1
|
Marciniak J, Lossdörfer S, Knaup I, Bastian A, Craveiro RB, Jäger A, Wolf M. Orthodontic cell stress modifies proinflammatory cytokine expression in human PDL cells and induces immunomodulatory effects via TLR-4 signaling in vitro. Clin Oral Investig 2019; 24:1411-1419. [PMID: 31691860 DOI: 10.1007/s00784-019-03111-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 10/07/2019] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Biomechanical orthodontics loading of the periodontium initiates a cascade of inflammatory signaling events that induce periodontal remodeling and finally facilitate orthodontic tooth movement. Pattern recognition receptors such as toll-like receptors (TLRs) have been well characterized for their ability to induce the activation of inflammatory, immunomodulatory cytokines. Here, we examined whether the cellular response of human periodontal ligament (hPDL) cells to mechanical stress involves TLR-4 signaling in vitro. MATERIALS AND METHODS Confluent hPDL cells were cultured in the presence of 5 μg/ml TLR-4 antibody (TLR-4ab) for 1 h prior to the induction of compressive forces by the use of round glass plates for 24 h. At harvest, interleukin-6 and interleukin-8 (IL-6, IL-8) mRNA and protein expression were analyzed by real-time PCR and ELISA. The immunomodulatory role of mechanical cell stress and TLR-4 signaling was addressed in co-culture experiments of hPDL and THP-1 cells targeting monocyte adhesion and by culturing osteoclastic precursors (RAW 264.7) in the presence of the conditioned medium of hPDL cells that had been mechanically loaded before. RESULTS Basal expression of IL-6 and IL-8 was not affected by TLR-4ab, but increased significantly upon mechanical loading of hPDL cells. When cells were mechanically stressed in the presence of TLR-4ab, the effect seen for loading alone was markedly reduced. Likewise, monocyte adhesion and osteoclastic differentiation were enhanced significantly by mechanical stress of hPDL cells and this effect was partially inhibited by TLR-4ab. CONCLUSIONS The results of the present study indicate a proinflammatory and immunomodulatory influence of mechanical loading on hPDL cells. Intracellular signaling involves a TLR-4-dependent pathway. CLINICAL RELEVANCE These findings hold out the prospect of interfering with the cellular response to mechanical cell stress in order to minimize undesired side effects of orthodontic tooth movement.
Collapse
Affiliation(s)
- Jana Marciniak
- Department of Orthodontics, Dental Clinic, University of Aachen, Pauwelsstr. 30, 52074, Aachen, Germany.,Department of Orthodontics, Dental Clinic, University of Bonn, Bonn, Germany
| | - Stefan Lossdörfer
- Department of Orthodontics, Dental Clinic, University of Bonn, Bonn, Germany
| | - Isabel Knaup
- Department of Orthodontics, Dental Clinic, University of Aachen, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Asisa Bastian
- Department of Orthodontics, Dental Clinic, University of Aachen, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Rogerio B Craveiro
- Department of Orthodontics, Dental Clinic, University of Aachen, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Andreas Jäger
- Department of Orthodontics, Dental Clinic, University of Bonn, Bonn, Germany
| | - Michael Wolf
- Department of Orthodontics, Dental Clinic, University of Aachen, Pauwelsstr. 30, 52074, Aachen, Germany.
| |
Collapse
|
2
|
Marciniak J, Lossdörfer S, Kirschneck C, Deschner J, Jäger A, Wolf M. Heat shock protein 70 dampens the inflammatory response of human PDL cells to mechanical loading in vitro. J Periodontal Res 2019; 54:481-488. [PMID: 30865286 DOI: 10.1111/jre.12648] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 02/04/2019] [Accepted: 02/11/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND OBJECTIVE Previously, we demonstrated an inflammatory response of human PDL (hPDL) cells to mechanical loading. The cellular reaction was dampened by heat pre-treatment suggesting a protective role for heat shock proteins (HSP) during stress-induced ischemia. Here we explored if HSP70, which has already been documented in the pressure zone of tooth movement, might be regulatorily involved in the attenuation of the inflammatory response. MATERIALS AND METHODS Fifth passage hPDL cells were mechanically loaded in the presence of the HSP70 inhibitor VER155008. Cell morphology, HSP70 expression, viability, IL-6 and IL-8 expression were determined by means of microscopy, realtime-PCR and ELISA. The conditioned medium of mechanically loaded and pre-treated hPDL cells was used to culture monocytes to identify a potential impact on adhesion and osteoclastic differentiation capacity. RESULTS Mechanical cell stress resulted in a significant increase of pro-inflammatory parameters. HSP70 inhibition led to a further enhancement of cytokine expression. The conditioned medium of mechanically loaded hPDL cells significantly increased monocyte adhesion and differentiation along the osteoclastic pathway. VER155008 pronounced this effect significantly. CONCLUSION The results indicate a regulatory role for HSP70 in the control of the inflammatory hPDL cell response to mechanical loading and identify HSP70 as a target in the attempt to attenuate tissue damage during orthodontic tooth movement. Furthermore, the present findings point to the risk of increased periodontal destruction when medication targeting HSP70 is applied for severe medical conditions during orthodontic tooth movement.
Collapse
Affiliation(s)
- Jana Marciniak
- Department of Orthodontics, Dental Clinic, University of Aachen, Aachen, Germany.,Department of Orthodontics, Dental Clinic, University of Bonn, Bonn, Germany
| | - Stefan Lossdörfer
- Department of Orthodontics, Dental Clinic, University of Bonn, Bonn, Germany
| | - Christian Kirschneck
- Department of Orthodontics, Dental Clinic, University of Regensburg, Regensburg, Germany
| | - James Deschner
- Department of Periodontology and Restorative Dentistry, University of Mainz, Mainz, Germany
| | - Andreas Jäger
- Department of Orthodontics, Dental Clinic, University of Bonn, Bonn, Germany
| | - Michael Wolf
- Department of Orthodontics, Dental Clinic, University of Aachen, Aachen, Germany
| |
Collapse
|
3
|
Wolf M, Marciniak J, Lossdörfer S, Kirschneck C, Brauner I, Götz W, Jäger A. Role of HSP70 protein in human periodontal ligament cell function and physiology. Ann Anat 2018; 221:76-83. [PMID: 30253189 DOI: 10.1016/j.aanat.2018.09.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 06/06/2018] [Accepted: 09/14/2018] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Heat pre-treatment of mechanically loaded human periodontal ligament cells (hPDL) dampens the inflammatory cellular response, as evidenced by a reduced expression of pro-inflammatory cytokines, inhibition of monocyte adhesion and osteoclastic differentiation. These findings imply heat shock proteins (HSP) as cell protective molecules acting in the PDL that are up-regulated upon ischemia caused by mechanical loading. HSP70 and its inhibition by VER155008 as the active agent in several pharmaceuticals are established targets and strategies, respectively, in the treatment of neoproliferative diseases. However, the effect of both players on periodontal remodeling in unknown. Therefore, we analyzed the role of HSP70 and its frequently used inhibitor VER155008 in the regulation of physiological hPDL cell functions and immune cell interaction. MATERIALS AND METHODS Fifth passage hPDL cells were cultured in the presence of 25μm HSP70 inactivating agent VER155008. At harvest, HSP70 expression, cell proliferation, and parameters of cell interaction, colony formation and wound healing were analyzed by means of real-time PCR, immunohistochemistry, Western blot, biochemical MTS assay, microscopy, and functional assays for monocyte adhesion and differentiation. RESULTS Basal HSP70 expression and hPDL cell morphology were not affected by HSP70 inhibitor VER155008. In contrast, cell proliferation, tissue defect healing, and colony formation were reduced significantly following HSP70 inhibition, whereas apoptosis and necrosis, monocyte adhesion and osteoclastic differentiation were markedly increased. CONCLUSIONS The present data indicate a regulatory role for HSP70 protein in hPDL cell biology. CLINICAL RELEVANCE These findings identify HSP70 as a promising target in the attempt to modify periodontal remodeling and point to potential periodontal side effects of HSP70 pharmaceutical usage.
Collapse
Affiliation(s)
- Michael Wolf
- Department of Orthodontics, University Hospital of the RWTH Aachen, Germany.
| | - Jana Marciniak
- Department of Orthodontics, University Hospital of the RWTH Aachen, Germany; Department of Orthodontics, Dental Clinic, University of Bonn, Germany
| | - Stefan Lossdörfer
- Department of Orthodontics, Dental Clinic, University of Bonn, Germany
| | | | - Isabel Brauner
- Department of Orthodontics, University Hospital of the RWTH Aachen, Germany
| | - Werner Götz
- Department of Orthodontics, Dental Clinic, University of Bonn, Germany
| | - Andreas Jäger
- Department of Orthodontics, Dental Clinic, University of Bonn, Germany
| |
Collapse
|
4
|
Wolf M, Ao M, Chavez M, Kolli T, Thumbigere-Math V, Becker K, Chu E, Jäger A, Somerman M, Foster B. Reduced Orthodontic Tooth Movement in Enpp1 Mutant Mice with Hypercementosis. J Dent Res 2018; 97:937-945. [PMID: 29533727 PMCID: PMC6728553 DOI: 10.1177/0022034518759295] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Previous studies revealed that cementum formation is tightly regulated by inorganic pyrophosphate (PPi), a mineralization inhibitor. Local PPi concentrations are determined by regulators, including ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1), which increases PPi concentrations by adenosine triphosphate hydrolysis. Orthodontic forces stimulate alveolar bone remodelling, leading to orthodontic tooth movement (OTM). To better understand how disturbed mineral metabolism and the resulting altered periodontal structures affect OTM, we employed Enpp1 mutant mice that feature reduced PPi and increased cervical cementum in a model of OTM induced by a stretched closed-coil spring ligated between the maxillary left first molar and maxillary incisors. We analyzed tooth movement, osteoclast/odontoclast response, and tooth root resorption by micro-computed tomography, histology, histomorphometry, and immunohistochemistry. Preoperatively, we noted an altered periodontium in Enpp1 mutant mice, with significantly increased periodontal ligament (PDL) volume and thickness, as well as increased PDL-bone/tooth root surface area, compared to wild-type (WT) controls. After 11 d of orthodontic treatment, Enpp1 mutant mice displayed 38% reduced tooth movement versus WT mice. Molar roots in Enpp1 mutant mice exhibited less change in PDL width in compression and tension zones compared to WT mice. Root resorption was noted in both groups with no difference in average depths, but resorption lacunae in Enpp1 mutant mice were almost entirely limited to cementum, with 150% increased cementum resorption and 92% decreased dentin resorption. Osteoclast/odontoclast cells were reduced by 64% in Enpp1 mutant mice, with a predominance of tartrate-resistant acid phosphatase (TRAP)-positive cells on root surfaces, compared to WT mice. Increased numbers of TRAP-positive cells on root surfaces were associated with robust immunolocalization of osteopontin (OPN) and receptor-activator of NF-κB ligand (RANKL). Collectively, reduced response to orthodontic forces, decreased tooth movement, and altered osteoclast/odontoclast distribution suggests Enpp1 loss of function has direct effects on clastic function/recruitment and/or indirect effects on periodontal remodeling via altered periodontal structure or tissue mineralization.
Collapse
Affiliation(s)
- M. Wolf
- Department of Orthodontics, Aachen
University, Aachen, Germany
- National Institute of Arthritis and
Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH),
Bethesda, MD, USA
| | - M. Ao
- National Institute of Arthritis and
Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH),
Bethesda, MD, USA
| | - M.B. Chavez
- Division of Biosciences, College of
Dentistry, The Ohio State University, Columbus, OH, USA
| | - T.N. Kolli
- Division of Biosciences, College of
Dentistry, The Ohio State University, Columbus, OH, USA
| | - V. Thumbigere-Math
- National Institute of Arthritis and
Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH),
Bethesda, MD, USA
- Division of Periodontics, School of
Dentistry, University of Maryland, Baltimore, MD, USA
| | - K. Becker
- Department of Orthodontics,
Universitätsklinikum Düsseldorf, Düsseldorf, Germany
| | - E.Y. Chu
- National Institute of Arthritis and
Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH),
Bethesda, MD, USA
| | - A. Jäger
- Department of Orthodontics, University
of Bonn, Bonn, Germany
| | - M.J. Somerman
- National Institute of Arthritis and
Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH),
Bethesda, MD, USA
| | - B.L. Foster
- Division of Biosciences, College of
Dentistry, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
5
|
Heidary Z, Mojra A, Shirazi M, Bazargan M. A novel approach for early evaluation of orthodontic process by a numerical thermomechanical analysis. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2018; 34:e2899. [PMID: 28544269 DOI: 10.1002/cnm.2899] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 04/10/2017] [Accepted: 05/17/2017] [Indexed: 06/07/2023]
Abstract
The main objective of this paper is to propose a novel method that provides an opportunity to evaluate an orthodontic process at early phase of the treatment. This was accomplished by finding out a correlation between the applied orthodontic force and thermal variations in the tooth structure. To this end, geometry of the human tooth surrounded by the connective soft tissue called the periodontal ligament and the bone was constructed by employing dental CT scan images of a specific case. The periodontal ligament was modeled by finite strain viscoelastic model through a nonlinear stress-strain relation (hyperelasticity) and nonlinear stress-time relation (viscoelasticity). The tooth structure was loaded by a lateral force with 15 different quantities applied to 20 different locations, along the midedge of the tooth crown. The resultant compressive stress in the periodontal ligament was considered as the cause of elevated cell activity that was modeled by a transient heat flux in the thermal analysis. The heat flux value was estimated by conducting an experiment on a pair of rats. The numerical results showed that by applying an orthodontic force to the tooth structure, a significant temperature rise was observed. By measuring the temperature rise, the orthodontic process can be evaluated.
Collapse
Affiliation(s)
- Z Heidary
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | - A Mojra
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | - M Shirazi
- Department of Orthodontics and Dental Research Centre, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - M Bazargan
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| |
Collapse
|
6
|
Short-term heat pre-treatment modulates the release of HMGB1 and pro-inflammatory cytokines in hPDL cells following mechanical loading and affects monocyte behavior. Clin Oral Investig 2015; 20:923-31. [PMID: 26358476 DOI: 10.1007/s00784-015-1580-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 08/26/2015] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Heat shock proteins (HSP) act as cell-protective molecules that are upregulated upon thermal insult, hypoxia, and ischemia. Such ischemic conditions can be found during tissue remodeling associated with orthodontic tooth movement or trauma when compression forces lead to cell necrosis and subsequent clearance of cellular debris by immune competent cells. Host immune overreaction can result in undesired side effects such as tooth root resorption. Here, we analyzed whether heat pre-treatment would affect the initially catabolic host immune response induced by mechanical loading of human periodontal ligament (hPDL) cells, which represent major constituents of the tooth supporting apparatus involved in the regulation of periodontal remodeling. MATERIALS AND METHODS Fifth passage hPDL cells were exposed to an elevated temperature of 43° for 1 h prior to mechanical loading. Cell morphology, high mobility group box protein 1 (HMGB1), interleukin (IL)-6, and IL-8 expression were analyzed microscopically and by ELISA. The physiological relevance for monocyte behavior was tested in monocyte adhesion and osteoclast differentiation assays. RESULTS Short-term heat pre-treatment did not show any visible effect on hPDL cell morphology, but resulted in a significant downregulation of pro-inflammatory cytokines when being additionally loaded mechanically. Supernatants of heat-exposed hPDL cell cultures demonstrated a reduced impact on monocyte adhesion and osteoclastic differentiation. CONCLUSIONS Heat pre-treatment of hPDL cells induces cell-protective mechanisms towards mechanical stress and favors the reduction of cell stress associated effects on monocyte/macrophage physiology. CLINICAL RELEVANCE These data present the induction of heat shock proteins as a promising treatment option to limit undesired side effects of periodontal remodeling.
Collapse
|
7
|
Lui PPY, Lee YW, Mok TY, Cheuk YC. Peri-tunnel bone loss: does it affect early tendon graft to bone tunnel healing after ACL reconstruction? Knee Surg Sports Traumatol Arthrosc 2015; 23:740-51. [PMID: 25839070 DOI: 10.1007/s00167-013-2697-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE The clinical relevance and mechanisms of local bone loss early post-anterior cruciate ligament (ACL) reconstruction remain unclear. The early spatial and temporal changes of peri-tunnel bone, its molecular mechanisms and its relationships with graft-bone tunnel healing were investigated in a 12-week-old rat model. METHODS At various times, the reconstructed ACL complex was harvested for vivaCT imaging, biomechanical test, histology and immunohistochemical staining of CD68+ cells (a monocyte-macrophage lineage marker), MMP1 and MMP13. RESULTS The peri-tunnel bone resorbed simultaneously with improvement of graft-bone tunnel healing. There were 30.1 ± 17.4, 46.8 ± 10.5 and 81.5 ± 12.3 % loss of peri-tunnel BMD as well as 43.2 ± 21.7, 78.7 ± 8.5 and 92.4 ± 17.7 % loss of peri-tunnel bone volume/total volume (BV/TV) at week 6 at the distal femur, epiphysis and metaphysis of tibia, respectively. MMP1, MMP13 and CD68+ cells were expressed at the graft-bone tunnel interface and peri-tunnel bone and increased with time post-reconstruction at the tibia. The ultimate load and stiffness of the healing complex positively correlated with tibial tunnel bone formation and negatively correlated with tibial peri-tunnel bone. Tunnel BV/TV at the tibial metaphysis and epiphysis showed the highest correlation with ultimate load (ρ = 0.591; p = 0.001) and stiffness (ρ = 0.427; p = 0.026) of the complex, respectively. CONCLUSION There was time-dependent loss of peri-tunnel bone early post-reconstruction, with the greatest loss occurring at the tibial metaphysis. This was consistent with high expression of MMP1, MMP13 and CD68+ cells at the graft-bone tunnel interface and the peri-tunnel region. The significant loss of peri-tunnel bone, though not critically affecting early tunnel healing, suggested the need to protect the knee joint early post-reconstruction.
Collapse
|
8
|
Regulation of macrophage migration and activity by high-mobility group box 1 protein released from periodontal ligament cells during orthodontically induced periodontal repair: an in vitro and in vivo experimental study. J Orofac Orthop 2013; 74:420-34. [PMID: 23974442 DOI: 10.1007/s00056-013-0167-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 02/27/2013] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Recent studies have shown that periodontal ligament (PDL) cells interact with macrophages from the immune system during orthodontically induced repair of periodontal tissue. Hypothesizing that high-mobility group box 1 (HMGB1) protein is released by mechanically stressed PDL cells into the extracellular space and has a role in mediating the local immune response by acting as an "alarmin", this study was performed to further elucidate these cellular interactions, with a special focus on the impact of proinflammatory mediators secreted by PDL cells on macrophage physiology. MATERIALS AND METHODS The study included an in vivo part in which orthodontic stress was induced in rats and their PDL analyzed for expression of HMGB1 by immunohistochemistry after 5 days of tooth movement. In the in vitro part, human PDL cells were subjected to compressive loading, followed by stimulating human macrophages with conditioned supernatants of these stressed PDL cells and analyzing how mediators that had been released by these cells into the medium would impact macrophage physiology. Assays for macrophage migration and osteoclast differentiation were used in addition to immunohistochemistry, enzyme-linked immunosorbent assays, and western blotting. RESULTS Induction of mechanical stress was found to upregulate HMGB1 expression both in vivo and in vitro. At the same time, translocation HMGB1 from nuclei into cytoplasm was observed. Culturing macrophages in conditioned PDL cell medium was associated with enhanced chemotactic migration and osteoclast differentiation. Addition of anti-HMGB1 antibodies to inhibit HMGB1 in the conditioned medium was found to significantly attenuate these effects. A less marked increase of migration and osteoclast differentiation by macrophages was observed after isolated addition of HMGB1, at its observed pathological concentration, to nonconditioned medium. CONCLUSION This study clearly indicates an immunomodulatory potential of human PDL cells via release of mediators, including HMGB1 protein. Our finding that these mediators modify the migration and differentiation of macrophages as a function of periodontal repair during orthodontic treatment broadens the theoretical basis toward developing interventional strategies to avoid orthodontically induced root resorption.
Collapse
|
9
|
Wolf M, Lossdorfer S, Kupper K, Jager A. Regulation of high mobility group box protein 1 expression following mechanical loading by orthodontic forces in vitro and in vivo. Eur J Orthod 2013; 36:624-31. [DOI: 10.1093/ejo/cjt037] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
10
|
Wolf M, Lossdörfer S, Abuduwali N, Jäger A. Potential role of high mobility group box protein 1 and intermittent PTH (1-34) in periodontal tissue repair following orthodontic tooth movement in rats. Clin Oral Investig 2012; 17:989-97. [PMID: 22777389 DOI: 10.1007/s00784-012-0777-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 06/21/2012] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Recent studies indicate that high mobility group box protein 1 (HMGB1) can be released by necrotic and damaged cells and functions as an alarmin that is recognized by the innate immune system. Little is known about the role of HMGB1 within the periodontal ligament (PDL). Therefore, we examined HMGB1 expression by PDL cells in vitro and compared the findings to an in vivo model of orthodontically induced tooth root resorption. In addition, we addressed the question of whether a potentially anabolic intermittent administration of parathyroid hormone (iPTH) would modulate the expression of HMGB1. MATERIALS AND METHODS In confluent PDL cell cultures, HMGB1 messenger RNA (mRNA) expression was quantified by real-time polymerase chain reaction. In a rat model comprising 25 animals, mechanical loading for 5 days was followed by administration of either iPTH (1-34) systemically or sham injections for up to 56 days. HMGB1 expression was determined by means of immunohistochemistry and histomorphometry. RESULTS The in vitro experiments revealed an inhibitory effect of iPTH on basal HMGB1 mRNA expression in confluent PDL cells. In vivo, the mechanical force-induced enhanced HMGB1 protein expression declined time dependently. Intermittent PTH further inhibited HMGB1 expression. The significantly higher basal HMGB1 protein expression in the former compression side was followed by a more pronounced time- and iPTH-dependent decline in the same area. CONCLUSIONS These data indicate a major role for HMGB1 in the regulation of PDL wound healing following mechanical load-induced tissue injury. CLINICAL RELEVANCE The findings point to the potential benefit of iPTH in the attempt to support these immune-associated reparative processes.
Collapse
Affiliation(s)
- M Wolf
- Department of Orthodontics, Dental Clinic, University of Bonn, Welschnonnenstr. 17, 53111, Bonn, Germany
| | | | | | | |
Collapse
|
11
|
Tripuwabhrut P, Brudvik P, Fristad I, Rethnam S. Experimental orthodontic tooth movement and extensive root resorption: periodontal and pulpal changes. Eur J Oral Sci 2011; 118:596-603. [PMID: 21083621 DOI: 10.1111/j.1600-0722.2010.00786.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Previous studies have reported changes both in dental pulp and in periodontal ligament (PDL) following orthodontic tooth movement. However, pulpal changes following extensive root resorption after orthodontic tooth movement have not been studied in detail. The aim of this study was therefore to evaluate inflammatory changes, both in the dental pulp and in the compressed PDL, after experimentally induced extensive root resorption. Extensive root resorption was induced in rats by the activation and re-activation of orthodontic force, with a short intervening period of no force application. The distribution of immune cells, nerve fibres and blood vessels was studied immunohistochemically using antibodies against CD68-immunoreactive (IR) cells, major histocompatibility complex (MHC) class II Ia-expressing cells, CD43-IR cells, protein gene product 9.5 (PGP 9.5), and laminin. In the compressed PDL of experimental first molars, significantly increased density of CD68-IR cells and MHC class II Ia-expressing cells were found, whereas the density of CD43-IR cells were unchanged when compared with control second molars. In the compressed PDL, there was an increased density of blood vessels, but no sprouting of nerve fibres. In the dental pulp, however, no increased density of immune cells or sprouting of nerve fibres was recorded. In conclusion, inflammation after extensive root resorption was confined to the compressed PDL, whereas the dental pulp was unaffected.
Collapse
Affiliation(s)
- Polbhat Tripuwabhrut
- Department of Clinical Dentistry, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway.
| | | | | | | |
Collapse
|
12
|
Miyauchi M, Takata T, Ito H, Ogawa I, Kudo Y, Takekoshi T, Nikai H. Distribution of macrophage lineage cells in rat gingival tissue after topical application of lipopolysaccharide: an immunohistochemical study using monoclonal antibodies: 0X6, ED1 and ED2. J Periodontal Res 2010. [DOI: 10.1111/j.1600-0765.1998.tb02329.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Xie R, Kuijpers-Jagtman AM, Maltha JC. Osteoclast differentiation and recruitment during early stages of experimental tooth movement in rats. Eur J Oral Sci 2009; 117:43-50. [DOI: 10.1111/j.1600-0722.2008.00588.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Xie R, Kuijpers-Jagtman AM, Maltha JC. Osteoclast differentiation during experimental tooth movement by a short-term force application: an immunohistochemical study in rats. Acta Odontol Scand 2008; 66:314-20. [PMID: 18720051 DOI: 10.1080/00016350802317488] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE The origin of osteoclasts responsible for bone resorption during orthodontic tooth movement is not yet clear. Their precursors may reside within the periodontal ligament (PDL) or could be recruited from the circulation or the bone marrow. The aim of this study was to investigate the spatial and sequential distribution of osteoclast precursors during experimental tooth movement by using three differentiation markers: receptor for macrophage colony stimulating factor (c-Fms), receptor activator of nuclear factor-kappaB (RANK), and calcitonin receptor (CTR). MATERIAL AND METHODS Six-week-old Wistar rats were used. Elastic bands were inserted between the upper 1st and 2nd molars for 1, 2, 3, and 6 days. Immunohistochemical staining for c-Fms, RANK, or CTR was performed on parasagittal sections and positive cells were counted. RESULTS Before force application, many c-Fms+ and a few RANK+ precursors were present in the bone marrow. No c-Fms+ osteoclast precursors were observed in the PDL. After force application, the number of RANK+ but not c-Fms+ precursors increased rapidly in the PDL. In bone marrow, the number of c-Fms+ and RANK+ precursors also increased rapidly, as did multinuclear c-Fms+, RANK+, and CTR+ cells. Subsequently, the number of c-Fms+, RANK+, and CTR+ multinuclear cells in the PDL increased. After 6 days, the expression profiles tended to return to baseline levels. CONCLUSION Osteoclast precursors differentiate within the bone marrow and then migrate into the PDL during early tooth movement.
Collapse
|
15
|
Jäger A, Kunert D, Friesen T, Zhang D, Lossdörfer S, Götz W. Cellular and extracellular factors in early root resorption repair in the rat. Eur J Orthod 2008; 30:336-45. [PMID: 18632841 DOI: 10.1093/ejo/cjn012] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The aim of this study was to investigate the role of extracellular matrix components, such as collagen type I, fibronectin, and osteopontin (OPN) during cementum repair following experimentally induced tooth movement, and to characterize the cells taking part in the regenerative process. The upper right first molars were moved mesially in 21 three-month-old male Wistar rats using a coil spring with a force of 0.5 N. After 9 days, the appliance was removed and the animals were killed in groups of three immediately after withdrawal of the force and 5, 7, 10, 12, 14, and 17 days later. Three rats served as non-experimental control animals. The maxillae were prepared and processed for histological analysis. Together with the disappearance of the multinucleated odontoclasts from the resorption lacunae, signs of repair were visible 5 days after the release of the orthodontic force. The first signs of cementum repair were seen on day 10. The newly produced cementum was of the acellular extrinsic fibre type (AEFC) and reattachment was achieved with the principal periodontal ligament (PDL) fibres orientated almost perpendicular to the root surface. The initial interface formed between the old and new cementum, as well as the new AEFC, was characterized by a strong immunoreaction with OPN and collagen I antibody, but only a weak immunoreaction with the fibronectin antibody. Only a small number of mononuclear cells, which were involved in the repair process, showed a positive immunoreaction with the osteoblastic lineage markers runt-related transcription factor 2 and osteocalcin. These same cells stained sparsely with muscle segment homeobox homologue 2, but not with the E11 antibody. Thus, most of the cells associated with this reparative activity on the surface of the lacunae were differentiated PDL cells of the fibroblastic phenotype. Cells with a defined osteoblastic phenotype seemed to be of minor importance in this repair process.
Collapse
Affiliation(s)
- Andreas Jäger
- Department of Orthodontics, University of Bonn, Bonn, Germany.
| | | | | | | | | | | |
Collapse
|
16
|
Bildt MM, Henneman S, Maltha JC, Kuijpers-Jagtman AM, Von den Hoff JW. CMT-3 inhibits orthodontic tooth displacement in the rat. Arch Oral Biol 2007; 52:571-8. [PMID: 17174265 DOI: 10.1016/j.archoralbio.2006.11.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2006] [Revised: 10/25/2006] [Accepted: 11/06/2006] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Orthodontic tooth movement requires extensive remodeling of the periodontal ligament (PDL) and the alveolar bone. Osteoclasts resorb bone, allowing teeth to migrate in the direction of the force. Matrix metalloproteinases (MMPs) are able to degrade the extracellular matrix of the periodontal tissues. Chemically modified tetracyclines (CMTs) can inhibit MMPs, but lack antimicrobial activity. We hypothesize that CMT-3 will decrease the rate of orthodontic tooth movement in the rat. DESIGN Eighteen Wistar rats received a standardized orthodontic appliance at one side of the maxilla. During 14 days, three groups of six rats received a daily dose of 0, 6 or 30mg/kg CMT-3, and tooth displacement was measured. Thereafter, osteoclasts were counted on histological sections using an ED-1 staining. Multi- and mononuclear ED-1-positive cells in the PDL were also counted. In addition, sections were stained for MMP-9. RESULTS CMT-3 significantly inhibited tooth movement (p=0.03) and also decreased the number of osteoclasts at the compression sides in the 30mg/kg group (p<0.05). Significantly more mono- than multinuclear ED-1-positive cells were present in the PDL, but no significant differences were found between the dosage groups. Osteoclasts in the 30mg/kg group seemed to contain less MMP-9 than in the control. CONCLUSIONS CMT-3 inhibits tooth movement in the rat, probably by reducing the number of osteoclasts at the compression side. This might be due to induction of apoptosis in activated osteoclasts or reduced osteoclast migration. Reduced MMP activity by CMT-3 might also directly inhibit degradation of the organic bone matrix.
Collapse
Affiliation(s)
- M M Bildt
- Radboud University Nijmegen Medical Centre, Department of Orthodontics & Oral Biology, Philips van Leydenlaan 25, Nijmegen, Netherlands
| | | | | | | | | |
Collapse
|
17
|
Ren Y, Kuijpers-Jagtman AM, Maltha JC. Immunohistochemical evaluation of osteoclast recruitment during experimental tooth movement in young and adult rats. Arch Oral Biol 2005; 50:1032-9. [PMID: 15963453 DOI: 10.1016/j.archoralbio.2005.04.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2005] [Accepted: 04/22/2005] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Orthodontic tooth movement starts slower in adults than in juveniles, but the rate of tooth movement in later phases is the same in both age groups. The hypotheses to be tested are that these phenomena are related to slower osteoclast recruitment in adults than in juveniles, but that in later phases the osteoclast numbers are the same in both age groups. DESIGN Standardized orthodontic tooth movement was performed in two groups of 30 rats, aged 6 weeks and 9-12 months, respectively. All maxillary molars at one side were together moved mesially by a continuous force of 10 cN. The other side served as a control. After 1, 2, 4, 8 and 12 weeks, groups of animals were killed. After ED1 staining osteoclast numbers at the mesial and distal sides of selected roots were counted. RESULTS At the compression sides osteoclast numbers increased in both age groups. In young rats, a maximum was reached at 2 weeks, in adults at 4 weeks. In later phases of tooth movement, the number of osteoclasts in the adults was approximately twice as high as in the juveniles, while the rate of tooth movement was the same. A positive correlation between the rate of tooth movement and osteoclast numbers was found only in young rats. CONCLUSIONS Orthodontic forces induce faster osteoclast recruitment in young than in adult rats and more osteoclasts are needed to achieve a certain rate of tooth movement in adult than in young rats.
Collapse
Affiliation(s)
- Yijin Ren
- Department of Orthodontics, University Medical Center Groningen, Triade gebouw, Ingang 24, Hanzeplein 1, 9700 RB Groningen, The Netherlands.
| | | | | |
Collapse
|
18
|
Zhang D, Goetz W, Braumann B, Bourauel C, Jaeger A. Effect of soluble receptors to interleukin-1 and tumor necrosis factor alpha on experimentally induced root resorption in rats. J Periodontal Res 2003; 38:324-32. [PMID: 12753372 DOI: 10.1034/j.1600-0765.2003.00410.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVE In this study, the role of the inflammatory cytokines interleukin-1 (IL-1) and tumor necrosis factor alpha (TNFalpha) in the course of mechanically induced root resorption was investigated. METHODS Mechanical induction of root resorption was performed on the upper left first molars in 18 male Wistar rats according to the method of Nakane and Kameyama. Starting on day minus 1, six animals received daily intraperitoneal injections of 2 ml of 1 micro g/ml soluble receptors to IL-1 (sIL-1RII) and another six animals were administered the same dose of soluble receptors to TNFalpha (sTNFalpha-RI). Six animals served as a control. On d 7 the left maxillae were prepared for histological and morphometric analysis of the extent of the root resorption that had developed. RESULTS The qualitative and quantitative results demonstrated that in both receptor groups the amount of root resorption was significantly reduced. Especially following systemic application of sTNFalpha-RI, root resorption was nearly completely prevented. CONCLUSIONS Our results indicate that IL-1 and more particularly TNFalpha are important for the induction and the further process of mechanically induced root resorption in the rat.
Collapse
Affiliation(s)
- Dongliang Zhang
- Jilin University, Dental School, Department of Orthodontics, Jilin, People's Republic of China
| | | | | | | | | |
Collapse
|
19
|
Abstract
Immune responses within the testis are regulated in a manner that provides protection for the developing male germ cells, while permitting qualitatively normal inflammatory responses and protection against infection. The large population of resident-type macrophages in the testis is strongly implicated in mediating this specialised immunological environment. Several studies in the rat have shown that testicular macrophages retain their cytotoxic and phagocytic capacity, but have greatly diminished pro-inflammatory function and even exhibit immunosuppressive activity. While the local mechanisms that control the phenotype of the testicular macrophage population are unknown, evidence points to the influence of the testicular somatic cells, the Sertoli and Leydig cells. A smaller but significant population of macrophages that lack expression of resident macrophage markers, is also found in the rat testis. The functional role of these macrophages remains to be defined, but they most likely represent circulating monocytes or newly-arrived testicular macrophages, and, therefore, may contribute to sustaining inflammatory responses within the testis. Further investigation of the immune-related functions of these different macrophage subsets, and the testicular somatic cells, during immunological and inflammatory events should provide a better understanding of how the testicular immune environment is maintained and regulated.
Collapse
Affiliation(s)
- Mark P Hedger
- Monash Institute of Reproduction and Development, Monash Medical Centre, Monash University, Clayton, Melbourne, Vic., Australia.
| |
Collapse
|
20
|
Götz W, Krüger U, Ragotzki S, Lossdörfer S, Jäger A. Immunohistochemical localization of components of the insulin-like growth factor-system in human deciduous teeth. Connect Tissue Res 2002; 42:291-302. [PMID: 11913773 DOI: 10.3109/03008200109016843] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
To investigate the occurrence of components of the insulin-like growth factor (IGF) system during the resorption process of shedding human deciduous teeth, we investigated sections of 13 decalcified and paraffin-embedded deciduous teeth immunohistochemically with antibodies against IGF-I and -II, six IGF binding proteins (IGFBPs 1-6) and the IGF receptors IGF1R and IGF2R. The teeth were in different stages of resorption and all showed reparative cementum formation. It was found that acellular extrinsic fiber cementum, reversal lines and reparative cellular intrinsic fiber cementum were immunoreactive for both IGFs and various IGFBPs. Therefore, in human deciduous teeth, all subgroups of cementum, but not dentine, may represent sources of components of the IGF system. Odontoclasts did not carry IGFs or the IGF1R, but IGFBPs and the IGF2R. Therefore, these cells, in contrast to osteoclasts, may not respond to IGFs, but may be involved in the release and sequestration of IGFs from cementum during the resorption process. In contrast to odontoclasts, cementoblasts and periodontal ligament (PDL) fibroblasts carried IGF1R. The influence of the IGF system on the function of these cells with respect to periodontal matrix turnover and cementogenesis is discussed. On the behalf of the IGFBP immunoreactivities found, the PDL extracellular matrix can be considered to be a reservoir for IGF system components, where binding proteins may regulate IGF distribution and activity.
Collapse
Affiliation(s)
- W Götz
- Center of Anatomy, Georg-August-University of Goettingen, Dept of Histology, Germany.
| | | | | | | | | |
Collapse
|
21
|
Miao D, Scutt A. Recruitment, augmentation and apoptosis of rat osteoclasts in 1,25-(OH)2D3 response to short-term treatment with 1,25-dihydroxyvitamin D3 in vivo. BMC Musculoskelet Disord 2002; 3:16. [PMID: 12052261 PMCID: PMC116579 DOI: 10.1186/1471-2474-3-16] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2001] [Accepted: 06/07/2002] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Although much is known about the regulation of osteoclast (OC) formation and activity, little is known about OC senescence. In particular, the fate of of OC seen after 1,25-(OH)2D3 administration in vivo is unclear. There is evidence that the normal fate of OC is to undergo apoptosis (programmed cell death). We have investigated the effect of short-term application of high dose 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) on OC apoptosis in an experimental rat model. METHODS OC recruitment, augmentation and apoptosis was visualised and quantitated by staining histochemically for tartrate resistant acid phosphatase (TRAP), double staining for TRAP/ED1 or TRAP/DAPI, in situ DNA fragmentation end labelling and histomorphometric analysis. RESULTS Short-term treatment with high-dose 1,25-(OH)2D3 increased the recruitment of OC precursors in the bone marrow resulting in a short-lived increase in OC numbers. This was rapidly followed by an increase in the number of apoptotic OC and their subsequent removal. The response of OC to 1,25-(OH)2D3 treatment was dose and site dependent; higher doses producing stronger, more rapid responses and the response in the tibiae being consistently stronger and more rapid than in the vertebrae. CONCLUSIONS This study demonstrates that (1) after recruitment, OC are removed from the resorption site by apoptosis (2) the combined use of TRAP and ED1 can be used to identify OC and their precursors in vivo (3) double staining for TRAP and DAPI or in situ DNA fragmentation end labelling can be used to identify apoptotic OC in vivo.
Collapse
Affiliation(s)
- Dengshun Miao
- Royal Victoria Hospital, Montreal QC, H3A 1A1, Canada
| | - Andrew Scutt
- Tissue Engineering/Department of Engineering Materials University of Sheffield Sheffield S1 3JD, UK
| |
Collapse
|
22
|
Nakamura K, Sahara N, Deguchi T. Temporal changes in the distribution and number of macrophage-lineage cells in the periodontal membrane of the rat molar in response to experimental tooth movement. Arch Oral Biol 2001; 46:593-607. [PMID: 11369314 DOI: 10.1016/s0003-9969(01)00020-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In order to evaluate the possible role of macrophages in the remodelling of periodontal tissue in response to tooth movement, temporal changes in the number and distribution of macrophage-lineage cells in the periodontal membrane of the rat molar tooth after experimental tooth movement were examined immunohistochemically using four anti-rat monoclonal antibodies: ED1 (anti-monocyte/macrophage-lineage cells and dendritic cells), ED2 (anti-resident macrophages), KI-M2R (anti-tissue macrophages), and OX6 (anti-class II molecules). The right maxillary first molar tooth of Wistar rats was moved mesially by a closed-coil spring for 1, 3, 5, or 7 days. Sham-treated rats wearing an inactivated appliance for each experimental period and entirely untreated rats were used as controls. Alternate horizontal serial cryostat sections were cut and incubated with antibodies to ED1, ED2, KI-M2R, and OX6. In addition, cells immunopositive for each monoclonal antibody in the periodontal membrane during tooth movement were analysed on the tension and pressure sides. In the control rats, large numbers of cells positively stained with each monoclonal antibody were distributed throughout the periodontal membrane surrounding the distobuccal root. At 1 day after experimental tooth movement, the number of immunopositive cells obtained with all four monoclonal antibodies decreased as compared with those of the control on the mesial/pressure side. During the later experimental time periods, ED1- and OX6-positive cells in the periodontal membrane of this side were significantly increased in number compared with controls, whereas the density and distribution pattern of cells positive with ED2 or KI-M2R remained unchanged. On the mesial/pressure side, which underwent hyalinization, a marked accumulation of OX6- and ED1-reactive cells, but not of ED2- or KI-M2R-reactive cells, was frequently observed in the area of the hyalinized tissue at 5-7 days after the start of tooth movement. On the distal/tension side, no particular change in the distribution of immunopositive cells obtained with any antibody was detected throughout the experimental periods, with the exception that there was a significant increase in the number of ED1-positive cells and in of OX6-positive cells at 1 and 7 days, respectively, after the start of tooth movement. These results suggest that after the start of tooth movement OX6- and ED1-positive cells, which are mostly exudative macrophages, but not ED2- and KI-M2R-positive cells, i.e., resident macrophages, may be actively engaged in bone resorption and the remodelling of tissues on the pressure side of the periodontal membrane.
Collapse
Affiliation(s)
- K Nakamura
- Department of Orthodontics, School of Dentistry, Matsumoto Dental University, 1780 Hirooka-Gohbara Shiojiri, 399-0781, Nagano, Japan
| | | | | |
Collapse
|
23
|
Kan L, Okiji T, Kaneko T, Suda H. Localization and density of myeloid leucocytes in the periodontal ligament of normal rat molars. Arch Oral Biol 2001; 46:509-20. [PMID: 11311198 DOI: 10.1016/s0003-9969(01)00015-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The phenotypic distribution and density of macrophage-associated antigen-expressing cells in the periodontal ligament (PDL) of normal rat mandibular first molars was evaluated by immunohistochemistry, and an attempt made to identify dendritic cells (DCs) by immunoelectron microscopy. Cells immunopositive to ED1 (a general macrophage marker) were widely distributed throughout the PDL and were most common around blood vessels. A small number of T lymphocytes and OX62 (anti-veiled cells and gammadelta T cells)-positive DC-like cells were also found. The relative density of cells immunopositive to ED9 (CD14), OX42 (CD11b), OX6 (anti-class II MHC molecules), ED2 (anti-tissue-resident macrophages), 8A2 (CD11c) and WT.1 (CD11a) varied in the mesial, distal and periapical regions of the distal root and the furcal region. This finding suggests that there are several subpopulations of ED1-positive cells which express various combinations of these markers. Immunoelectron microscopy revealed that a small, but distinct, subpopulation of ED1- and OX6-positive cells did have a DC-like ultrastructure, although the majority of these cells were identified as macrophages. The DC-like cells were characterized by poorly developed lysosomal structures and an absence of phagocytic vesicles. It was concluded that the normal rat PDL is equipped with heterogeneous populations of macrophages with regional variations in density. The DC-like cells may function as antigen-presenting cells.
Collapse
Affiliation(s)
- L Kan
- Pulp Biology and Endodontics, Department of Restorative Sciences, Graduate School, Tokyo Medical and Dental University, 5-45, Yushima 1-chome, Bunkyo-ku, 113-8549, Tokyo, Japan
| | | | | | | |
Collapse
|
24
|
Baroukh B, Cherruau M, Dobigny C, Guez D, Saffar JL. Osteoclasts differentiate from resident precursors in an in vivo model of synchronized resorption: a temporal and spatial study in rats. Bone 2000; 27:627-34. [PMID: 11062348 DOI: 10.1016/s8756-3282(00)00372-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Osteoclasts differentiate from mononucleated precursors expressing monocyte markers, which gradually evolve to preosteoclasts expressing the osteoclast phenotype. Although the role of osteogenic cells in these changes has been well documented in vitro, their contribution in vivo has not been established. In this study, a synchronized wave of resorption was activated along the mandibular periosteum. The periosteum adjacent to the bone surface studied was separated by a computer-assisted technique into an osteogenic alkaline phosphatase-positive compartment and an outer nonosteogenic compartment. Specific markers (nonspecific esterase [NSE], tartrate-resistant acid phosphatase [TRAP], and ED1 antibody, a marker of the monocyte-macrophage lineage) were used to follow osteoclast differentiation quantitatively as a function of time after activation of resorption, from day 0 to day 4 (peak of resorption in this model). Local cell proliferation was assessed in parallel. Between day 0 and day 3, the thickness of the osteogenic compartment decreased by 50% (p < 0.0002). In the osteogenic compartment, proliferating cell numbers fell by 80% at 12 day, NSE(+) cells (located farthest from the bone surface) increased 3. 9-fold on day 4 vs. day 0 (p < 0.005), ED1(+) cells decreased between day 0 and day 2 (p < 0.02) before returning to their initial value, and TRAP(+) cells increased 2.7-fold between day 1 and day 3 (p < 0.0005). Resorption was absent in the site studied on day 0, but on day 4 there were 20.5 osteoclast nuclei per millimeter of bone surface. The cell ratio changed from 30.3 NSE(+) and ED1(+) (some of which were also TRAP(+)) cells per millimeter on day 0 to 37.6 mononucleated cells plus 20.5 osteoclast nuclei on day 4. In the nonosteogenic compartment, an entry of ED1(+)/NSE(-) was observed on 12 day (+23 cells, p < 0.02 vs. day 0). This was followed by a return of ED1(+) cell numbers to the control level on day 1, and a transient increase in NSE(+) cells (+47% on day 2 vs. day 1, p < 0.02). TRAP(+) cells were never seen in this compartment. Proliferating cell numbers did not change throughout the study. Our results strongly suggest that the osteoclasts present on day 4 differentiated from the pool of TRAP(+), ED1(+), and NSE(+) cells present at the site on day 0. The osteogenic compartment was gradually replenished by cells migrating from the nonosteogenic compartment, which was supplemented by ED1(+) cells recruited from the circulation early after activation. Moreover, osteogenic cells appeared to be as crucial in vivo for the acquisition of the TRAP phenotype as previously shown in vitro.
Collapse
Affiliation(s)
- B Baroukh
- Laboratoire de Biologie et Physiopathologie Crânio-Faciales, Groupe Physiopathologie Osseuse, Faculté de Chirurgie-Dentaire, Université René Descartes (Paris V), Montrouge, France
| | | | | | | | | |
Collapse
|
25
|
Vandevska-Radunovic V, Kvinnsland S, Jonsson R. Delayed recruitment of immunocompetent cells in denervated rat periodontal ligament following experimental tooth movement. J Dent Res 1999; 78:1214-20. [PMID: 10371244 DOI: 10.1177/00220345990780060401] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
It has previously been shown that the number of mononuclear phagocytic cells in the periodontal ligament (PDL) of orthodontically moved rat molars is significantly increased (p < or = 0.05) at 3, 7, and 14 days compared with the controls. Since these changes coincide with increased density of peptidergic nerve fibers, it was of particular interest to investigate a possible relation between the immunocompetent cells and sensory nerve fibers in the PDL of experimentally moved and denervated rat molars. Twenty-two young animals had the first right mandibular molar moved mesially, 7, 14, and 21 days after ipsilateral inferior alveolar nerve axotomy. The left side served as unoperated control. An immunohistochemical procedure was carried out on alternate, serial, cryostat sections with antibodies against CDllb (macrophages, dendritic cells) and class II major histocompatibility complex (MHC) molecules (RT1B). At 7 and 14 days, the number of CD11b+- and RT1B-expressing cells in the denervated PDL showed no significant difference compared with the contralateral side. However, at 21 days, when periodontal tissue re-innervation is established, the number of the investigated immunocompetent cells in the PDL of the denervated and experimentally moved mandibular molars demonstrated a significant difference compared with the contralateral and control molars (p < or = 0.05). It can be concluded that axotomy of the inferior alveolar nerve delays the recruitment of macrophage-like and class II MHC molecule-expressing cells in the PDL of orthodontically moved rat molars. The results further indicate that sensory nerve fibers interact with immunocompetent cells and participate in their mobilization to locally inflamed tissues.
Collapse
|
26
|
Miyauchi M, Takata T, Ito H, Ogawa I, Kudo Y, Takekoshi T, Nikai H. Distribution of macrophage lineage cells in rat gingival tissue after topical application of lipopolysaccharide: an immunohistochemical study using monoclonal antibodies: OX6, ED1 and ED2. J Periodontal Res 1998; 33:345-51. [PMID: 9777585 DOI: 10.1111/j.1600-0765.1998.tb02209.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To discuss the role of macrophage lineage cells on the periodontal tissue destruction, we immunohistochemically examined the phenotype and the dynamics of macrophage lineage cells 1 or 3 h or 1, 2, 3 or 7 d after topical application of LPS (5 mg/ml in physiological saline) from the rat gingival sulcus using 3 monoclonal antibodies: OX6 (antigen-presenting cells), ED1 (monocytes, macrophages and dendritic cells) and ED2 (resident macrophages). We could detect at least 3 different types of macrophage lineage cells, namely OX6+/ED1+/ED2- dendritic cells and exudate macrophages and ED2+ resident macrophages. After LPS application the majority of macrophage lineage cells accumulated in the subjunctional epithelial area were newly extravasated OX6+/ED1+/ED2- dendritic cells or macrophages. The number of these cells increased progressively with time and reached a maximum level at d 2. On the other hand, number and tissue distribution of ED2+ resident macrophages did not change. These results indicate that several types of macrophage lineage cells exist in rat gingival tissue and suggest that dendritic cells and exudate macrophages transiently accumulated after LPS application are responsible for various host immune response and tissue destruction caused by LPS.
Collapse
Affiliation(s)
- M Miyauchi
- Department of Oral Pathology, Hiroshima University School of Dentistry, Japan
| | | | | | | | | | | | | |
Collapse
|
27
|
Vandevska-Radunovic V, Kvinnsland IH, Kvinnsland S, Jonsson R. Immunocompetent cells in rat periodontal ligament and their recruitment incident to experimental orthodontic tooth movement. Eur J Oral Sci 1997; 105:36-44. [PMID: 9085027 DOI: 10.1111/j.1600-0722.1997.tb00178.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The aims of this study were to evaluate the number and distribution of immunocompetent cells in normal rat periodontal ligament (PDL) and to quantify their recruitment incident to experimental tooth movement. 27 young animals had the 1st right maxillary molar moved mesially by an orthodontic appliance for 1, 3, 7 and 14 days, respectively. 4 animals served as untreated controls. An immunohistochemical procedure was carried out on alternate serial cryostat sections, and monoclonal antibodies against CD11b (macrophages, dendritic cells), CD43 (lymphocytes, polymorphs), CD4 (helper T-lymphocytes), and class II MHC molecules were used. Mean counts of the immunolabeled cells in the control group showed the highest number of CD11b+ and class II molecule expressing cells, while CD4+ and CD43+ cells were scarcely found. Significant increase in the number of CD11b+, CD43+ cells and class II molecules was found in the PDL of the experimentally moved 1st molars compared with the contralateral side and the control group, while CD4+ cells showed no significant increase. CD11b+ and cells expressing class II molecules were found around hyalinized tissue, between dentin and cellular cementum and close to Malassez' epithelial cells. In conclusion, normal rat PDL has high number of macrophage and dendritic-like cells, but few lymphocytes and granulocytes. Furthermore, experimental tooth movement leads to significant recruitment of cells belonging to the mononuclear phagocytic system, but has no significant effect on the number of lymphocytes and granulocytes in the rat PDL.
Collapse
|