1
|
Traccis F, Presciuttini R, Pani PP, Sinclair JMA, Leggio L, Agabio R. Alcohol-medication interactions: A systematic review and meta-analysis of placebo-controlled trials. Neurosci Biobehav Rev 2021; 132:519-541. [PMID: 34826511 DOI: 10.1016/j.neubiorev.2021.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 09/20/2021] [Accepted: 11/15/2021] [Indexed: 11/28/2022]
Abstract
Alcohol and other xenobiotics may limit the therapeutic effects of medications. We aimed at investigating alcohol-medication interactions (AMI) after the exclusion of confounding effects related to other xenobiotics. We performed a systematic review and meta-analysis of controlled studies comparing the effects induced by alcohol versus placebo on pharmacodynamic and/or pharmacokinetic parameters of approved medications. Certainty in the evidence of AMI was assessed when at least 3 independent studies and at least 200 participants were available. We included 107 articles (3097 participants): for diazepam, cannabis, opioids, and methylphenidate, we found significant AMI and enough data to assign the certainty of evidence. Alcohol consumption significantly increases the peak plasma concentration of diazepam (low certainty; almost 290 participants), cannabis (high certainty; almost 650 participants), opioids (low certainty; 560 participants), and methylphenidate (moderate certainty; 290 participants). For most medications, we found some AMI but not enough data to assign them the certainty grades; for some medications, we found no differences between alcohol and placebo in any outcomes evaluated. Our results add further evidence for interactions between alcohol and certain medications after the exclusion of confounding effects related to other xenobiotics. Physicians should advise patients who use these specific medications to avoid alcohol consumption. Further studies with appropriate control groups, enough female participants to investigate sex differences, and elderly population are needed to expand our knowledge in this field. Short phrases suitable for indexing terms.
Collapse
Affiliation(s)
- Francesco Traccis
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy.
| | - Riccardo Presciuttini
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy.
| | - Pier Paolo Pani
- Health Social Services Public Health Trust Sardinia, Cagliari, Italy.
| | | | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism, Division of Intramural Clinical and Basic Research, National Institutes of Health, Baltimore and Bethesda, MD, United States; Medication Development Program, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, United States; Center for Alcohol and Addiction Studies, Brown University, Providence, RI, United States; Division of Addiction Medicine, Department of Medicine, Johns Hopkins University, Baltimore, MD, United States; Department of Neuroscience, Georgetown University, Washington, DC, United States.
| | - Roberta Agabio
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy.
| |
Collapse
|
2
|
Abstract
Pharmacokinetic interactions of ethanol with other drugs, including its effects upon drug metabolite disposition, are reviewed in terms of clearance concepts. This approach is particularly useful in understanding the mechanisms of ethanol-drug interactions, i.e. in separating the effects of ethanol upon drug clearance, volume of distribution and plasma protein binding. The application of clearance concepts provides the basis for understanding the qualitative differences in ethanol interactions with low and high hepatic extraction ratio drugs. The effects of short and long term ethanol consumption upon different types of drug metabolism (oxidative, acetylation and glucuronidation) have been considered. Long term ethanol consumption may increase the clearance of a drug by induction of oxidative metabolism whereas short term consumption may decrease the clearance of such a drug. Clearance by N-acetylation appears to be increased in the presence of ethanol, and clearance by conjugation to glucuronic acid is decreased for some drugs by single-dose consumption of ethanol.
Collapse
|