1
|
Rodan AR. With No Lysine (K) Kinases and Sodium Transporter Function in Solute Exchange with Implications for BP Regulation as Elucidated through Drosophila. KIDNEY360 2024; 5:1553-1562. [PMID: 39186374 PMCID: PMC11556937 DOI: 10.34067/kid.0000000000000564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/20/2024] [Indexed: 08/28/2024]
Abstract
Like other multicellular organisms, the fruit fly Drosophila melanogaster must maintain homeostasis of the internal milieu, including the maintenance of constant ion and water concentrations. In mammals, the with no lysine (K) (WNK)-Ste20-proline/alanine rich kinase/oxidative stress response 1 kinase cascade is an important regulator of epithelial ion transport in the kidney. This pathway regulates SLC12 family cotransporters, including sodium-potassium-2-chloride, sodium chloride, and potassium chloride cotransporters. The WNK-Ste20-proline/alanine rich kinase/oxidative stress response 1 kinase cascade also regulates epithelial ion transport via regulation of the Drosophila sodium-potassium-2-chloride cotransporter in the Malpighian tubule, the renal epithelium of the fly. Studies in Drosophila have contributed to the understanding of multiple regulators of WNK pathway signaling, including intracellular chloride and potassium, the scaffold protein Mo25, hypertonic stress, hydrostatic pressure, and macromolecular crowding. These will be discussed together, with implications for mammalian kidney function and BP control.
Collapse
Affiliation(s)
- Aylin R Rodan
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah; Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah, Salt Lake City, Utah; Department of Human Genetics, University of Utah, Salt Lake City, Utah; and Medical Service, Veterans Affairs Salt Lake City Health Care System, Salt Lake City, Utah
| |
Collapse
|
2
|
Abstract
The with no lysine (K) (WNK) kinases are an evolutionarily ancient group of kinases with atypical placement of the catalytic lysine and diverse physiological roles. Recent studies have shown that WNKs are directly regulated by chloride, potassium, and osmotic pressure. Here, we review the discovery of WNKs as chloride-sensitive kinases and discuss physiological contexts in which chloride regulation of WNKs has been demonstrated. These include the kidney, pancreatic duct, neurons, and inflammatory cells. We discuss the interdependent relationship of osmotic pressure and intracellular chloride in cell volume regulation. We review the recent demonstration of potassium regulation of WNKs and speculate on possible physiological roles. Finally, structural and mechanistic aspects of intracellular ion and osmotic pressure regulation of WNKs are discussed.
Collapse
Affiliation(s)
- Elizabeth J Goldsmith
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Aylin R Rodan
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA; .,Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA.,Department of Human Genetics, University of Utah, Salt Lake City, Utah, USA.,Medical Service, Veterans Affairs Salt Lake City Healthcare System, Salt Lake City, Utah, USA
| |
Collapse
|
3
|
Pleinis JM, Norrell L, Akella R, Humphreys JM, He H, Sun Q, Zhang F, Sosa-Pagan J, Morrison DE, Schellinger JN, Jackson LK, Goldsmith EJ, Rodan AR. WNKs are potassium-sensitive kinases. Am J Physiol Cell Physiol 2021; 320:C703-C721. [PMID: 33439774 DOI: 10.1152/ajpcell.00456.2020] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
With no lysine (K) (WNK) kinases regulate epithelial ion transport in the kidney to maintain homeostasis of electrolyte concentrations and blood pressure. Chloride ion directly binds WNK kinases to inhibit autophosphorylation and activation. Changes in extracellular potassium are thought to regulate WNKs through changes in intracellular chloride. Prior studies demonstrate that in some distal nephron epithelial cells, intracellular potassium changes with chronic low- or high-potassium diet. We, therefore, investigated whether potassium regulates WNK activity independent of chloride. We found decreased activity of Drosophila WNK and mammalian WNK3 and WNK4 in fly Malpighian (renal) tubules bathed in high extracellular potassium, even when intracellular chloride was kept constant at either ∼13 mM or 26 mM. High extracellular potassium also inhibited chloride-insensitive mutants of WNK3 and WNK4. High extracellular rubidium was also inhibitory and increased tubule rubidium. The Na+/K+-ATPase inhibitor, ouabain, which is expected to lower intracellular potassium, increased tubule Drosophila WNK activity. In vitro, potassium increased the melting temperature of Drosophila WNK, WNK1, and WNK3 kinase domains, indicating ion binding to the kinase. Potassium inhibited in vitro autophosphorylation of Drosophila WNK and WNK3, and also inhibited WNK3 and WNK4 phosphorylation of their substrate, Ste20-related proline/alanine-rich kinase (SPAK). The greatest sensitivity of WNK4 to potassium occurred in the range of 80-180 mM, encompassing physiological intracellular potassium concentrations. Together, these data indicate chloride-independent potassium inhibition of Drosophila and mammalian WNK kinases through direct effects of potassium ion on the kinase.
Collapse
Affiliation(s)
- John M Pleinis
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah
| | - Logan Norrell
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah
| | - Radha Akella
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - John M Humphreys
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Haixia He
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Qifei Sun
- Division of Nephrology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Feng Zhang
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah
| | - Jason Sosa-Pagan
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah
| | - Daryl E Morrison
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah
| | - Jeffrey N Schellinger
- Division of Nephrology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | | | - Elizabeth J Goldsmith
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Aylin R Rodan
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah.,Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah, Salt Lake City, Utah.,Department of Human Genetics, University of Utah, Salt Lake City, Utah.,Medical Service, Veterans Affairs Salt Lake City Health Care System, Salt Lake City, Utah
| |
Collapse
|
4
|
Abstract
With-no-lysine (WNK) kinases regulate renal sodium-chloride cotransporter (NCC) to maintain body sodium and potassium homeostasis. Gain-of-function mutations of WNK1 and WNK4 in humans lead to a Mendelian hypertensive and hyperkalemic disease pseudohypoaldosteronism type II (PHAII). X-ray crystal structure and in vitro studies reveal chloride ion (Cl-) binds to a hydrophobic pocket within the kinase domain of WNKs to inhibit its activity. The mechanism is thought to be important for physiological regulation of NCC by extracellular potassium. To test the hypothesis that WNK4 senses the intracellular concentration of Cl- physiologically, we generated knockin mice carrying Cl--insensitive mutant WNK4. These mice displayed hypertension, hyperkalemia, hyperactive NCC, and other features fully recapitulating human and mouse models of PHAII caused by gain-of-function WNK4. Lowering plasma potassium levels by dietary potassium restriction increased NCC activity in wild-type, but not in knockin, mice. NCC activity in knockin mice can be further enhanced by the administration of norepinephrine, a known activator of NCC. Raising plasma potassium by oral gavage of potassium inactivated NCC within 1 hour in wild-type mice, but had no effect in knockin mice. The results provide compelling support for the notion that WNK4 is a bona fide physiological intracellular Cl- sensor and that Cl- regulation of WNK4 underlies the mechanism of regulation of NCC by extracellular potassium.
Collapse
|
5
|
Sun Q, Wu Y, Jonusaite S, Pleinis JM, Humphreys JM, He H, Schellinger JN, Akella R, Stenesen D, Krämer H, Goldsmith EJ, Rodan AR. Intracellular Chloride and Scaffold Protein Mo25 Cooperatively Regulate Transepithelial Ion Transport through WNK Signaling in the Malpighian Tubule. J Am Soc Nephrol 2018; 29:1449-1461. [PMID: 29602832 DOI: 10.1681/asn.2017101091] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 02/07/2018] [Indexed: 12/17/2022] Open
Abstract
Background With No Lysine kinase (WNK) signaling regulates mammalian renal epithelial ion transport to maintain electrolyte and BP homeostasis. Our previous studies showed a conserved role for WNK in the regulation of transepithelial ion transport in the Drosophila Malpighian tubule.Methods Using in vitro assays and transgenic Drosophila lines, we examined two potential WNK regulators, chloride ion and the scaffold protein mouse protein 25 (Mo25), in the stimulation of transepithelial ion flux.ResultsIn vitro, autophosphorylation of purified Drosophila WNK decreased as chloride concentration increased. In conditions in which tubule intracellular chloride concentration decreased from 30 to 15 mM as measured using a transgenic sensor, Drosophila WNK activity acutely increased. Drosophila WNK activity in tubules also increased or decreased when bath potassium concentration decreased or increased, respectively. However, a mutation that reduces chloride sensitivity of Drosophila WNK failed to alter transepithelial ion transport in 30 mM chloride. We, therefore, examined a role for Mo25. In in vitro kinase assays, Drosophila Mo25 enhanced the activity of the Drosophila WNK downstream kinase Fray, the fly homolog of mammalian Ste20-related proline/alanine-rich kinase (SPAK), and oxidative stress-responsive 1 protein (OSR1). Knockdown of Drosophila Mo25 in the Malpighian tubule decreased transepithelial ion flux under stimulated but not basal conditions. Finally, whereas overexpression of wild-type Drosophila WNK, with or without Drosophila Mo25, did not affect transepithelial ion transport, Drosophila Mo25 overexpressed with chloride-insensitive Drosophila WNK increased ion flux.Conclusions Cooperative interactions between chloride and Mo25 regulate WNK signaling in a transporting renal epithelium.
Collapse
Affiliation(s)
- Qifei Sun
- Division of Nephrology, Department of Internal Medicine and
| | - Yipin Wu
- Division of Nephrology, Department of Internal Medicine and
| | - Sima Jonusaite
- Division of Nephrology and Hypertension, Department of Internal Medicine, Molecular Medicine Program, University of Utah, Salt Lake City, Utah
| | - John M Pleinis
- Division of Nephrology and Hypertension, Department of Internal Medicine, Molecular Medicine Program, University of Utah, Salt Lake City, Utah
| | | | | | | | | | - Drew Stenesen
- Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas; and
| | - Helmut Krämer
- Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas; and
| | | | - Aylin R Rodan
- Division of Nephrology, Department of Internal Medicine and .,Division of Nephrology and Hypertension, Department of Internal Medicine, Molecular Medicine Program, University of Utah, Salt Lake City, Utah
| |
Collapse
|
6
|
Wade JB, Stanton BA, Brown D. Structural Correlates of Transport in Distal Tubule and Collecting Duct Segments. Compr Physiol 2011. [DOI: 10.1002/cphy.cp080104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
7
|
Kaissling B, Kriz W. Morphology of the Loop of Henle, Distal Tubule, and Collecting Duct. Compr Physiol 2011. [DOI: 10.1002/cphy.cp080103] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
8
|
Fujita T, Ogino M, Daigo F, Yamaguchi T, Majima M. Intracellular Ca2+ contributes to K+-induced increase in renal kallikrein secretion. Int Immunopharmacol 2006; 6:1487-95. [PMID: 16846843 DOI: 10.1016/j.intimp.2006.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2005] [Revised: 01/26/2006] [Accepted: 05/24/2006] [Indexed: 11/23/2022]
Abstract
We have reported that natriuretic effects of K(+) are involved in enhancement of renal kallikrein-kinin system. The study was aimed to examine 1) comparison of augmentative effects of K(+) on urinary KK excretion with non-specific washout effects by trichlormethiazide (thiazide), polyethyleneglycol 200 (PEG) and rapid physiological saline infusion, 2) contribution of Ca(2+) on the K(+)-induced increase in renal kallikrein secretion. Renal kallikrein activities were measured as fluorescence activities of methylcoumarinylamide-labeled synthetic substrate of tissue kallikrein (TK). Increases in urinary TK excretion were simultaneously observed with diuresis caused by thiazide, PEG, and rapid saline infusion. K(+) infusion increased urinary TK excretion with a diuretic response same as the control. K(+), but not thiazide, showed an early increase in renal TK secretion dose dependently in the kidney slices. Increases in renal TK secretion persisted during treatment with K(+). Neither voltage-dependent Ca(2+)-channel blockers such as verapamil and nifedipine nor simultaneous treatment of EDTA affected on the K(+)-induced increase in renal TK secretion. While, EDTA decreased the K(+)-induced increases in renal TK secretion with time. Caffeine also had an early effect on the increase in renal TK secretion. K(+)-induced increases in renal TK secretion was demonstrated even after treatment with ryanodine or depletion of caffeine-sensitive intracellular Ca(2+) by thapsigargin. It was indicated that the increase in renal TK secretion by K(+) depends on the intracellular Ca(2+) and the caffeine-sensitive release of intracellular Ca(2+) may not be involved in this response. Mechanisms for the K(+)-induced increase in renal TK secretion needs to be further elucidated.
Collapse
Affiliation(s)
- Tomoe Fujita
- Department of Pharmacology, Kitasato University, School of Medicine, Kitasato 1-15-1, Sagamihara, Kanagawa 228-8555, Japan.
| | | | | | | | | |
Collapse
|
9
|
Beck FX, Neuhofer W, Dörge A, Giebisch G, Wang T. Intracellular Na concentration and Rb uptake in proximal convoluted tubule cells and abundance of Na/K-ATPase alpha1-subunit in NHE3-/- mice. Pflugers Arch 2003; 446:100-5. [PMID: 12690468 DOI: 10.1007/s00424-002-1001-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2002] [Accepted: 11/29/2002] [Indexed: 10/22/2022]
Abstract
Proximal solute and fluid absorption is greatly reduced in mice in which the gene encoding the Na/H exchanger isoform 3 has been ablated (NHE3-/-). To obtain information on the intracellular functional consequences of such selective NHE3 deficiency, Na, Cl and K concentrations and cell Rb uptake were measured using electron microprobe analysis after a 30-s infusion of Rb (an index of basolateral Na/K-ATPase activity) in proximal convoluted tubule (PCT) cells of NHE3-/- and wild-type (NHE3+/+) mice. In addition, the relative abundance of the alpha1-subunit of the Na/K-ATPase in the outer cortex was determined by Western blot analysis. PCT cell Na concentration in NHE3-/- mice was slightly but significantly lower than in NHE3+/+ [13.1+/-0.6 ( n=64) vs. 14.9+/-0.6 ( n=62) mmol/kg wet wt.; means +/-SEM]. The lower intracellular Na concentration was associated with significantly reduced Rb uptake rates [9.7+/-0.6 ( n=59) vs. 14.8+/-0.8 ( n=50) mmol/kg wet wt./30 s], but the abundance of the alpha1-subunit of the Na/K-ATPase was not different between NHE3-/- and NHE3+/+ mice. Intracellular Cl concentration was higher (14.2+/-0.4 vs. 12.8+/-0.4 mmol/kg wet wt.) and K concentration unchanged (122.7+/-2.7 vs. 121.6+/-2.5 mmol/kg wet wt.) in PCT cells in NHE3-/- compared with NHE3+/+ mice. These findings suggest that the elimination of apical NHE3 in PCT cells of NHE3-/- mice reduces apical Na entry and, due to lower cell Na concentrations, Na/K-ATPase activity. The observed changes in intracellular Na concentration did not affect the expression of Na/K-ATPase in the renal cortex of NHE3-/- mice. There were no significant changes of cell Na concentration and Rb uptake in distal convoluted tubule, connecting tubule, principal and intercalated cells.
Collapse
Affiliation(s)
- Franz-X Beck
- Physiologisches Institut der Universität, Pettenkoferstrasse 12, 80336, Munich, Germany,
| | | | | | | | | |
Collapse
|
10
|
Abstract
The purpose of this study is to develop a numerical model that simulates acid-base transport in rat distal tubule. We have previously reported a model that deals with transport of Na(+), K(+), Cl(-), and water in this nephron segment (Chang H and Fujita T. Am J Physiol Renal Physiol 276: F931-F951, 1999). In this study, we extend our previous model by incorporating buffer systems, new cell types, and new transport mechanisms. Specifically, the model incorporates bicarbonate, ammonium, and phosphate buffer systems; has cell types corresponding to intercalated cells; and includes the Na/H exchanger, H-ATPase, and anion exchanger. Incorporation of buffer systems has required the following modifications of model equations: new model equations are introduced to represent chemical equilibria of buffer partners [e.g., pH = pK(a) + log(10) (NH(3)/NH(4))], and the formulation of mass conservation is extended to take into account interconversion of buffer partners. Furthermore, finite rates of H(2)CO(3)-CO(2) interconversion (i.e., H(2)CO(3) &rlharr; CO(2) + H(2)O) are taken into account in modeling the bicarbonate buffer system. Owing to this treatment, the model can simulate the development of disequilibrium pH in the distal tubular fluid. For each new transporter, a state diagram has been constructed to simulate its transport kinetics. With appropriate assignment of maximal transport rates for individual transporters, the model predictions are in agreement with free-flow micropuncture experiments in terms of HCO reabsorption rate in the normal state as well as under the high bicarbonate load. Although the model cannot simulate all of the microperfusion experiments, especially those that showed a flow-dependent increase in HCO reabsorption, the model is consistent with those microperfusion experiments that showed HCO reabsorption rates similar to those in the free-flow micropuncture experiments. We conclude that it is possible to develop a numerical model of the rat distal tubule that simulates acid-base transport, as well as basic solute and water transport, on the basis of tubular geometry, physical principles, and transporter kinetics. Such a model would provide a useful means of integrating detailed kinetic properties of transporters and predicting macroscopic transport characteristics of this nephron segment under physiological and pathophysiological settings.
Collapse
Affiliation(s)
- H Chang
- Health Service Center, University of Tokyo, Tokyo 153-8902, Japan.
| | | |
Collapse
|
11
|
Abstract
A numerical model of the rat distal tubule was developed to simulate water and solute transport in this nephron segment. This model incorporates the following: 1) Na-Cl cotransporter, K-Cl cotransporter, Na channel, K channel, and Cl channel in the luminal membrane; 2) Na-K-ATPase, K channel, and Cl channel in the basolateral membrane; and 3) conductances for Na, K, and Cl in the paracellular pathway. Transport rates were calculated using kinetic equations. Axial heterogeneity was represented by partitioning the model into two subsegments with different sets of model parameters. Model equations derived from the principles of mass conservation and electrical neutrality were solved numerically. Values of the model parameters were adjusted to minimize a penalty function that was devised to quantify the difference between model predictions and experimental results. The developed model could simulate the water and solute transport of the distal tubule in the normal state, as well as in conditions including thiazide or amiloride application and various levels of sodium load and tubular flow rate.
Collapse
Affiliation(s)
- H Chang
- Health Service Center, University of Tokyo, Tokyo 153-8902, Japan
| | | |
Collapse
|
12
|
Beck FX, Ohno A, Müller E, Seppi T, Pfaller W. Inhibition of angiotensin-converting enzyme modulates structural and functional adaptation to loop diuretic-induced diuresis. Kidney Int 1997; 51:36-43. [PMID: 8995715 DOI: 10.1038/ki.1997.5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The roles of elevated cell sodium concentrations and the angiotensin-aldosterone system (AAS) in the structural and functional adaptation of the distal tubule and collecting duct system to a chronic increase of sodium delivery were examined using electron microprobe and quantitative morphologic/stereologic analyses. Studies were performed on rats given the loop diuretic torasemide acutely (20 min) or chronically (12 days), either alone or in combination with the angiotensin-converting enzyme (ACE) inhibitor, enalapril. In the sodium-absorbing cells of the distal tubule and cortical collecting duct-that is, in distal convoluted tubule (DCT), connecting tubule (CNT) and principal cells-an acute increase in sodium delivery caused a significant rise in intracellular sodium concentration and rubidium uptake, the latter an index of in vivo Na,K(Rb)-ATPase activity. The elevated cell sodium concentrations returned to, or close to, control values during chronic torasemide treatment. Intracellular rubidium concentrations, measured after a 30-second rubidium exposure, were not different from controls in DCT and CNT cells but were still higher in principal cells. Since, however, the distribution space for rubidium was significantly increased in chronic torasemide animals, rubidium uptake, and hence Na,K-ATPase activity, must have increased in proportion to cell volume in DCT and CNT cells, but more than proportionately in principal cells. When ACE was inhibited during chronic torasemide, the epithelial volume of DCT and cortical collecting duct (CCD) was increased mainly by lengthening and not, as was the case in rats given torasemide alone, by thickening of the tubule wall. Adaptation of the proximal tubule exclusively by lengthening was not affected by inhibition of the ACE. These data indicate that changes in cell ion composition may participate in initiating cell processes leading to adaptation of distal nephron segments to chronically increased salt delivery. Inhibition of the ACE reverses the torasemide-induced increase in apparent Na pump density in principal cells and seems to shift the relationship between hypertrophy and hyperplasia noted in DCT and CCD after chronic torasemide in favor of hyperplasia.
Collapse
Affiliation(s)
- F X Beck
- Department of Physiology, University of Munich, Germany
| | | | | | | | | |
Collapse
|
13
|
|
14
|
Gesek FA, Friedman PA. On the mechanism of parathyroid hormone stimulation of calcium uptake by mouse distal convoluted tubule cells. J Clin Invest 1992; 90:749-58. [PMID: 1522230 PMCID: PMC329926 DOI: 10.1172/jci115947] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
PTH stimulates transcellular Ca2+ absorption in renal distal convoluted tubules. The effect of PTH on membrane voltage, the ionic basis of the change in voltage, and the relations between voltage and calcium entry were determined on immortalized mouse distal convoluted tubule cells. PTH (10(-8) M) significantly increased 45Ca2+ uptake from basal levels of 2.81 +/- 0.16 to 3.88 +/- 0.19 nmol min-1 mg protein-1. PTH-induced 45Ca2+ uptake was abolished by the dihydropyridine antagonist, nifedipine (10(-5) M). PTH did not affect 22Na+ uptake. Intracellular calcium activity ([Ca2+]i) was measured in cells loaded with fura-2. Control [Ca2+]i averaged 112 +/- 21 nM. PTH increased [Ca2+]i over the range of 10(-11) to 10(-7) M. Maximal stimulation to 326 +/- 31 nM was achieved at 10(-8) M PTH. Resting membrane voltage measured with the potential sensitive dye DiO6(3) averaged -71 +/- 2 mV. PTH hyperpolarized cells by 19 +/- 4 mV. The chloride-channel blocker NPPB prevented PTH-induced hyperpolarization. PTH decreased and NPPB increased intracellular chloride, measured with the fluorescent dye SPQ. Chloride permeability was estimated by measuring the rate of 125I- efflux. PTH increased 125I- efflux and this effect was blocked by NPPB. Clamping voltage with K+/valinomycin; depolarizing membrane voltage by reducing extracellular chloride; or addition of NPPB prevented PTH-induced calcium uptake. In conclusion, PTH increases chloride conductance in distal convoluted tubule cells leading to decreased intracellular chloride activity, membrane hyperpolarization, and increased calcium entry through dihydropyridine-sensitive calcium channels.
Collapse
Affiliation(s)
- F A Gesek
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, New Hampshire 03755-3835
| | | |
Collapse
|
15
|
|
16
|
Beck FX, Dörge A, Giebisch G, Thurau K. Effect of diuretics on cell potassium transport: an electron microprobe study. Kidney Int 1990; 37:1423-8. [PMID: 2163464 DOI: 10.1038/ki.1990.132] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
To study the short-term uptake of potassium across the basolateral membrane into individual tubule cells, rubidium was used and measured by electron microprobe analysis. Changes of rubidium uptake were interpreted to reflect altered sodium entry and basolateral Na-K-ATPase activity. The effects of hydrochlorothiazide, amiloride and furosemide were determined in saline-loaded animals. Hydrochlorothiazide inhibited rubidium uptake in proximal convoluted and distal convoluted tubule cells. The effect was largest in distal convoluted tubule cells. Amiloride reduced rubidium uptake in principal cells as well as in proximal convoluted, distal convoluted and connecting tubule cells. Furosemide depressed rubidium uptake in distal convoluted tubule cells, but increased uptake in principal cells. Rubidium uptake into intercalated cells was not affected by any of the diuretics used. Hydrochlorothiazide and amiloride altered rubidium uptake also in cells not associated with the main diuretic action. These effects of hydrochlorothiazide and amiloride may be due to interference with cell transport mechanisms of Na-H and anion exchange.
Collapse
Affiliation(s)
- F X Beck
- Department of Physiology, University of Munich, Federal Republic of Germany
| | | | | | | |
Collapse
|
17
|
Beck FX, Dörge A, Giebisch G, Thurau K. Studies on the mechanism of rubidium-induced kaliuresis. Kidney Int 1989; 36:175-82. [PMID: 2779091 DOI: 10.1038/ki.1989.177] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Renal clearance and electron microprobe methods were used 1) to elucidate the effects of chronic rubidium administration on potassium transport and 2) to localize, by the use of amiloride in acute experiments, the tubule site of interaction between rubidium and potassium. Substitution of drinking water by a 50 mM rubidium chloride solution for 9 to 11 days led to significant hypokalemia (plasma potassium 2.5 +/- 0.1 mM; plasma potassium plus rubidium 3.3 +/- 0.1 mM). Compared to a control group (reduction of plasma potassium to 3.4 +/- 0.1 mM by short-term potassium depletion) with a fractional potassium excretion of 2.1 +/- 0.3%, rubidium-treated rats excreted potassium at a much higher rate of 14.6 +/- 3.0%. The potassium content of principal cells was, however, significantly lower in rubidium-treated than in potassium-deprived animals. Similar to experiments in which rubidium was given acutely (3 hours), chronic rubidium administration was associated with preferential accumulation of rubidium in all tubule cells relative to potassium. Rubidium clearances were uniformly below those of potassium. Amiloride abolished the difference between rubidium and potassium clearances and sharply reduced the excretion of both cations. In view of the known site of action of amiloride, this suggests a distal tubule site of rubidium action on potassium transport. Amiloride also reduced or abolished the preferential uptake of rubidium into all but intercalated tubule cells. Marked cell heterogeneity of rubidium accumulation into intercalated cells was observed: One subpopulation, with low cell chloride, retained rubidium more effectively than another subpopulation with high cell chloride.
Collapse
Affiliation(s)
- F X Beck
- Department of Physiology, University of Munich, Federal Republic of Germany
| | | | | | | |
Collapse
|
18
|
Matsuzaki K, Stokes JB, Schuster VL. Stimulation of Cl- self exchange by intracellular HCO3- in rabbit cortical collecting duct. THE AMERICAN JOURNAL OF PHYSIOLOGY 1989; 257:C94-101. [PMID: 2502023 DOI: 10.1152/ajpcell.1989.257.1.c94] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In rabbit cortical collecting duct, Cl- self exchange accounts for most of the transepithelial Cl- tracer rate coefficient, KCl (nm/s); a small fraction is effected by Cl--HCO3- exchange and Cl- diffusion. We previously reported that changing from a CO2-free N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES) bath to a 5% CO2-25 mM HCO3- bath stimulates Cl- self exchange. Here, we examine in further detail the individual components of the CO2-HCO3- system that stimulate KCl. Addition of 0.5% CO2 to a HEPES bath (final pH = 7.24) stimulated KCl by 70 +/- 19 nm/s, a delta KCl comparable to that induced by 1% CO2 (pH 7.12), 6% CO2 (pH 6.6), or 6% CO2-25 mM HCO3- (pH 7.4). The roles of intracellular pH (pHi) and HCO3- concentration were examined by clamping pHi using high K+ and nigericin. Increasing pHi from 6.9 to 7.6 in solutions without exogenous CO2 or HCO3- increased KCl by 71 +/- 17 nm/s. These results suggest that pHi might regulate anion exchange. However, during such a pHi-shift experiment, metabolically derived CO2 produces a concomitant change in intracellular HCO3- concentration [( HCO3-]i). To determine whether an increase in [HCO3-]i could stimulate Cl- self exchange, we replaced HEPES with 6% CO2-5 mM HCO3- isohydrically (pHi clamped at 6.9). With this increase in [HCO3-]i at constant pHi, KCl increased by 51 +/- 10 nm/s. These maneuvers had negligible effects on Cl- diffusion and Cl--HCO3- exchange. These experiments demonstrate that increases in cell [HCO3-] (or perhaps CO2) can stimulate transepithelial anion exchange.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- K Matsuzaki
- Department of Internal Medicine, University of Iowa College of Medicine, Iowa City 52242
| | | | | |
Collapse
|
19
|
Sauer M, Dörge A, Thurau K, Beck FX. Effect of ouabain on electrolyte concentrations in principal and intercalated cells of the isolated perfused cortical collecting duct. Pflugers Arch 1989; 413:651-5. [PMID: 2726428 DOI: 10.1007/bf00581816] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Sodium, phosphorus, chloride and potassium concentrations were measured by a new method in individual principal and intercalated cells in the cortical collecting duct in vitro. Electron microprobe analysis was applied to freeze-dried cryosections of the isolated perfused rabbit cortical collecting duct. Cell analyses were performed under control conditions and after addition of ouabain to the bath. Under control conditions similar sodium, potassium, chloride, and phosphorus concentration (means +/- SEM) were observed in principal (10.0 +/- 0.6, 126.5 +/- 2.7, 24.6 +/- 1.0, and 121.5 +/- 3.5 mmol/kg wet weight, respectively) and intercalated cells (9.0 +/- 0.9, 127.1 +/- 4.2, 27.4 +/- 1.8, and 118.7 +/- 4.9 mmol/kg wet weight, respectively). In principal cells ouabain (10 min) caused an increase in sodium and chloride concentrations by 104 and 13 mmol/kg wet weight, and a decrease in potassium and phosphorus concentrations by 106 and 32 mmol/kg wet weight. These changes in cell element concentrations can be ascribed to an exchange of intracellular potassium against extracellular sodium and to cell swelling due to influx of extracellular fluid. The effects of ouabain on intercalated cells were far less pronounced than on principal cells. This different susceptibility to ouabain of principal and intercalated cells can be ascribed to differences in active and passive transmembrane ion transport pathways.
Collapse
Affiliation(s)
- M Sauer
- Physiologisches Institut, Universität München, Federal Republic of Germany
| | | | | | | |
Collapse
|
20
|
Strange K. Ouabain-induced cell swelling in rabbit cortical collecting tubule: NaCl transport by principal cells. J Membr Biol 1989; 107:249-61. [PMID: 2716047 DOI: 10.1007/bf01871940] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Ouabain had no effect on the volume of intercalated cells of DOCA-stimulated rabbit cortical collecting tubules, but caused principal cells to swell rapidly at an initial rate of 67%/min. Principal cells swelled 133% then activated regulatory volume decrease mechanisms and shrank at an initial rate of -3%/min to a new volume 13% above control. The initial rate of ouabain swelling was completely inhibited by perfusate Na+ removal or reduced 95% by luminal addition of 10(-5) M amiloride. Luminal, peritubular, or bilateral Cl- removal each caused cell shrinkages of 10% and reduced the rate of ouabain swelling by 70, 85, and 99%, respectively. The presence of an apical Cl- transport step in principal cells was confirmed by increasing luminal K+ from 5 to 53 mM, which caused cell swelling of 22%. This volume increase was completely blocked by luminal Cl- removal, but was unaffected by peritubular Cl- substitution. Perfusion of CCT with 0.1 mM acetazolomide, 0.1 mM DPC or 0.5 mM SITS caused principal cell shrinkages of 7-9% and reduced the rate of ouabain swelling by 60, 70, and 40%, respectively. The initial rate of ouabain swelling was inhibited 70% by bilateral CO2/HCO3 removal and 50% by whole animal acid loading. Taken together these results demonstrate that ouabain swelling is due to cellular NaCl accumulation and that Na+ enters the cell primarily through apical Na+ channels. Cellular Cl- entry occurs at least partially through the apical membrane and may be mediated by a Cl-/HCO3- exchanger. Brief (45-90 sec) exposure of principal cells to ouabain is associated with a rapid inhibition of Na+ and/or Cl- entry steps, whereas long-term (greater than 5 min) ouabain exposure completely blocks one or both of these transport pathways.
Collapse
Affiliation(s)
- K Strange
- Department of Physiology and Biophysics, School of Medicine, Wright State University, Dayton, Ohio 45435
| |
Collapse
|
21
|
Beck FX, Dörge A, Giebisch G, Thurau K. Renal excretion of rubidium and potassium: an electron microprobe and clearance study. Kidney Int 1988; 34:455-62. [PMID: 3199665 DOI: 10.1038/ki.1988.202] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A combination of clearance and electron microprobe studies was carried out to investigate renal rubidium excretion and rubidium distribution between plasma and individual tubule cells. Saline-infused animals were compared with potassium-loaded rats and another group in which rubidium was given in such amounts that the sum of plasma rubidium plus potassium equalled the potassium concentration in the potassium-loaded rats. The renal clearance of rubidium was uniformly less than that of potassium. Nevertheless, rubidium stimulated fractional potassium excretion above the levels observed in both saline- and potassium-loaded animals. When compared with their plasma concentrations, rubidium was concentrated in all tubule cell types more than potassium, and this is most likely due to restriction of passive diffusion of rubidium from cells to extracellular fluid. In addition, heterogeneity of intercalated cell ion composition was observed: one cell group had high chloride and potassium, but low rubidium contents, whereas the other was characterized by low chloride and potassium, but high rubidium contents.
Collapse
Affiliation(s)
- F X Beck
- Department of Physiology, University of Munich, Federal Republic of Germany
| | | | | | | |
Collapse
|
22
|
Beck FX, Schramm M, Dörge A, Rick R, Thurau K. Effect of acute metabolic acidosis on transmembrane electrolyte gradients in individual renal tubule cells. Pflugers Arch 1988; 412:427-33. [PMID: 3174401 DOI: 10.1007/bf01907563] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We studied the effect of acute metabolic acidosis on potassium, sodium and chloride gradients across the apical membrane of proximal and distal tubule cells by determining electrolyte concentrations in individual cells and in tubule fluid employing electron microprobe analysis. Cellular measurements were performed on freeze-dried cryosections of the renal cortex, analysis of tubule fluid electrolyte concentrations on freeze-dried microdroplets of micropuncture samples obtained from proximal and from early and late distal collection sites. Acidosis (NH4Cl i.v. and i.g.) induced a substantial rise in plasma potassium concentration without significant effects on cell potassium concentrations. Potassium concentrations along the surface distal tubule were also unaltered; thus the chemical driving force for potassium exit from cell to lumen was not affected by acidosis. In all but intercalated cells acidosis markedly increased cell phosphorus concentration and cell dry weight indicating cell shrinkage and thus diminution of cell potassium content. Because the increase in intracellular chloride concentration exceeded the increase in plasma chloride concentration, the chemical chloride gradient across the contraluminal membrane was markedly depressed by acidosis.
Collapse
Affiliation(s)
- F X Beck
- Physiologisches Institut, Universität München, Federal Republic of Germany
| | | | | | | | | |
Collapse
|
23
|
Beck FX, Dörge A, Rick R, Schramm M, Thurau K. The distribution of potassium, sodium and chloride across the apical membrane of renal tubular cells: effect of acute metabolic alkalosis. Pflugers Arch 1988; 411:259-67. [PMID: 3380642 DOI: 10.1007/bf00585112] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Studies were undertaken to define the effect of acute metabolic alkalosis (hypertonic sodium bicarbonate i.v.) on the chemical gradients for potassium, sodium and chloride across the apical membrane of individual renal tubule cells. Electron microprobe analysis was used on freeze-dried cryosections of the rat renal cortex to measure electrolyte concentrations in proximal tubule cells and in the various cell types of the superficial distal tubule. Analyses were also performed in fluid samples obtained by micropuncture from proximal and early and late distal collection sites. Compared with the appropriate controls (hypertonic sodium chloride i.v.), administration of sodium bicarbonate resulted only in small and mostly insignificant increases in cell potassium concentrations and induced only minor alterations in the cell/tubule fluid potassium concentration gradient for all cell types analysed. This observation suggests that under this condition factors other than an increase in cell potassium concentration are important in modulating potassium transfer across the apical membrane of potassium secreting cells. Nevertheless, since in alkalosis phosphorus and cell dry weight were decreased, and hence cell volume increased, in all but the intercalated cells, actually the potassium content of most tubular cells was higher under this condition. In comparison with animals infused with isotonic saline at low rates (hydropenic controls), infusion of either hypertonic sodium chloride or sodium bicarbonate led to a sharp increase in distal tubule fluid sodium concentrations and in the sodium concentrations of distal convoluted tubule, connecting tubule and principal cells, indicating that under both conditions the primary event causing enhanced transepithelial sodium absorption is stimulation of the sodium entry step.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- F X Beck
- Physiologisches Institut der Universität München, Federal Republic of Germany
| | | | | | | | | |
Collapse
|