1
|
Cheriet T, Ben-Bachir B, Thamri O, Seghiri R, Mancini I. Isolation and Biological Properties of the Natural Flavonoids Pectolinarin and Pectolinarigenin-A Review. Antibiotics (Basel) 2020; 9:E417. [PMID: 32708783 PMCID: PMC7400350 DOI: 10.3390/antibiotics9070417] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/03/2020] [Accepted: 07/05/2020] [Indexed: 12/31/2022] Open
Abstract
Flavonoids are metabolites widely distributed in plants and commonly present in foods, such as fruits and vegetables. Pectolinarin, which belongs to the flavone subclass, has attracted considerable attention due to its presence in many medicinal plants. It has turned out to be a good biological agent especially due to its antioxidant, anti-inflammatory, antidiabetic, and antitumor activities, evaluated both in vitro and in vivo. Its aglycone, the metabolite pectolinarigenin, is also known for a series of biological properties including anti-inflammatory and antidiabetic effects. In the first overview on the two metabolites here presented, their collection, isolation and the results of their biological evaluation are reported.
Collapse
Affiliation(s)
- Thamere Cheriet
- Unité de Valorisation des Ressources Naturelles, Molécules Bioactives et Analyse Physicochimiques et Biologiques (VARENBIOMOL), Université des Frères Mentouri, 25000 Constantine, Algeria;
- Département de Chimie, Faculté des Sciences, Université Mohamed Boudiaf-M’sila, 28000 M’sila, Algeria; (B.B.-B.); (O.T.)
| | - Balkeis Ben-Bachir
- Département de Chimie, Faculté des Sciences, Université Mohamed Boudiaf-M’sila, 28000 M’sila, Algeria; (B.B.-B.); (O.T.)
| | - Oumelkhir Thamri
- Département de Chimie, Faculté des Sciences, Université Mohamed Boudiaf-M’sila, 28000 M’sila, Algeria; (B.B.-B.); (O.T.)
| | - Ramdane Seghiri
- Unité de Valorisation des Ressources Naturelles, Molécules Bioactives et Analyse Physicochimiques et Biologiques (VARENBIOMOL), Université des Frères Mentouri, 25000 Constantine, Algeria;
| | - Ines Mancini
- Laboratorio di Chimica Bioorganica, Dipartimento di Fisica, Universita’ di Trento, I-38123 Povo-Trento, Italy
| |
Collapse
|
2
|
Rustamova SI, Tsiferova NA, Khamidova OJ, Kurbannazarova RS, Merzlyak PG, Khushbaktova ZA, Syrov VN, Botirov EK, Eshbakova KA, Sabirov RZ. Effect of plant flavonoids on the volume regulation of rat thymocytes under hypoosmotic stress. Pharmacol Rep 2019; 71:1079-1087. [PMID: 31629088 DOI: 10.1016/j.pharep.2019.05.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/07/2019] [Accepted: 05/27/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Cell volume regulation and volume-regulated anion channels are critical for cell survival in non-isosmotic conditions, and dysregulation of this system is detrimental. Although genes and proteins underlying this basic cellular machinery were recently identified, the pharmacology remains poorly explored. METHODS We examined effects of 16 flavonoids on the regulatory volume decrease (RVD) of thymocytes under hypoosmotic stress assessed by light transmittance and on the activity of volume-sensitive chloride channel by patch-clamp technique. RESULTS Comparison of effects of flavonoids on RVD revealed a group of four active substances with lehmannin being the strongest inhibitor (IC50 = 8.8 μM). Structure-functional comparison suggested that hydrophobicity brought about by methoxy, prenyl or lavandulyl groups as well as by the absence of glucosyl fragment together with localization of the phenyl ring B at the position C2 (which is at C3 in totally inactive isoflavones) are important structural determinants for the flavonoids activity as volume regulation inhibitors. All active flavonoids suppressed RVD under Gramicidin D-NMDG hypotonic stress conditions when cationic permeability was increased by an ionophore, gramicidin D, with all extracellular monovalent cations replaced with bulky NMDG+ suggesting that they target volume-sensitive anionic permeability. While effects of hispidulin and pulicarin were only partial, lehmannin and pinocembrin completely abolished RVD under Gramicidin D-NMDG conditions. In direct patch-clamp experiments, lehmannin and pinocembrin produced a strong inhibiting effect on the swelling-induced whole-cell chloride conductance in a voltage-independent manner. CONCLUSION Lehmannin, pinocembrin, and possibly hispidulin and pulicarin may serve as leads for developing effective low-toxic immunomodulators.
Collapse
Affiliation(s)
- Sarvinoz I Rustamova
- Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan; Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent, Uzbekistan
| | - Nargiza A Tsiferova
- Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan; Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent, Uzbekistan; Center for Advanced Technologies, Tashkent, Uzbekistan
| | - Ozoda J Khamidova
- Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan; Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent, Uzbekistan
| | - Ranokhon Sh Kurbannazarova
- Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan; Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent, Uzbekistan
| | - Petr G Merzlyak
- Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan; Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent, Uzbekistan
| | - Zainab A Khushbaktova
- Institute of Chemistry of Plant Substances, Academy Sciences of Uzbekistan, Tashkent, Uzbekistan
| | - Vladimir N Syrov
- Institute of Chemistry of Plant Substances, Academy Sciences of Uzbekistan, Tashkent, Uzbekistan
| | | | - Kamila A Eshbakova
- Institute of Chemistry of Plant Substances, Academy Sciences of Uzbekistan, Tashkent, Uzbekistan
| | - Ravshan Z Sabirov
- Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan; Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent, Uzbekistan; Department of Biophysics, National University of Uzbekistan, Tashkent, Uzbekistan.
| |
Collapse
|
3
|
Kusano K, Iwashina T, Kitajima J, Mishio T. Flavonoid Diversity of Saussurea and Serratula Species in Tien Shan Mountains. Nat Prod Commun 2019. [DOI: 10.1177/1934578x0700201115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Nine Saussurea species, S. alberti, S. elegans, S. gnaphalodes, S. involucrata, S. konuroba, S. kuschakewiczii, S. leucophylla, S. schanginiana and S. sordida, and Serratula lyratifolia from the Tien Shan Mountains and adjacent area were chemically characterized for flavonoids. Thirty-one flavonoids and one hydroquinone were isolated from the leaves of these species and identified from mass spectrometric, UV, 1H and 13C NMR spectroscopic data, by characterization of hydrolyzates, and direct TLC and HPLC comparisons with authentic samples as kaempferol 3-O-rutinoside (1), quercetin 3-O-rutinoside (2), isorhamnetin 3-O-rutinoside (3), quercetin 3-O-glucoside (4), quercetin 3-O-galactoside (5), kaempferol 5-O-glucoside (6), kaempferol 7-O-glucoside (7), quercetin 5-O-glucoside (8), quercetin 7-O-glucoside (9), isorhamnetin 5-O-glucoside (10), luteolin (11), hispidulin (12), nepetin (13), selagin 7-methyl ether (14), selagin (15), velutin (16), luteolin 7-methyl ether (17), jaceosidin (18), apigenin 7-O-rutinoside (19), apigenin 7-O-glucoside (20), luteolin 7-O-rutinoside (21), luteolin 7-O-glucoside (22), luteolin 7-O-galactoside (23), luteolin 7-O-glucuronide (24), hispidulin 7-O-glucoside (25), nepetin 7-O-glucoside (26), luteolin 5-O-glucoside (27), isovitexin (28), apigenin 6,8-di-C-glycoside (29), isoorientin (30), luteolin 8-C-glycoside (31), and arbutin (32). The nine surveyed Saussurea species differed in their flavonoid composition. It was shown that the genus is not only morphologically, but also chemically diversified.
Collapse
Affiliation(s)
- Katsumi Kusano
- Graduate School of Agriculture, Ibaraki University, 3-21-1 Chuo, Ami, Ibaraki 300-0393, Japan
| | - Tsukasa Iwashina
- Graduate School of Agriculture, Ibaraki University, 3-21-1 Chuo, Ami, Ibaraki 300-0393, Japan
- Department of Botany, National Museum of Nature and Science, 4-1-1 Amakubo, Tsukuba, Ibaraki 305-0005, Japan
| | - Junichi Kitajima
- Laboratory of Pharmacognosy, Showa Pharmaceutical University, Higashi-tamagawagakuen 3, Machida, Tokyo 194-8543, Japan
| | - Tamaki Mishio
- Graduate School of Agriculture, Ibaraki University, 3-21-1 Chuo, Ami, Ibaraki 300-0393, Japan
| |
Collapse
|
4
|
Zhao T, Li SJ, Zhang ZX, Zhang ML, Shi QW, Gu YC, Dong M, Kiyota H. Chemical constituents from the genus Saussurea and their biological activities. HETEROCYCL COMMUN 2017. [DOI: 10.1515/hc-2017-0069] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
AbstractThe genus
Collapse
|