1
|
Zhang T, Liu H, Lv B, Li C. Regulating Strategies for Producing Carbohydrate Active Enzymes by Filamentous Fungal Cell Factories. Front Bioeng Biotechnol 2020; 8:691. [PMID: 32733865 PMCID: PMC7360787 DOI: 10.3389/fbioe.2020.00691] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 06/03/2020] [Indexed: 12/17/2022] Open
Abstract
Filamentous fungi are important eukaryotic organisms crucial in substrate degradation and carbon cycle on the earth and have been harnessed as cell factories for the production of proteins and other high value-added products in recent decades. As cell factories, filamentous fungi play a crucial role in industrial protein production as both native hosts and heterologous hosts. In this review, the regulation strategies of carbohydrate active enzyme expression at both transcription level and protein level are introduced, and the transcription regulations are highlighted with induction mechanism, signaling pathway, and promoter and transcription factor regulation. Afterward, the regulation strategies in protein level including suitable posttranslational modification, protein secretion enhancement, and protease reduction are also presented. Finally, the challenges and perspectives in this field are discussed. In this way, a comprehensive knowledge regarding carbohydrate active enzyme production regulation at both transcriptional and protein levels is provided with the particular goal of aiding in the practical application of filamentous fungi for industrial protein production.
Collapse
Affiliation(s)
- Teng Zhang
- Institute for Synthetic Biosystem/Department of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Hu Liu
- Institute for Synthetic Biosystem/Department of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Bo Lv
- Institute for Synthetic Biosystem/Department of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Chun Li
- Institute for Synthetic Biosystem/Department of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, China
| |
Collapse
|
2
|
Wang Q, Du M, Wang S, Liu L, Xiao L, Wang L, Li T, Zhuang H, Yang E. MADS-Box Transcription Factor MadsA Regulates Dimorphic Transition, Conidiation, and Germination of Talaromyces marneffei. Front Microbiol 2018; 9:1781. [PMID: 30131782 PMCID: PMC6090077 DOI: 10.3389/fmicb.2018.01781] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 07/16/2018] [Indexed: 01/05/2023] Open
Abstract
The opportunistic human pathogen Talaromyces marneffei exhibits a temperature-dependent dimorphic transition, which is closely related with its pathogenicity. This species grows as multinucleate mycelia that produce infectious conidia at 25°C, while undergoes a dimorphic transition to generate uninucleate yeast form cells at 37°C. The mechanisms of phenotype switching are not fully understood. The transcription factor madsA gene is a member of the MADS-box gene family. Previously, it was found that overexpression of madsA gene resulted in mycelial growth instead of yeast form at 37°C. In the current study, the madsA deletion mutant (ΔmadsA) and complemented strain (CMA) were constructed by genetic manipulation. We compared the phenotypes, growth, conidiation, conidial germination and susceptibility to stresses (including osmotic and oxidative) of the ΔmadsA with the wild-type (WT) and CMA strains. The results showed that the ΔmadsA displayed a faster process of the yeast-to-mycelium transition than the WT and CMA. In addition, the deletion of madsA led to a delay in conidia production and conidial germination. The tolerance of ΔmadsA conidia to hydrogen peroxide was better than that of the WT and CMA strains. Then, RNA-seq was performed to identify differences in gene expression between the ΔmadsA mutant and WT strain during the yeast phase, mycelium phase, yeast-to-mycelium transition and mycelium-to-yeast transition, respectively. Gene ontology functional enrichment analyses indicated that some important processes such as transmembrane transport, oxidation-reduction process, protein catabolic process and response to oxidative stress were affected by the madsA deletion. Together, our results suggest that madsA functions as a global regulator involved in the conidiation and germination, especially in the dimorphic transition of T. marneffei. Its roles in the survival, pathogenicity and transmission of T. marneffei require further investigation.
Collapse
Affiliation(s)
- Qiangyi Wang
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Minghao Du
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Shuai Wang
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, China
| | - Linxia Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,Institute of Microbiology, University of Chinese Academy of Sciences, Beijing, China
| | - Liming Xiao
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Linqi Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Tong Li
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Hui Zhuang
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Ence Yang
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| |
Collapse
|
3
|
Giordano-Santini R, Dupuy D. Selectable genetic markers for nematode transgenesis. Cell Mol Life Sci 2011; 68:1917-27. [PMID: 21431833 PMCID: PMC11115105 DOI: 10.1007/s00018-011-0670-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 03/03/2011] [Accepted: 03/10/2011] [Indexed: 11/28/2022]
Abstract
The nematode Caenorhabditis elegans has been used to study genetics and development since the mid-1970s. Over the years, the arsenal of techniques employed in this field has grown steadily in parallel with the number of researchers using this model. Since the introduction of C. elegans transgenesis, nearly 20 years ago, this system has been extensively used in areas such as rescue experiments, gene expression studies, and protein localization. The completion of the C. elegans genome sequence paved the way for genome-wide studies requiring higher throughput and improved scalability than provided by traditional genetic markers. The development of antibiotic selection systems for nematode transgenesis addresses these requirements and opens the possibility to apply transgenesis to investigate biological functions in other nematode species for which no genetic markers had been developed to date.
Collapse
Affiliation(s)
- Rosina Giordano-Santini
- Genome Regulation and Evolution, Inserm U869, Université de Bordeaux, Institut Européen de Chimie et Biologie (IECB), 2, rue Robert Escarpit, 33607 Pessac, France
| | - Denis Dupuy
- Genome Regulation and Evolution, Inserm U869, Université de Bordeaux, Institut Européen de Chimie et Biologie (IECB), 2, rue Robert Escarpit, 33607 Pessac, France
| |
Collapse
|
4
|
Yamada T, Makimura K, Hisajima T, Ito M, Umeda Y, Abe S. Genetic transformation of the dermatophyte, Trichophyton mentagrophytes, based on the use of G418 resistance as a dominant selectable marker. J Dermatol Sci 2007; 49:53-61. [PMID: 18055182 DOI: 10.1016/j.jdermsci.2007.08.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2007] [Revised: 08/13/2007] [Accepted: 08/23/2007] [Indexed: 11/15/2022]
Abstract
BACKGROUND Dermatophytes are closely related keratinophilic fungal pathogens and are the causative agents of a superficial cutaneous infection called dermatophytosis (ringworm). A lack of gene manipulation techniques has prevented detailed analyses of the mechanisms of host invasion by dermatophytes. We have introduced the tetracycline-regulatable (TR) gene expression system into dermatophytes to facilitate functional analyses of genes essential for growth and virulence. As the TR gene expression system consists of two plasmid vector components, two dominant selectable markers are required for genetic transformation. In dermatophytes, only the hygromycin B phosphotransferase gene (hph) is available as a selectable marker. OBJECTIVE We investigated the possibility of G418 resistance as a secondary selectable marker for genetic transformation in dermatophytes. METHODS A series of plasmid vectors carrying the neomycin phosphotransferase gene (nptII) were introduced into the protoplasts of Trichophyton mentagrophytes, one of the most clinically important dermatophyte species, by polyethylene glycol (PEG)-mediated transformation. Transformants were selected on selective medium containing G418 at 300-500 microg/ml. RESULTS Molecular biological analyses indicated that colonies appearing on the selective medium harbored nptII in their chromosomes. Colonies produced from protoplasts transformed with the enhanced green fluorescent protein (eGFP) gene-T. mentagrophytes cyclophilin cDNA (TmcypB) fusion vector also exhibited GFP fluorescence throughout their mycelia, but accumulation of the GFP-TmCYPB fusion protein in specific intracellular compartments was not observed. CONCLUSIONS This study has provided a new selectable marker for genetic transformation in dermatophytes.
Collapse
Affiliation(s)
- Tsuyoshi Yamada
- Teikyo University Institute of Medical Mycology, Teikyo University, Hachioji, Tokyo 192-0395, Japan.
| | | | | | | | | | | |
Collapse
|
5
|
Koh LY, Catcheside DEA. Mutation of msh-2 in Neurospora crassa does not reduce the incidence of recombinants with multiple patches of donor chromosome sequence. Fungal Genet Biol 2007; 44:575-84. [PMID: 17475521 DOI: 10.1016/j.fgb.2007.02.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2006] [Revised: 02/02/2007] [Accepted: 02/16/2007] [Indexed: 11/21/2022]
Abstract
The Neurospora homologue msh-2 of the Escherichia coli mismatch repair gene mutS was mutated by repeat-induced point mutation (RIP) of a 1.9-kb duplication covering 1661bp of the coding sequence and 302 bp 5' of the gene. msh-2(RIP-LK1) exhibited a mutator phenotype conferring a 17-fold increase in the frequency of spontaneous mitotic reversion of his-3 allele K458. In msh-2(RIP-LK1) homozygotes, recombination frequency at the his-3 locus increased up to 2.9-fold over that in msh-2(+) diploids. Progeny of crosses homozygous msh-2(RIP-LK1), like those from crosses homozygous msh-2(+) frequently had multiple patches of donor chromosome sequence, suggesting that patchiness in msh-2(+) crosses is not explained by incomplete repair of heteroduplex DNA by MSH-2. These findings are consistent with data from the analysis of events in a Neurospora translocation heterozygote that suggested multiple patches of donor chromosome sequence arising during recombination reflect multiple template switches during DNA repair synthesis.
Collapse
Affiliation(s)
- Lin Y Koh
- School of Biological Sciences, Flinders University, PO Box 2100, Adelaide, SA 5001, Australia
| | | |
Collapse
|
6
|
Turner P, Mamo G, Karlsson EN. Potential and utilization of thermophiles and thermostable enzymes in biorefining. Microb Cell Fact 2007; 6:9. [PMID: 17359551 PMCID: PMC1851020 DOI: 10.1186/1475-2859-6-9] [Citation(s) in RCA: 317] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Accepted: 03/15/2007] [Indexed: 11/10/2022] Open
Abstract
In today's world, there is an increasing trend towards the use of renewable, cheap and readily available biomass in the production of a wide variety of fine and bulk chemicals in different biorefineries. Biorefineries utilize the activities of microbial cells and their enzymes to convert biomass into target products. Many of these processes require enzymes which are operationally stable at high temperature thus allowing e.g. easy mixing, better substrate solubility, high mass transfer rate, and lowered risk of contamination. Thermophiles have often been proposed as sources of industrially relevant thermostable enzymes. Here we discuss existing and potential applications of thermophiles and thermostable enzymes with focus on conversion of carbohydrate containing raw materials. Their importance in biorefineries is explained using examples of lignocellulose and starch conversions to desired products. Strategies that enhance thermostablity of enzymes both in vivo and in vitro are also assessed. Moreover, this review deals with efforts made on developing vectors for expressing recombinant enzymes in thermophilic hosts.
Collapse
Affiliation(s)
- Pernilla Turner
- Dept Biotechnology, Center for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Gashaw Mamo
- Dept Biotechnology, Center for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Eva Nordberg Karlsson
- Dept Biotechnology, Center for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| |
Collapse
|
7
|
Abstract
Thermophilic microorganisms which can colonize at extreme ecological niches are known as extremophiles. Because of their capacity to withstand high temperatures, enzymes from these organisms are relatively heat stable. The versatile enzyme properties of these organisms make them excellent candidates in biotechnology. In general, fungi have been widely used for the production of proteins and enzymes, since they can grow rapidly in a low cost media and they secrete proteins into the extra-cellular medium. Recently, these organisms have also been used in large scale fermentation as host for the expression of heterologous proteins in industrial applications. However, little is known about the regulation and genetic manipulations of these fungi. We have previously shown the regulation of gene expression in a thermophilic fungus, Thermyces lanuginosus, using an inducible invertase system. The aim of this review is to elucidate the recent advances of thermophilic fungi, and their implications in industrial applications are discussed.
Collapse
Affiliation(s)
- Y.B. Shaik
- Department of Medicine, Section of Infectious Diseases, Boston University School of Medicine, Boston, USA
| |
Collapse
|
8
|
Hoff B, Schmitt EK, Kück U. CPCR1, but not its interacting transcription factor AcFKH1, controls fungal arthrospore formation in Acremonium chrysogenum. Mol Microbiol 2005; 56:1220-33. [PMID: 15882416 DOI: 10.1111/j.1365-2958.2005.04626.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Fungal morphogenesis and secondary metabolism are frequently associated; however, the molecular determinants connecting both processes remain largely undefined. Here we demonstrate that CPCR1 (cephalosporin C regulator 1 from Acremonium chrysogenum), a member of the winged helix/regulator factor X (RFX) transcription factor family that regulates cephalosporin C biosynthesis, also controls morphological development in the beta-lactam producer A. chrysogenum. The use of a disruption strain, multicopy strains as well as several recombinant control strains revealed that CPCR1 is required for hyphal fragmentation, and thus the formation of arthrospores. In a DeltacpcR1 disruption strain that exhibits only hyphal growth, the wild-type cpcR1 gene was able to restore arthrospore formation; a phenomenon not observed for DeltacpcR1 derivatives or non-related genes. The intracellular expression of cpcR1, and control genes (pcbC, egfp) was determined by in vivo monitoring of fluorescent protein fusions. Further, the role of the forkhead transcription factor AcFKH1, which directly interacts with CPCR1, was studied by generating an Acfkh1 knockout strain. In contrast to CPCR1, AcFKH1 is not directly involved in the fragmentation of hyphae. Instead, the presence of AcFKH1 seems to be necessary for CPCR1 function in A. chrysogenum morphogenesis, as overexpression of a functional cpcR1 gene in a DeltaAcfkh1 background has no effect on arthrospore formation. Moreover, strains lacking Acfkh1 exhibit defects in cell separation, indicating an involvement of the forkhead transcription factor in mycelial growth of A. chrysogenum. Our data offer the potential to control fungal growth in biotechnical processes that require defined morphological stages for optimal production yields.
Collapse
Affiliation(s)
- Birgit Hoff
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität, Universitätsstrasse 150, D-44780 Bochum, Germany
| | | | | |
Collapse
|
9
|
Schmitt EK, Bunse A, Janus D, Hoff B, Friedlin E, Kürnsteiner H, Kück U. Winged helix transcription factor CPCR1 is involved in regulation of beta-lactam biosynthesis in the fungus Acremonium chrysogenum. EUKARYOTIC CELL 2004; 3:121-34. [PMID: 14871943 PMCID: PMC329499 DOI: 10.1128/ec.3.1.121-134.2004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2003] [Accepted: 10/20/2003] [Indexed: 11/20/2022]
Abstract
Winged helix transcription factors, including members of the forkhead and the RFX subclasses, are characteristic for the eukaryotic domains in animals and fungi but seem to be missing in plants. In this study, in vitro and in vivo approaches were used to determine the functional role of the RFX transcription factor CPCR1 from the filamentous fungus Acremonium chrysogenum in cephalosporin C biosynthesis. Gel retardation analyses were applied to identify new binding sites of the transcription factor in an intergenic promoter region of cephalosporin C biosynthesis genes. Here, we illustrate that CPCR1 recognizes and binds at least two sequences in the intergenic region between the pcbAB and pcbC genes. The in vivo relevance of the two sequences for gene activation was demonstrated by using pcbC promoter-lacZ fusions in A. chrysogenum. The deletion of both CPCR1 binding sites resulted in an extensive reduction of reporter gene activity in transgenic strains (to 12% of the activity level of the control). Furthermore, Acremonium transformants with multiple copies of the cpcR1 gene and knockout strains support the idea of CPCR1 being a regulator of cephalosporin C biosynthesis gene expression. Significant differences in pcbC gene transcript levels were obtained with the knockout transformants. More-than-twofold increases in the pcbC transcript level at 24 and 36 h of cultivation were followed by a reduction to approximately 80% from 48 to 96 h in the knockout strain. The overall levels of the production of cephalosporin C were identical in transformed and nontransformed strains; however, the knockout strains showed a striking reduction in the level of the biosynthesis of intermediate penicillin N to less than 20% of that of the recipient strain. We were able to show that the complementation of the cpcR1 gene in the knockout strains reverses pcbC transcript and penicillin N amounts to levels comparable to those in the control. These results clearly indicate the involvement of CPCR1 in the regulation of cephalosporin C biosynthesis. However, the complexity of the data points to a well-controlled or even functional redundant network of transcription factors, with CPCR1 being only one player within this process.
Collapse
Affiliation(s)
- Esther K Schmitt
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, D-44780 Bochum, Germany
| | | | | | | | | | | | | |
Collapse
|
10
|
Punt PJ, van Biezen N, Conesa A, Albers A, Mangnus J, van den Hondel C. Filamentous fungi as cell factories for heterologous protein production. Trends Biotechnol 2002; 20:200-6. [PMID: 11943375 DOI: 10.1016/s0167-7799(02)01933-9] [Citation(s) in RCA: 314] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Filamentous fungi have been used as sources of metabolites and enzymes for centuries. For about two decades, molecular genetic tools have enabled us to use these organisms to express extra copies of both endogenous and exogenous genes. This review of current practice reveals that molecular tools have enabled several new developments. But it has been process development that has driven the final breakthrough to achieving commercially relevant quantities of protein. Recent research into gene expression in filamentous fungi has explored their wealth of genetic diversity with a view to exploiting them as expression hosts and as a source of new genes. Inevitably, the progress in the 'genomics' technology will further develop high-throughput technologies for these organisms.
Collapse
Affiliation(s)
- Peter J Punt
- TNO Nutrition and Food Research Institute, Dept of Applied Microbiology and Gene Technology, P.O. Box 360, 3700 AJ, Zeist, The Netherlands.
| | | | | | | | | | | |
Collapse
|
11
|
Windhofer F, Hauck K, Catcheside DEA, Kück U, Kempken F. Ds-like restless deletion derivatives occur in Tolypocladium inflatum and two foreign hosts, Neurospora crassa and Penicillium chrysogenum. Fungal Genet Biol 2002; 35:171-82. [PMID: 11848679 DOI: 10.1006/fgbi.2001.1323] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Single copies of the transposon Restless from Tolypocladium inflatum were introduced into Neurospora crassa and Penicillium chrysogenum. Excision of Restless from its donor site was investigated in N. crassa and in P. chrysogenum using direct selective conditions. In N. crassa, forward selection was also analyzed. Deleted Restless elements were frequently obtained in addition to the expected complete removal of Restless from its donor site. Similar deleted elements were also identified in T. inflatum employing a PCR amplification strategy. These deleted Restless copies strongly resemble maize Ds elements of various types, and direct repeated sequences of 3 to 16 bp were found to flank the truncated regions. In addition Ds1-like Restless elements were identified that carried foreign sequences between the inverted repeats. We discuss how Ds-like Restless elements might be generated by inaccurate excision from an active transposon copy.
Collapse
Affiliation(s)
- Frank Windhofer
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany
| | | | | | | | | |
Collapse
|
12
|
Nuttall SD, Hattarki M, Guthrie RE, Hudson PJ, Kortt AA. Utilization of the Streptoalloteichus hindustanus resistance determinant ShBle as a protein framework: effect of mutation upon ShBle dimerization and interaction of C-terminal displayed peptide epitopes. JOURNAL OF PROTEIN CHEMISTRY 1999; 18:813-21. [PMID: 10839617 DOI: 10.1023/a:1020618910455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We have selected the Streptoalloteichus hindustanus bleomycin-resistance protein ShBle, a 28-kDa homodimer, as a scaffold for the display of bioactive peptides and other peptide epitopes. To create a monomeric scaffold, we investigated the effect of mutating residue proline 9 to glycine. This residue plays a critical role in ShBle dimerization by affecting the position of the eight N-terminal residues which secure the interaction between the monomeric subunits. We demonstrate that this mutation weakens the dimerization interaction, resulting in establishment of a stable equilibrium between monomeric and dimeric ShBle species in solution. Circular dichroism and SDS-PAGE data indicate that the Pro9Gly mutation does not disrupt the structure of the molecule. Production of a fully monomeric form of ShBle required complete removal of the eight-residue N-terminal peptide, and the interaction across the now solvent-exposed hydrophobic interface of the ShBle monomer was insufficient to drive dimerization. To demonstrate efficient display of epitope tags on the ShBle protein, we displayed dual-octapeptide FLAG tags at the protein C-terminus. These additions did not interfere with protein folding or activity. The resulting ShBle scaffold was used to compare the efficiency of two commercial FLAG-specific antibodies by biosensor.
Collapse
Affiliation(s)
- S D Nuttall
- CSIRO Health Sciences and Nutrition, Parkville, Victoria, Australia.
| | | | | | | | | |
Collapse
|
13
|
Hallmann A, Rappel A. Genetic engineering of the multicellular green alga Volvox: a modified and multiplied bacterial antibiotic resistance gene as a dominant selectable marker. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1999; 17:99-109. [PMID: 10069071 DOI: 10.1046/j.1365-313x.1999.00342.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The green alga Volvox represents the simplest multicellular organism: Volvax is composed of only two cell types, somatic and reproductive. Volvox, therefore, is an attractive model system for studying various aspects of multicellularity. With the biolistic nuclear transformation of Volvox carteri, the powerful molecular genetic manipulation of this organism has been established, but applications have been restricted to an auxotrophic mutant serving as the DNA recipient. Therefore, a dominant selectable marker working in all strains and mutants of this organism is required. Among several gene constructs tested, the most advantageous results were obtained with a chimeric gene composed of the coding sequence of the bacterial ble gene, conferring resistance to the antibiotic zeocin, modified with insertions of two endogenous introns from the Volvox arylsulfatase gene and fused to 5' and 3' untranslated regions from the Volvox beta 2-tubulin gene. In the most suitable plasmid used, the gene dosage was increased 16-fold by a technique that allows exponential multiplication of a DNA fragment. Co-transformation of this plasmid and a non-selectable plasmid allowed the identification of zeocin resistant transformants with nuclear integration of both selectable and non-selectable plasmids. Stable expression of the ble gene and of genes from several non-selectable plasmids is demonstrated. The modified ble gene provides the first dominant marker for transformation of both wild-type and mutant strains of Volvox.
Collapse
Affiliation(s)
- A Hallmann
- Lehrstuhl Biochemie I, Universität Regensburg, Germany.
| | | |
Collapse
|
14
|
Stevens DR, Rochaix JD, Purton S. The bacterial phleomycin resistance gene ble as a dominant selectable marker in Chlamydomonas. MOLECULAR & GENERAL GENETICS : MGG 1996; 251:23-30. [PMID: 8628243 DOI: 10.1007/bf02174340] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A chimeric gene composed of the coding sequence of the ble gene from Streptoalloteichus hindustanus fused to the 5' and 3' untranslated regions of the Chlamydomonas reinhardtii nuclear gene RBCS2 has been constructed. Introduction of this chimeric gene into the nuclear genome of C. reinhardtii by co-transformation with the ARG7 marker yields Arg+ transformants of which approximately 80% possess the ble gene. Of these co-transformants, approximately 3% display a phleomycin-resistant (PmR) phenotype. Western blot analysis using antibodies against the ble gene product confirms the presence of the protein in the PmR transformants and genetic analysis demonstrates the co-segregation of the ble gene with the phenotype in progeny arising from the mating of a PmR transformant to wild-type strains. Direct selection of PmR transformants was achieved by allowing an 18-h period for recovery and growth of transformed cells prior to selection. This work represents the first demonstration of stable expression and inheritance of a foreign gene in the nuclear genome of C. reinhardtii and provides a useful dominant marker for nuclear transformation.
Collapse
Affiliation(s)
- D R Stevens
- Department of Biology, University College London, UK
| | | | | |
Collapse
|
15
|
DeModena JA, Gutiérrez S, Velasco J, Fernández FJ, Fachini RA, Galazzo JL, Hughes DE, Martín JF. The production of cephalosporin C by Acremonium chrysogenum is improved by the intracellular expression of a bacterial hemoglobin. BIO/TECHNOLOGY (NATURE PUBLISHING COMPANY) 1993; 11:926-9. [PMID: 7763915 DOI: 10.1038/nbt0893-926] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A DNA vector for expressing an oxygen-binding heme protein (Vitreoscilla hemoglobin, or VHb) in filamentous fungi was constructed and introduced into a cephalosporin C-producing strain of Acremonium chrysogenum. Expression of VHb in transformants was demonstrated by Western immunoblot analysis and by increased carbon monoxide binding activity of cell extracts. Several VHb-expressing transformants produced significantly higher yields of cephalosporin C than control strains in batch culture experiments. Using the same vector system, VHb was also expressed in the related fungus Penicillium chrysogenum.
Collapse
|