frame for an unknown gene is located in between c4 and ant; (3) the site at which the c4 repressor acts is located within the c4 structural gene; (4) two antirepressor proteins of molecular weights 42,000 and 32,000 are encoded by a single open reading frame, with the smaller protein initiating at an in-frame start codon; (5) transcription of immI is regulated via a c1-controlled operator, Op51, indicating a communication between the immunity systems immC and immI.
Collapse
Affiliation(s)
- A Heisig
- Max-Planck-Institut für Molekulare Genetik, Berlin, FRG
| | | | | | | | | |
Collapse
|
31
|
Kliem M, Dreiseikelmann B. The superimmunity gene sim of bacteriophage P1 causes superinfection exclusion. Virology 1989; 171:350-5. [PMID: 2763457 DOI: 10.1016/0042-6822(89)90602-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Previous work has shown that the sim gene of bacteriophage P1, if cloned into a multicopy vector, confers immunity against P1 infection to cells. We show that a 1.85-kb DNA fragment from the sim region of P1 (in the multicopy plasmid pMK4) expresses immunity and encodes three proteins with molecular weights of about 25, 24, and 15 kDa. Deletion of 650 bp from the sim region abolished synthesis of all three proteins and of the sim phenotype. Expression of sim did not prevent adsorption of P1 to cells. Successful transfection with linear P1 DNA suggests that the recombinational circularization of P1 DNA is not inhibited in the presence of sim. Plasmid pMK4 and a P1 prophage can be stably maintained in the cell indicating that replication of the prophage is not disturbed by sim. The prophage can be induced in the presence of sim. This shows that the sim phenotype is not caused by preventing lytic replication or phage maturation. In cells with pMK4 there is no expression of genes from infecting phages and transduction frequency is drastically reduced. We suggest that sim functions as a superinfection exclusion system by preventing transfer of DNA from the adsorbed phages into the cytoplasm.
Collapse
Affiliation(s)
- M Kliem
- Universität Bielefeld, Fakultät für Biologie, Lehrstuhl für Gentechnologie/Mikrobiologie, Federal Republic of Germany
| | | |
Collapse
|
32
|
Rao DN, Eberle H, Bickle TA. Characterization of mutations of the bacteriophage P1 mod gene encoding the recognition subunit of the EcoP1 restriction and modification system. J Bacteriol 1989; 171:2347-52. [PMID: 2708308 PMCID: PMC209907 DOI: 10.1128/jb.171.5.2347-2352.1989] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
This study characterized several mutations of the bacteriophage P1 mod gene. This gene codes for the subunit of the EcoP1 restriction enzyme that is responsible for DNA sequence recognition and for modification methylation. We cloned the mutant mod genes into expression vectors and purified the mutant proteins to near homogeneity. Two of the mutant mod genes studied were the c2 clear-plaque mutants described by Scott (Virology 41:66-71, 1970). These mutant proteins can recognize EcoP1 sites in DNA and direct restriction but are unable to modify DNA. Methylation assays as well as S-adenosylmethionine (SAM) binding studies showed that the c2 mutants are methylation deficient because they do not bind SAM, and we conclude that the mutations destroy the SAM-binding site. Both of the c2 mutations lie within a region of the EcoP1 mod gene that is not conserved when compared with the mod gene of the related EcoP15 system. EcoP15 and EcoP1 recognize different DNA sequences, and we believe that this region of the protein may code for the DNA-binding site of the enzyme. The other mutants characterized were made by site-directed mutagenesis at codon 240. Evidence is presented that one of them, Ser-240----Pro, simultaneously lost the capacity to bind SAM and may also have changed its DNA sequence specificity.
Collapse
Affiliation(s)
- D N Rao
- Department of Microbiology, Basel University, Switzerland
| | | | | |
Collapse
|
33
|
Chow TH, Sollitti P, Marmur J. Structure of the multigene family of MAL loci in Saccharomyces. MOLECULAR & GENERAL GENETICS : MGG 1989; 217:60-9. [PMID: 2549370 DOI: 10.1007/bf00330943] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Multigene families are a ubiquitous feature of eukaryotes; however, their presence in Saccharomyces is more limited. The MAL multigene family is comprised of five unlinked loci, MAL1, MAL2, MAL3, MAL4 and MAL6, any one of which is sufficient for yeast to metabolize maltose. A cloned MAL6 locus was used as a probe to facilitate the cloning of the other four functional loci as well as two partially active alleles of MAL1. Each locus could be characterized as a cluster of three genes, MALR (regulatory), MALT (maltose transport or permease) and MALS (structural or maltase), encoded by a total of about 7 kb of DNA; however, homologous sequences at each locus extend beyond the coding regions. Our results indicate that there is extensive homology among the MAL loci, especially within their maltase genes. The greatest sequence diversity occurs in their regulatory gene regions. Southern cross analyses of the cloned MAL loci indicate a single duplication of the MAL6R-homologous sequences upstream of the MAL6R gene as well as an extensive duplication of more than 10 kb at the MAL3 locus. The large repeat at the MAL3 locus results in the presence of four copies of MAL3R-homologous sequences and two copies of MAL3T-homologous sequences at that locus. Two naturally occurring inactive alleles of MAL1 show a deletion or divergence of their MALR sequences. The significance of these repeats in the evolution of the MAL multigene family is discussed.
Collapse
Affiliation(s)
- T H Chow
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461
| | | | | |
Collapse
|
34
|
Zeph LR, Stotzky G. Use of a biotinylated DNA probe to detect bacteria transduced by bacteriophage P1 in soil. Appl Environ Microbiol 1989; 55:661-5. [PMID: 2930170 PMCID: PMC184176 DOI: 10.1128/aem.55.3.661-665.1989] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Presumptive bacteriophage P1 transductants of Escherichia coli, isolated from soil inoculated with lysates of transducing phage P1 and E. coli, were confirmed to be lysogenic for phage P1 by hybridization with a biotinylated DNA probe prepared from the 1.2-kilobase-pair HindIII 3 fragment of bacteriophage P1. No P1 lysogens of indigenous soil bacteria were detected with the DNA probe. The sensitivity and specificity of the DNA probe were assessed with purified and dot blot DNA, respectively. In addition, two techniques for the lysis and deproteinization of bacteria and bacteriophages on nitrocellulose filters were compared. These studies indicated that biotinylated DNA probes may be an effective alternative to conventional radiolabeled DNA probes for detecting specific gene sequences in bacteria indigenous to or introduced into soil.
Collapse
Affiliation(s)
- L R Zeph
- Department of Biology, New York University, New York 10003
| | | |
Collapse
|
35
|
Citron M, Velleman M, Schuster H. Three Additional Operators, Op21, Op68, and Op88, of Bacteriophage P1. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(18)94110-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
36
|
Gill RE, Cull MG, Fly S. Genetic identification and cloning of a gene required for developmental cell interactions in Myxococcus xanthus. J Bacteriol 1988; 170:5279-88. [PMID: 2846514 PMCID: PMC211602 DOI: 10.1128/jb.170.11.5279-5288.1988] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Developmental mutants of Myxococcus xanthus have been previously described which appear to be defective in required cell-cell interactions. These mutants fall into four phenotypic classes, Asg, Bsg, Csg, and Dsg, each of which is unable to differentiate into spores but can be rescued by extracellular complementation by wild-type cells or by mutants of a different class. We report the identification of one of the loci in which mutations result in a Bsg phenotype. The cloned locus was contained on a 12-kilobase EcoRI fragment and then localized by subcloning and a combination of in vitro and transposon mutagenesis. All mutations in this locus behave as a single complementation group, which we designate bsgA (formerly ssbA). Each of the bsgA mutations results in a nonsporulating phenotype, which can be rescued by extracellular complementation. Furthermore, we report that the bsgA mutants have a distinctive interaction with wild-type cells when vegetatively growing, swarming colonies converge.
Collapse
Affiliation(s)
- R E Gill
- Department of Microbiology and Immunology, University of Colorado Health Sciences Center, Denver 80262
| | | | | |
Collapse
|
37
|
Hanks MC, Newman B, Oliver IR, Masters M. Packaging of transducing DNA by bacteriophage P1. MOLECULAR & GENERAL GENETICS : MGG 1988; 214:523-32. [PMID: 3063949 DOI: 10.1007/bf00330490] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
P1 transduces bacterial chromosomal markers with widely differing frequencies. We use quantitative Southern hybridisations here to show that, despite this, most markers are packaged at similar levels. Exceptions are a group of markers near 2 min and another at 90 min which seem to be packaged at levels two- to threefold higher. We thus conclude that certain marker frequency variations in transduction can be explained by differences in packaging level, but that most cannot. The limited range in packaging levels suggests that P1 can initiate the packaging of chromosomal DNA from many sites. This idea is supported by our failure to find any chromosomal sequences with homology to the phage pac site and by the occurrence of hybridising bands which seem to suggest sequential packaging from a large number of specific sites. We eliminate the possibility that chromosomal DNA packaging is the result of endonucleolytic cutting by the P1 res enzyme.
Collapse
Affiliation(s)
- M C Hanks
- Department of Molecular Biology, King's Buildings, Edinburgh, Scotland
| | | | | | | |
Collapse
|
38
|
Windle BE, Laufer CS, Hays JB. Sequence and deletion analysis of the recombination enhancement gene (ref) of bacteriophage P1: evidence for promoter-operator and attenuator-antiterminator control. J Bacteriol 1988; 170:4881-9. [PMID: 3170487 PMCID: PMC211533 DOI: 10.1128/jb.170.10.4881-4889.1988] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The ref gene of bacteriophage P1 stimulates recombination between two defective lacZ genes in the Escherichia coli chromosome (lac x lac recombination) and certain other RecA-dependent recombination processes. We determined the DNA sequence of the 5' portion of the ref gene and tested various regions for functionality by inserting DNA fragments lacking increasing amounts of 5' sequence into plasmid and lambda phage vectors and measuring the ability of the constructs to stimulate lac x lac recombination. The region found essential for Ref activity in the absence of external heterologous promoters encodes two presumptive promoters, pref-1 and pref-2, whose -10 regions fall in a nearly perfect 13-base-pair (bp) tandem repeat. The -10 region of the putative pref-1 is part of a phage P1 c1 repressor recognition sequence. The first two ATG codons in the ref reading frame are, respectively, 90 and 216 bp downstream from the putative promoter-operator region. Deletion analysis indicated that translation can initiate at either ATG (although neither is associated with a canonical ribosome-binding sequence) and that the 42 amino acids in between are not indispensable for Ref stimulation of lac x lac recombination. However, the shorter reading frame appears to encode a less active polypeptide. The 91-bp leader region between the putative promoter-operator and the first ATG contains 30 codons in frame with the ref structural sequence, but its frame can be shifted without affecting Ref activity. The leader region ends with an apparent rho-independent termination sequence (attenuator). Deletion of 18 bp of early leader sequence drastically reduced Ref activity, even when ref was driven by a heterologous promoter (plac). An 8-bp internal deletion in the putative attenuator sequence relieved this requirement for the early leader sequence. This latter observation, along with nucleotide complementarity between portions of the early leader and attenuator sequences, are consistent with preemption of attenuation by the early leader.
Collapse
Affiliation(s)
- B E Windle
- Department of Chemistry, University of Maryland Baltimore County, Catonsville 21228
| | | | | |
Collapse
|
39
|
Guidolin A, Manning PA. Molecular analysis of the packaging signal in bacteriophage CP-T1 of Vibrio cholerae. MOLECULAR & GENERAL GENETICS : MGG 1988; 212:514-21. [PMID: 3419420 DOI: 10.1007/bf00330858] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We have previously identified a unique site, pac, from which packaging of precursor concatameric viral DNA into proheads starts during the maturation process of bacteriophage CP-T1. The direction of this packaging was determined from restriction enzyme cleavage patterns of CP-T1 DNA. A restriction enzyme generated fragment containing pac was cloned and the surrounding DNA region sequenced. Analysis of the nucleotide sequence revealed numerous repeat regions related to the consensus sequence PuagttGAT.AAT.aa.t. Within the sequenced region an open reading frame encoding a 12260 Mr protein was also identified. This protein appears to share homology with the binding domains of known DNA binding proteins and may represent a putative Pac terminase possessing the specific endonuclease activity required for cleavage at the pac site. Minicell analysis of deletion derivatives of the pac-containing clone revealed a protein of approximately 12,900 Mr encoded within this same region, confirming that this Pac protein is phage encoded.
Collapse
Affiliation(s)
- A Guidolin
- Department of Microbiology and Immunology, University of Adelaide, South Australia
| | | |
Collapse
|
40
|
Hümbelin M, Suri B, Rao DN, Hornby DP, Eberle H, Pripfl T, Kenel S, Bickle TA. Type III DNA restriction and modification systems EcoP1 and EcoP15. Nucleotide sequence of the EcoP1 operon, the EcoP15 mod gene and some EcoP1 mod mutants. J Mol Biol 1988; 200:23-9. [PMID: 2837577 DOI: 10.1016/0022-2836(88)90330-0] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This paper presents the nucleotide sequence of the mod-res operon of phage P1, which encodes the two structural genes for the EcoP1 type III restriction and modification system. We have also sequenced the mod gene of the allelic EcoP15 system. The mod gene product is responsible for binding the system-specific DNA recognition sequences in both restriction and modification; it also catalyses the modification reaction. A comparison of the two mod gene product sequences shows that they have conserved amino and carboxyl ends but have completely different sequences in the middle of the molecules. Two alleles of the EcoP1 mod gene that are defective in modification but not in restriction were also sequenced. The mutations in both alleles lie within the non-conserved regions.
Collapse
Affiliation(s)
- M Hümbelin
- Department of Microbiology, University of Basel, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Bacteriophage P22 packages its double-stranded DNA chromosomes from concatemeric replicating DNA in a processive, sequential fashion. According to this model, during the initial packaging event in such a series the packaging apparatus recognizes a nucleotide sequence, called pac, on the DNA, and then condenses DNA within the coat protein shell unidirectionally (rightward) from that point. DNA ends are generated near the pac site before or during the condensation reaction. The right end of the mature chromosome is created by a cut made in the DNA by the "headful nuclease" after a complete chromosome is condensed within the phage head. Subsequent packaging events on that concatemeric DNA begin at the end generated by the headful cut of the previous event and proceed in the same direction as the previous event. We report here accurate measurements of the P22 chromosome length (43,400( +/- 750) base-pairs, where the uncertainty is the range in observed lengths), genome length (41,830( +/- 315) base-pairs, where the uncertainty represents the accuracy with which the length is known), the terminal redundancy (1600( +/- 750) base-pairs or 3.8( +/- 1.8)%, where the uncertainty is the observed range) and the imprecision in the headful measuring device ( +/- 750 base-pairs or +/- 1.7%). In addition, we present evidence for a weak nucleotide sequence specificity in the headful nuclease. These findings lend further support to, and extend our understanding of, the sequential series model of P22 DNA packaging.
Collapse
Affiliation(s)
- S Casjens
- Department of Cellular, Viral and Molecular Biology, University of Utah Medical Center, Salt Lake City 84132
| | | |
Collapse
|
42
|
Sollitti P, Chesney RH. Physical analysis of PB2, a temperate bacteriophage of Agrobacterium tumefaciens. DNA (MARY ANN LIEBERT, INC.) 1987; 6:473-81. [PMID: 2824148 DOI: 10.1089/dna.1987.6.473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We have constructed a detailed physical map of PB2, a temperate bacteriophage of Agrobacterium tumefaciens. The restriction endonucleases Bam HI (3 sites), Eco RI (22 sites), Hind III (19 sites), Hpa I (5 sites), Xba I (1 site), and Xho I (1 site) were used to elucidate the map of infectious PB2 DNA. The map was generated by reciprocal sequential digestions and analysis of partial digestion products of isolated restriction fragments. We have determined the genome size as 66.35 +/- 1.71 kb. The potential of PB2 as a phage-based shuttle vector for the A. tumefaciens-plant transformation system is discussed.
Collapse
Affiliation(s)
- P Sollitti
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102
| | | |
Collapse
|
43
|
Velleman M, Dreiseikelmann B, Schuster H. Multiple repressor binding sites in the genome of bacteriophage P1. Proc Natl Acad Sci U S A 1987; 84:5570-4. [PMID: 3039493 PMCID: PMC298904 DOI: 10.1073/pnas.84.16.5570] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
After digestion of bacteriophage P1 DNA with EcoRI in the presence of P1 repressor, 6 repressor binding sites were identified in 5 of 26 EcoRI fragments. Binding sites were localized by the decreased mobility of DNA fragment-repressor complexes during electrophoresis and by DNase protection ("footprinting") analysis. The repressor binding sites, or operators, comprise a 17-base-pair-long consensus sequence lacking symmetrical elements. Three operators can be related to known genes, whereas the function of the others is still unknown. The mutant P1 bac, rendering ban expression constitutive, is identified as an operator-constitutive mutation of the ban operon.
Collapse
|
44
|
Iida S, Schrickel S, Elliott J, Burckhardt S, Arber W. Structures of oversized genomes of phage P1 derivatives carrying lacgenes of Escherichia coliK12. FEMS Microbiol Lett 1987. [DOI: 10.1111/j.1574-6968.1987.tb02106.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
45
|
Sternberg N, Coulby J. Recognition and cleavage of the bacteriophage P1 packaging site (pac). I. Differential processing of the cleaved ends in vivo. J Mol Biol 1987; 194:453-68. [PMID: 3305962 DOI: 10.1016/0022-2836(87)90674-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The packaging of bacteriophage P1 DNA into viral capsids is initiated at a specific DNA site called pac. During packaging, that site is cleaved and at least one of the resulting ends is encapsidated into a P1 virion. We show here that pac is located on a 620 base-pair fragment of P1 DNA (EcoRI-20). When that fragment is inserted into the chromosome of cells that are then infected with P1, packaging of host DNA into phage particles is initiated at pac and proceeds down the chromosome, unidirectionally, for about five to ten P1 "headfuls" (about 5 X 10(5) to 10 X 10(5) bases of DNA). Using an assay for pac cleavage that does not depend on DNA packaging, we have identified a set of five amber mutations that are mapped adjacent to pac, and that define a gene (gene 9) essential for pac cleavage. Amber mutations that are located in genes necessary for viral capsid formation (genes 4, 8 and 23), or in a gene necessary for "late" protein synthesis (gene 10), do not affect pac cleavage. The latter result suggests that the synthesis of the pac cleavage protein is not regulated co-ordinately with other phage morphogenesis proteins. The products of pac cleavage were analyzed using two different DNA substrates. In one case, a single copy of pac was placed in the chromosome of P1-sensitive cells. When those cells were infected with P1, we could detect the cleavage of as much as 70% of the pac-containing DNA. The pac end destined to be packaged in the virion was detected five to 20 times more efficiently than was the other end. Since this result is obtained whether or not the infecting P1 phage can encapsidate the cut pac site, the differential detection of pac ends is not simply a consequence of one end being packaged and the other not. In a second case, pac was located in cells on a small (5 X 10(3) bases) multicopy plasmid. When those cells were infected with P1, neither pac end was detected efficiently after P1 infection, unless the cells carried a recBCD- mutation. In recBCD- cells, the results with plasmid-pac substrates were similar to those obtained with chromosomally integrated pac substrates. We interpret these results to mean that, following pac cleavage, the end destined to be packaged is protected from cellular nucleases while the other end is degraded by the action of at least two nucleases, one of which is the product of the host recBCD gene.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
46
|
Sternberg N, Coulby J. Recognition and cleavage of the bacteriophage P1 packaging site (pac). II. Functional limits of pac and location of pac cleavage termini. J Mol Biol 1987; 194:469-79. [PMID: 3625770 DOI: 10.1016/0022-2836(87)90675-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Bacteriophage P1 initiates the processive packaging of its DNA at a unique site called pac. We show that a functional pac site is contained within a 161 base-pair segment of P1 EcoRI fragment 20. It extends from a position 71 base-pairs to a position 232 base-pairs from the EcoRI-22 proximal side of that fragment. The 3' and 5' pac termini are located centrally within that 161 base-pair region and are distributed over about a turn of the DNA helix. The DNA sequence of the terminus region is shown below, with the large arrows indicating the positions of termini that are frequently represented in the PI population and the small arrows indicating the positions of termini that are rarely represented in the P1 population. (Sequence: in text). Digestion of P1 virus DNA with EcoRI generates two major EcoRI-pac fragments, which differ in size by about five or six base-pairs. While the structure and position of the double-stranded pac ends of these fragments have not been determined precisely, the 5' termini at those ends probably correspond to the two major pac cleavage sites in the upper strand of the sequences shown above. The 161 base-pair pac site contains the hexanucleotide sequence 5'-TGATCAG-3' repeated four times at one end and three times at the other. Removal of just one of those elements from either the right or left ends of pac reduces pac cleavage by about tenfold. Moreover, the elements appear to be additive in their effect on pac cleavage, as removal of one and a half elements or all three elements from the right side of pac reduces pac cleavage 100-fold, and greater than 1000-fold, respectively.
Collapse
|
47
|
Casjens S, Huang WM, Hayden M, Parr R. Initiation of bacteriophage P22 DNA packaging series. Analysis of a mutant that alters the DNA target specificity of the packaging apparatus. J Mol Biol 1987; 194:411-22. [PMID: 3041006 DOI: 10.1016/0022-2836(87)90671-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Bacteriophage P22 is thought to package its double-stranded DNA chromosome from concatemeric replicating DNA in a "processive" sequential fashion. According to this model, during the initial packaging event in such a series the packaging apparatus recognizes a nucleotide sequence, called pac, on the DNA, and then condenses DNA within the coat protein shell unidirectionally from that point. DNA ends are generated near the pac site before or during the condensation reaction. The opposite end of the mature chromosome is created by a cut made in the DNA after a complete chromosome is condensed within the phage head. Subsequent packaging events on that concatemeric DNA begin at the end generated by the headful cut of the previous event and proceed in the same direction as the previous event. We report here the identification of a consensus nucleotide sequence for the pac site, and present evidence that supports the idea that the gene 3 protein is a central participant in this recognition event. In addition, we tentatively locate the portion of the gene 3 protein that contacts the pac site during the initiation of packaging.
Collapse
|
48
|
Streiff MB, Iida S, Bickle TA. Expression and proteolytic processing of the darA antirestriction gene product of bacteriophage P1. Virology 1987; 157:167-71. [PMID: 3029955 DOI: 10.1016/0042-6822(87)90325-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The darA gene coding for one of the two bacteriophage P1 antirestriction functions is expressed late after infection or induction. The protein is made as a high-molecular-weight soluble precursor. This is proteolytically cleaved to the mature form, which is a structural component of the phage head. Defective mutants of the phage have been found in which the synthesis of gpdarA is normal but processing does not take place. These mutations all map to the same region of the P1 genome and we propose that they lie in the structural gene for the processing protease.
Collapse
|
49
|
Iida S, Streiff MB, Bickle TA, Arber W. Two DNA antirestriction systems of bacteriophage P1, darA, and darB: characterization of darA- phages. Virology 1987; 157:156-66. [PMID: 3029954 DOI: 10.1016/0042-6822(87)90324-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Bacteriophage P1 is only weakly restricted when it infects cells carrying type I restriction and modification systems even though DNA purified from P1 phage particles is a good substrate for type I restriction enzymes in vitro. Here we show that this protection against restriction is due to the products of two phage genes which we call darA and darB (dar for defense against restriction). Each of the dar gene products provides protection against a different subset of type I restriction systems. The darA and darB gene products are found in the phage head and protect any DNA packaged into a phage head, including transduced chromosomal markers, from restriction. The proteins must, therefore, be injected into recipient cells along with the DNA. The proteins act strictly in cis. For example, upon double infection of restricting cells with dar+ and dar- P1 phages, the dar+ genomes are protected from restriction while the dar- genomes are efficiently restricted.
Collapse
|
50
|
Expression of a human cytomegalovirus late gene is posttranscriptionally regulated by a 3'-end-processing event occurring exclusively late after infection. Mol Cell Biol 1987. [PMID: 3025644 DOI: 10.1128/mcb.6.12.4202] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A phenomenon of posttranscriptional regulation has been previously identified in cytomegalovirus-infected human fibroblast cells (Wathen and Stinski, J. Virol. 41:462, 1982). A region typifying this phenomenon has been located within the large unique component of the viral genome (map units 0.408 to 0.423). Even though this transcriptional unit was highly transcribed at early times after infection, mRNAs from this region were only detectable on the polyribosomes after viral DNA replication. Thus, this region is believed to code for a late gene. Single-strand-specific nuclease mapping experiments of viral transcripts established that the transcriptional initiation sites and the 5' ends of a downstream exon were identical at early and late times. However, the late transcripts differed from the early transcripts by the processing of the 3' end of the viral RNAs. This involved either the removal of a distinct region of the transcript by the selection of an upstream cleavage and polyadenylation site or the differential splicing of the RNA molecule. The upstream cleavage and polyadenylation site was identified by nuclease mapping analyses and DNA sequencing. The 3'-end processing of these transcripts is necessary for the detection of these viral RNAs within the cytoplasm of the infected cell. We propose that human cytomegalovirus either codes for a factor(s) that is involved in the 3'-end-processing event at late times after infection or stimulates the synthesis of a host cell factor(s) involved in this complex regulatory event. This level of regulation may have an influence on the types of cells that permit productive cytomegalovirus replication.
Collapse
|