1
|
Bai R, He AL, Guo J, Li Z, Yu X, Zeng J, Mi Y, Wang L, Zhang J, Yang D. Novel pathogenic variant (c.2947C > T) of the carbamoyl phosphate synthetase 1 gene in neonatal-onset deficiency. Front Neurosci 2022; 16:1025572. [PMID: 36340787 PMCID: PMC9634248 DOI: 10.3389/fnins.2022.1025572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/06/2022] [Indexed: 11/13/2022] Open
Abstract
Background Carbamoyl phosphate synthetase 1 deficiency (CPS1D) is a rare autosomal recessive urea cycle disorder characterized by hyperammonaemia. The biochemical measurement of the intermediate metabolites is helpful for CPS1D diagnosis; it however cannot distinguish CPS1D from N-acetylglutamate synthetase deficiency. Therefore, next-generation sequencing (NGS) is often essential for the accurate diagnosis of CPS1D. Methods NGS was performed to identify candidate gene variants of CPS1D in a Asian neonatal patient presented with poor feeding, reduced activity, tachypnea, lethargy, and convulsions. The potential pathogenicity of the identified variants was predicted by various types of bioinformatical analyses, including evolution conservation, domain and 3D structure simulations. Results Compound heterozygosity of CPS1D were identified. One was in exon 24 with a novel heterozygous missense variant c.2947C > T (p.P983S), and another was previously reported in exon 20 with c.2548C > T (p.R850C). Both variants were predicted to be deleterious. Conservation analysis and structural modeling showed that the two substituted amino acids were highly evolutionarily conserved, resulting in potential decreases of the binding pocket stability and the partial loss of enzyme activity. Conclusion In this study, two pathogenic missense variants were identified with NGS, expanding the variants pectrum of the CPS1 gene. The variants and related structural knowledge of CPS enzyme demonstrate the applicability for the accurate diagnosis of CPS1D.
Collapse
Affiliation(s)
- Ruimiao Bai
- Department of Neonatology, Northwest Women’s and Children’s Hospital, Xi’an, Shaanxi, China
| | - ALing He
- Department of Neonatology, Northwest Women’s and Children’s Hospital, Xi’an, Shaanxi, China
| | - Jinzhen Guo
- Department of Neonatology, Northwest Women’s and Children’s Hospital, Xi’an, Shaanxi, China
| | - Zhankui Li
- Department of Neonatology, Northwest Women’s and Children’s Hospital, Xi’an, Shaanxi, China
| | - Xiping Yu
- Department of Neonatology, Northwest Women’s and Children’s Hospital, Xi’an, Shaanxi, China
| | - JunAn Zeng
- Department of Neonatology, Northwest Women’s and Children’s Hospital, Xi’an, Shaanxi, China
| | - Yang Mi
- Department of Obstetrics, Northwest Women’s and Children’s Hospital, Xi’an, Shaanxi, China
| | - Lin Wang
- Genetics Center, Northwest Women’s and Children’s Hospital, Xi’an, Shaanxi, China
| | - Jingjing Zhang
- Medical Imaging Center, Northwest Women’s and Children’s Hospital, Xi’an, Shaanxi, China
| | - Dong Yang
- Department of Neonatology, Northwest Women’s and Children’s Hospital, Xi’an, Shaanxi, China
| |
Collapse
|
2
|
Kok CY, Cunningham SC, Kuchel PW, Alexander IE. Insights into Gene Therapy for Urea Cycle Defects by Mathematical Modeling. Hum Gene Ther 2019; 30:1385-1394. [PMID: 31215258 DOI: 10.1089/hum.2019.053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Metabolic liver diseases are attractive gene therapy targets that necessitate reconstitution of enzymatic activity in functionally complex biochemical pathways. The levels of enzyme activity required in individual hepatocytes and the proportion of the hepatic cell mass that must be gene corrected for therapeutic benefit vary in a disease-dependent manner that is difficult to predict. While empirical evaluation is inevitably required, useful insights can nevertheless be gained from knowledge of disease pathophysiology and theoretical approaches such as mathematical modeling. Urea cycle defects provide an excellent example. Building on a previously described one-compartment model of the urea cycle, we have constructed a two-compartment model that can simulate liver-targeted gene therapy interventions using the computational program Mathematica. The model predicts that therapeutically effective reconstitution of ureagenesis will correlate most strongly with the proportion of the hepatic cell mass transduced rather than the level of enzyme-encoding transgene expression achieved in individual hepatocytes. Importantly, these predictions are supported by experimental data in mice and human genotype/phenotype correlations. The most notable example of the latter is ornithine transcarbamylase deficiency (X-linked) where impairment of ureagenesis in male and female patients is closely simulated by the one- and two-compartment models, respectively. Collectively, these observations support the practical value of mathematical modeling in evaluation of the disease-specific gene transfer challenges posed by complex metabolic phenotypes.
Collapse
Affiliation(s)
- Cindy Y Kok
- Gene Therapy Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health and Sydney Children's Hospitals Network, The University of Sydney, Westmead, Australia
| | - Sharon C Cunningham
- Gene Therapy Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health and Sydney Children's Hospitals Network, The University of Sydney, Westmead, Australia
| | - Philip W Kuchel
- School of Life and Environmental Sciences, The University of Sydney, Westmead, Australia
| | - Ian E Alexander
- Gene Therapy Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health and Sydney Children's Hospitals Network, The University of Sydney, Westmead, Australia
- Discipline of Child and Adolescent Health, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| |
Collapse
|
3
|
Griffin JWD, Liu Y, Bradshaw PC, Wang K. In Silico Preliminary Association of Ammonia Metabolism Genes GLS, CPS1, and GLUL with Risk of Alzheimer's Disease, Major Depressive Disorder, and Type 2 Diabetes. J Mol Neurosci 2018; 64:385-396. [PMID: 29441491 DOI: 10.1007/s12031-018-1035-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 01/31/2018] [Indexed: 12/28/2022]
Abstract
Ammonia is a toxic by-product of protein catabolism and is involved in changes in glutamate metabolism. Therefore, ammonia metabolism genes may link a range of diseases involving glutamate signaling such as Alzheimer's disease (AD), major depressive disorder (MDD), and type 2 diabetes (T2D). We analyzed data from a National Institute on Aging study with a family-based design to determine if 45 single nucleotide polymorphisms (SNPs) in glutaminase (GLS), carbamoyl phosphate synthetase 1 (CPS1), or glutamate-ammonia ligase (GLUL) genes were associated with AD, MDD, or T2D using PLINK software. HAPLOVIEW software was used to calculate linkage disequilibrium measures for the SNPs. Next, we analyzed the associated variations for potential effects on transcriptional control sites to identify possible functional effects of the SNPs. Of the SNPs that passed the quality control tests, four SNPs in the GLS gene were significantly associated with AD, two SNPs in the GLS gene were associated with T2D, and one SNP in the GLUL gene and three SNPs in the CPS1 gene were associated with MDD before Bonferroni correction. The in silico bioinformatic analysis suggested probable functional roles for six associated SNPs. Glutamate signaling pathways have been implicated in all these diseases, and other studies have detected similar brain pathologies such as cortical thinning in AD, MDD, and T2D. Taken together, these data potentially link GLS with AD, GLS with T2D, and CPS1 and GLUL with MDD and stimulate the generation of testable hypotheses that may help explain the molecular basis of pathologies shared by these disorders.
Collapse
Affiliation(s)
- Jeddidiah W D Griffin
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA.
| | - Ying Liu
- Department of Biostatistics and Epidemiology, College of Public Health, East Tennessee State University, Johnson City, TN, USA
| | - Patrick C Bradshaw
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Kesheng Wang
- Department of Biostatistics and Epidemiology, College of Public Health, East Tennessee State University, Johnson City, TN, USA
| |
Collapse
|
4
|
Wang J, Shchelochkov OA, Zhan H, Li F, Chen LC, Brundage EK, Pursley AN, Schmitt ES, Häberle J, Wong LJC. Molecular characterization of CPS1 deletions by array CGH. Mol Genet Metab 2011; 102:103-6. [PMID: 20855223 PMCID: PMC4869965 DOI: 10.1016/j.ymgme.2010.08.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 08/24/2010] [Accepted: 08/26/2010] [Indexed: 10/19/2022]
Abstract
CPSI deficiency usually results in severe hyperammonemia presenting in the first days of life warranting prompt diagnosis. Most CPS1 defects are non-recurrent, private mutations, including point mutation, small insertions and deletions. In this study, we report the detection of large deletions varying from 1.4 kb to >130 kb in the CPS1 gene of 4 unrelated patients by targeted array CGH. These results underscore the importance of analysis of large deletions when only one mutation or no mutations are identified in cases where CPSI deficiency is strongly indicated.
Collapse
Affiliation(s)
- Jing Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, NAB 2015, Houston, TX 77030, USA
| | - Oleg A. Shchelochkov
- Division of Genetics, Department of Pediatrics, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| | - Hongli Zhan
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, NAB 2015, Houston, TX 77030, USA
| | - Fangyuan Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, NAB 2015, Houston, TX 77030, USA
| | - Li-Chieh Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, NAB 2015, Houston, TX 77030, USA
| | | | - Amber N. Pursley
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, NAB 2015, Houston, TX 77030, USA
| | - Eric S. Schmitt
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, NAB 2015, Houston, TX 77030, USA
| | - Johannes Häberle
- University Children's Hospital Zurich, Division of Metabolism, 8032 Zürich, Switzerland
| | - Lee-Jun C. Wong
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, NAB 2015, Houston, TX 77030, USA
- Corresponding author. Fax: +1 713 798 8937. (L.-J.C. Wong)
| |
Collapse
|