1
|
Lee KY, Lee BJ. Dynamics-Based Regulatory Switches of Type II Antitoxins: Insights into New Antimicrobial Discovery. Antibiotics (Basel) 2023; 12:antibiotics12040637. [PMID: 37106997 PMCID: PMC10135005 DOI: 10.3390/antibiotics12040637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 04/29/2023] Open
Abstract
Type II toxin-antitoxin (TA) modules are prevalent in prokaryotes and are involved in cell maintenance and survival under harsh environmental conditions, including nutrient deficiency, antibiotic treatment, and human immune responses. Typically, the type II TA system consists of two protein components: a toxin that inhibits an essential cellular process and an antitoxin that neutralizes its toxicity. Antitoxins of type II TA modules typically contain the structured DNA-binding domain responsible for TA transcription repression and an intrinsically disordered region (IDR) at the C-terminus that directly binds to and neutralizes the toxin. Recently accumulated data have suggested that the antitoxin's IDRs exhibit variable degrees of preexisting helical conformations that stabilize upon binding to the corresponding toxin or operator DNA and function as a central hub in regulatory protein interaction networks of the type II TA system. However, the biological and pathogenic functions of the antitoxin's IDRs have not been well discussed compared with those of IDRs from the eukaryotic proteome. Here, we focus on the current state of knowledge about the versatile roles of IDRs of type II antitoxins in TA regulation and provide insights into the discovery of new antibiotic candidates that induce toxin activation/reactivation and cell death by modulating the regulatory dynamics or allostery of the antitoxin.
Collapse
Affiliation(s)
- Ki-Young Lee
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Pocheon-si 11160, Republic of Korea
| | - Bong-Jin Lee
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
2
|
Klink VP, Alkharouf NW, Lawrence KS, Lawaju BR, Sharma K, Niraula PM, McNeece BT. The heterologous expression of conserved Glycine max (soybean) mitogen activated protein kinase 3 (MAPK3) paralogs suppresses Meloidogyne incognita parasitism in Gossypium hirsutum (upland cotton). Transgenic Res 2022; 31:457-487. [PMID: 35763120 PMCID: PMC9489592 DOI: 10.1007/s11248-022-00312-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/17/2022] [Indexed: 11/29/2022]
Abstract
Two conserved Glycine max (soybean) mitogen activated protein kinase 3 (MAPK3) paralogs function in defense to the parasitic soybean cyst nematode Heterodera glycines. Gene Ontology analyses of RNA seq data obtained from MAPK3-1-overexpressing (OE) and MAPK3-2-OE roots compared to their control, as well as MAPK3-1-RNA interference (RNAi) and MAPK3-2-RNAi compared to their control, hierarchically orders the induced and suppressed genes, strengthening the hypothesis that their heterologous expression in Gossypium hirsutum (upland cotton) would impair parasitism by the root knot nematode (RKN) Meloidogyne incognita. MAPK3-1 expression (E) in G. hirsutum suppresses the production of M. incognita root galls, egg masses, and second stage juveniles (J2s) by 80.32%, 82.37%, and 88.21%, respectfully. Unexpectedly, egg number increases by 28.99% but J2s are inviable. MAPK3-2-E effects are identical, statistically. MAPK3-1-E and MAPK3-2-E decreases root mass 1.49-fold and 1.55-fold, respectively, as compared to the pRAP15-ccdB-E control. The reproductive factor (RF) of M. incognita for G. hirsutum roots expressing MAPK3-1-E or MAPK3-2-E decreases 60.39% and 50.46%, respectively, compared to controls. The results are consistent with upstream pathogen activated molecular pattern (PAMP) triggered immunity (PTI) and effector triggered immunity (ETI) functioning in defense to H. glycines. The experiments showcase the feasibility of employing MAPK3, through heterologous expression, to combat M. incognita parasitism, possibly overcoming impediments otherwise making G. hirsutum's defense platform deficient. MAPK homologs are identified in other important crop species for future functional analyses.
Collapse
Affiliation(s)
- Vincent P. Klink
- USDA ARS NEA BARC Molecular Plant Pathology Laboratory, Building 004 Room 122 BARC-West, 10300 Baltimore Ave., Beltsville, MD 20705 USA
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762 USA
- Present Address: Center for Computational Sciences High Performance Computing Collaboratory, Mississippi State University, Mississippi State, MS 39762 USA
| | - Nadim W. Alkharouf
- Department of Computer and Information Sciences, Towson University, Towson, MD 21252 USA
| | - Kathy S. Lawrence
- Department of Entomology and Plant Pathology, Auburn University, 209 Life Science Building, Auburn, AL 36849 USA
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Auburn University, 209 Life Science Building, Auburn, AL 36849 USA
| | - Bisho R. Lawaju
- Department of Entomology and Plant Pathology, Auburn University, 209 Life Science Building, Auburn, AL 36849 USA
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762 USA
- Present Address: Department of Plant Pathology, North Dakota State University, 1402 Albrecht Blvd., Walster Hall 306, Fargo, ND 58102 USA
| | - Keshav Sharma
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762 USA
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762 USA
- Present Address: Cereal Disease Laboratory, 1551 Lindig Street, Saint Paul, MN 55108 USA
| | - Prakash M. Niraula
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762 USA
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762 USA
- Present Address: Department of Biological Sciences, Delaware State University, 1200 North Dupont Highway, Science Center 164, Dover, DE 19901 USA
| | - Brant T. McNeece
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762 USA
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762 USA
- Present Address: Nutrien Ag Solutions, 737 Blaylock Road, Winterville, MS 38703 USA
| |
Collapse
|
3
|
LeRoux M, Culviner PH, Liu YJ, Littlehale ML, Laub MT. Stress Can Induce Transcription of Toxin-Antitoxin Systems without Activating Toxin. Mol Cell 2020; 79:280-292.e8. [PMID: 32533919 PMCID: PMC7368831 DOI: 10.1016/j.molcel.2020.05.028] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 04/02/2020] [Accepted: 05/20/2020] [Indexed: 12/14/2022]
Abstract
Toxin-antitoxin (TA) systems are ubiquitous genetic elements in bacterial genomes, but their functions are controversial. Although they are frequently postulated to regulate cell growth following stress, few null phenotypes for TA systems have been reported. Here, we show that TA transcript levels can increase substantially in response to stress, but toxin is not liberated. We find that the growth of an Escherichia coli strain lacking ten TA systems encoding endoribonuclease toxins is not affected following exposure to six stresses that each trigger TA transcription. Additionally, using RNA sequencing, we find no evidence of mRNA cleavage following stress. Stress-induced transcription arises from antitoxin degradation and relief of transcriptional autoregulation. Importantly, although free antitoxin is readily degraded in vivo, antitoxin bound to toxin is protected from proteolysis, preventing release of active toxin. Thus, transcription is not a reliable marker of TA activity, and TA systems do not strongly promote survival following individual stresses.
Collapse
Affiliation(s)
- Michele LeRoux
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Peter H Culviner
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yue J Liu
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Megan L Littlehale
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Michael T Laub
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
4
|
Aghera NK, Prabha J, Tandon H, Chattopadhyay G, Vishwanath S, Srinivasan N, Varadarajan R. Mechanism of CcdA-Mediated Rejuvenation of DNA Gyrase. Structure 2020; 28:562-572.e4. [PMID: 32294467 DOI: 10.1016/j.str.2020.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 02/17/2020] [Accepted: 03/17/2020] [Indexed: 12/13/2022]
Abstract
Most biological processes involve formation of transient complexes where binding of a ligand allosterically modulates function. The ccd toxin-antitoxin system is involved in plasmid maintenance and bacterial persistence. The CcdA antitoxin accelerates dissociation of CcdB from its complex with DNA gyrase, binds and neutralizes CcdB, but the mechanistic details are unclear. Using a series of experimental and computational approaches, we demonstrate the formation of transient ternary and quaternary CcdA:CcdB:gyrase complexes and delineate the molecular steps involved in the rejuvenation process. Binding of region 61-72 of CcdA to CcdB induces the vital structural and dynamic changes required to facilitate dissociation from gyrase, region 50-60 enhances the dissociation process through additional allosteric effects, and segment 37-49 prevents gyrase rebinding. This study provides insights into molecular mechanisms responsible for recovery of CcdB-poisoned cells from a persister-like state. Similar methodology can be used to characterize other important transient, macromolecular complexes.
Collapse
Affiliation(s)
- Nilesh K Aghera
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | - Jyothi Prabha
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | - Himani Tandon
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | | | - Sneha Vishwanath
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | | | - Raghavan Varadarajan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India; Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560 004, India.
| |
Collapse
|
5
|
Abstract
Type II toxin-antitoxin (TA) systems are small genetic elements composed of a toxic protein and its cognate antitoxin protein, the latter counteracting the toxicity of the former. While TA systems were initially discovered on plasmids, functioning as addiction modules through a phenomenon called postsegregational killing, they were later shown to be massively present in bacterial chromosomes, often in association with mobile genetic elements. Extensive research has been conducted in recent decades to better understand the physiological roles of these chromosomally encoded modules and to characterize the conditions leading to their activation. Type II toxin-antitoxin (TA) systems are small genetic elements composed of a toxic protein and its cognate antitoxin protein, the latter counteracting the toxicity of the former. While TA systems were initially discovered on plasmids, functioning as addiction modules through a phenomenon called postsegregational killing, they were later shown to be massively present in bacterial chromosomes, often in association with mobile genetic elements. Extensive research has been conducted in recent decades to better understand the physiological roles of these chromosomally encoded modules and to characterize the conditions leading to their activation. The diversity of their proposed roles, ranging from genomic stabilization and abortive phage infection to stress modulation and antibiotic persistence, in conjunction with the poor understanding of TA system regulation, resulted in the generation of simplistic models, often refuted by contradictory results. This review provides an epistemological and critical retrospective on TA modules and highlights fundamental questions concerning their roles and regulations that still remain unanswered.
Collapse
|
6
|
Lobato-Márquez D, Molina-García L, Moreno-Córdoba I, García-Del Portillo F, Díaz-Orejas R. Stabilization of the Virulence Plasmid pSLT of Salmonella Typhimurium by Three Maintenance Systems and Its Evaluation by Using a New Stability Test. Front Mol Biosci 2016; 3:66. [PMID: 27800482 PMCID: PMC5065971 DOI: 10.3389/fmolb.2016.00066] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 09/27/2016] [Indexed: 12/27/2022] Open
Abstract
Certain Salmonella enterica serovars belonging to subspecies I carry low-copy-number virulence plasmids of variable size (50–90 kb). All of these plasmids share the spv operon, which is important for systemic infection. Virulence plasmids are present at low copy numbers. Few copies reduce metabolic burden but suppose a risk of plasmid loss during bacterial division. This drawback is counterbalanced by maintenance modules that ensure plasmid stability, including partition systems and toxin-antitoxin (TA) loci. The low-copy number virulence pSLT plasmid of Salmonella enterica serovar Typhimurium encodes three auxiliary maintenance systems: one partition system (parAB) and two TA systems (ccdABST and vapBC2ST). The TA module ccdABST has previously been shown to contribute to pSLT plasmid stability and vapBC2ST to bacterial virulence. Here we describe a novel assay to measure plasmid stability based on the selection of plasmid-free cells following elimination of plasmid-containing cells by ParE toxin, a DNA gyrase inhibitor. Using this new maintenance assay we confirmed a crucial role of parAB in pSLT maintenance. We also showed that vapBC2ST, in addition to contribute to bacterial virulence, is important for plasmid stability. We have previously shown that ccdABST encodes an inactive CcdBST toxin. Using our new stability assay we monitored the contribution to plasmid stability of a ccdABST variant containing a single mutation (R99W) that restores the toxicity of CcdBST. The “activation” of CcdBST (R99W) did not increase pSLT stability by ccdABST. In contrast, ccdABST behaves as a canonical type II TA system in terms of transcriptional regulation. Of interest, ccdABST was shown to control the expression of a polycistronic operon in the pSLT plasmid. Collectively, these results show that the contribution of the CcdBST toxin to pSLT plasmid stability may depend on its role as a co-repressor in coordination with CcdAST antitoxin more than on its toxic activity.
Collapse
Affiliation(s)
- Damián Lobato-Márquez
- Section of Microbiology, Department of Medicine, Centre for Molecular Bacteriology and Infection, Imperial College London London, UK
| | - Laura Molina-García
- Department of Cell and Developmental Biology, University College London London, UK
| | - Inma Moreno-Córdoba
- Departamento de Microbiología Molecular y Biología de las Infecciones, Centro de Investigaciones Biológicas-Spanish National Research Council Madrid, Spain
| | - Francisco García-Del Portillo
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología-Spanish National Research Council Madrid, Spain
| | - Ramón Díaz-Orejas
- Departamento de Microbiología Molecular y Biología de las Infecciones, Centro de Investigaciones Biológicas-Spanish National Research Council Madrid, Spain
| |
Collapse
|
7
|
Hayes F, Kędzierska B. Regulating toxin-antitoxin expression: controlled detonation of intracellular molecular timebombs. Toxins (Basel) 2014; 6:337-58. [PMID: 24434949 PMCID: PMC3920265 DOI: 10.3390/toxins6010337] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 12/20/2013] [Accepted: 01/08/2014] [Indexed: 11/24/2022] Open
Abstract
Genes for toxin-antitoxin (TA) complexes are widely disseminated in bacteria, including in pathogenic and antibiotic resistant species. The toxins are liberated from association with the cognate antitoxins by certain physiological triggers to impair vital cellular functions. TAs also are implicated in antibiotic persistence, biofilm formation, and bacteriophage resistance. Among the ever increasing number of TA modules that have been identified, the most numerous are complexes in which both toxin and antitoxin are proteins. Transcriptional autoregulation of the operons encoding these complexes is key to ensuring balanced TA production and to prevent inadvertent toxin release. Control typically is exerted by binding of the antitoxin to regulatory sequences upstream of the operons. The toxin protein commonly works as a transcriptional corepressor that remodels and stabilizes the antitoxin. However, there are notable exceptions to this paradigm. Moreover, it is becoming clear that TA complexes often form one strand in an interconnected web of stress responses suggesting that their transcriptional regulation may prove to be more intricate than currently understood. Furthermore, interference with TA gene transcriptional autoregulation holds considerable promise as a novel antibacterial strategy: artificial release of the toxin factor using designer drugs is a potential approach to induce bacterial suicide from within.
Collapse
Affiliation(s)
- Finbarr Hayes
- Faculty of Life Sciences and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
| | - Barbara Kędzierska
- Faculty of Life Sciences and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
| |
Collapse
|
8
|
Reschner A, Scohy S, Vandermeulen G, Daukandt M, Jacques C, Michel B, Nauwynck H, Xhonneux F, Préat V, Vanderplasschen A, Szpirer C. Use of Staby(®) technology for development and production of DNA vaccines free of antibiotic resistance gene. Hum Vaccin Immunother 2013; 9:2203-10. [PMID: 24051431 DOI: 10.4161/hv.25086] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The appearance of new viruses and the cost of developing certain vaccines require that new vaccination strategies now have to be developed. DNA vaccination seems to be a particularly promising method. For this application, plasmid DNA is injected into the subject (man or animal). This plasmid DNA encodes an antigen that will be expressed by the cells of the subject. In addition to the antigen, the plasmid also encodes a resistance to an antibiotic, which is used during the construction and production steps of the plasmid. However, regulatory agencies (FDA, USDA and EMA) recommend to avoid the use of antibiotics resistance genes. Delphi Genetics developed the Staby(®) technology to replace the antibiotic-resistance gene by a selection system that relies on two bacterial genes. These genes are small in size (approximately 200 to 300 bases each) and consequently encode two small proteins. They are naturally present in the genomes of bacteria and on plasmids. The technology is already used successfully for production of recombinant proteins to achieve higher yields and without the need of antibiotics. In the field of DNA vaccines, we have now the first data validating the innocuousness of this Staby(®) technology for eukaryotic cells and the feasibility of an industrial production of an antibiotic-free DNA vaccine. Moreover, as a proof of concept, mice have been successfully vaccinated with our antibiotic-free DNA vaccine against a deadly disease, pseudorabies (induced by Suid herpesvirus-1).
Collapse
Affiliation(s)
- Anca Reschner
- University of Liège; Immunology-Vaccinology; Faculty of Veterinary Medicine; Liège, Belgium
| | | | - Gaëlle Vandermeulen
- Université catholique de Louvain; Louvain Drug Research Institute; Pharmaceutics and Drug Delivery; Brussels, Belgium
| | | | | | | | - Hans Nauwynck
- Ghent University; Laboratory of Virology, Faculty of Veterinary Medicine; Merelbeke, Belgium
| | | | - Véronique Préat
- Université catholique de Louvain; Louvain Drug Research Institute; Pharmaceutics and Drug Delivery; Brussels, Belgium
| | - Alain Vanderplasschen
- University of Liège; Immunology-Vaccinology; Faculty of Veterinary Medicine; Liège, Belgium
| | | |
Collapse
|
9
|
Mruk I, Kobayashi I. To be or not to be: regulation of restriction-modification systems and other toxin-antitoxin systems. Nucleic Acids Res 2013; 42:70-86. [PMID: 23945938 PMCID: PMC3874152 DOI: 10.1093/nar/gkt711] [Citation(s) in RCA: 169] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
One of the simplest classes of genes involved in programmed death is that containing the toxin–antitoxin (TA) systems of prokaryotes. These systems are composed of an intracellular toxin and an antitoxin that neutralizes its effect. These systems, now classified into five types, were initially discovered because some of them allow the stable maintenance of mobile genetic elements in a microbial population through postsegregational killing or the death of cells that have lost these systems. Here, we demonstrate parallels between some TA systems and restriction–modification systems (RM systems). RM systems are composed of a restriction enzyme (toxin) and a modification enzyme (antitoxin) and limit the genetic flux between lineages with different epigenetic identities, as defined by sequence-specific DNA methylation. The similarities between these systems include their postsegregational killing and their effects on global gene expression. Both require the finely regulated expression of a toxin and antitoxin. The antitoxin (modification enzyme) or linked protein may act as a transcriptional regulator. A regulatory antisense RNA recently identified in an RM system can be compared with those RNAs in TA systems. This review is intended to generalize the concept of TA systems in studies of stress responses, programmed death, genetic conflict and epigenetics.
Collapse
Affiliation(s)
- Iwona Mruk
- Department of Microbiology, University of Gdansk, Wita Stwosza 59, Gdansk, 80-308, Poland, Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo 108-8639, Japan and Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | | |
Collapse
|
10
|
Youssef RM, Kim KH, Haroon SA, Matthews BF. Post-transcriptional gene silencing of the gene encoding aldolase from soybean cyst nematode by transformed soybean roots. Exp Parasitol 2013; 134:266-74. [PMID: 23541467 DOI: 10.1016/j.exppara.2013.03.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 03/12/2013] [Accepted: 03/17/2013] [Indexed: 11/17/2022]
Abstract
Plant parasitic nematodes cause approximately 157 billion US dollars in losses worldwide annually. The soybean cyst nematode (SCN), Heterodera glycines, is responsible for an estimated one billion dollars in losses to the US farmer each year. A promising new approach for control of plant parasitic nematode control is gene silencing. We tested this approach by silencing the SCN gene HgALD, encoding fructose-1,6-diphosphate aldolase. This enzyme is important in the conversion of glucose into energy and may be especially important in actin-based motility during parasite invasion of its host. An RNAi construct targeted to silence HgALD was transformed into soybean roots of composite plants to examine its efficacy to reduce the development of females formed by SCN. The number of mature females on roots transformed with the RNAi construct designed to silence the HgALD gene was reduced by 58%. These results indicate that silencing the aldolase gene of SCN +can greatly decrease the number of female SCN reaching maturity, and it is a promising step towards broadening resistance of plants against plant-parasitic nematodes.
Collapse
Affiliation(s)
- Reham M Youssef
- USDA-ARS, Soybean Genomic and Improvement Laboratory, 10300 Baltimore Ave., Beltsville, MD 20705, United States
| | | | | | | |
Collapse
|
11
|
Characterization of the phd-doc and ccd toxin-antitoxin cassettes from Vibrio superintegrons. J Bacteriol 2013; 195:2270-83. [PMID: 23475970 DOI: 10.1128/jb.01389-12] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Toxin-antitoxin (TA) systems have been reported in the genomes of most bacterial species, and their role when located on the chromosome is still debated. TA systems are particularly abundant in the massive cassette arrays associated with chromosomal superintegrons (SI). Here, we describe the characterization of two superintegron cassettes encoding putative TA systems. The first is the phd-doc(SI) system identified in Vibrio cholerae N16961. We determined its distribution in 36 V. cholerae strains and among five V. metschnikovii strains. We show that this cassette, which is in position 72 of the V. cholerae N16961 cassette array, is functional, carries its own promoter, and is expressed from this location. Interestingly, the phd-doc(SI) system is unable to control its own expression, most likely due to the absence of any DNA-binding domain on the antitoxin. In addition, this SI system is able to cross talk with the canonical P1 phage system. The second cassette that we characterized is the ccd(Vfi) cassette found in the V. fischeri superintegron. We demonstrate that CcdB(Vfi) targets DNA-gyrase, as the canonical CcB(F) toxin, and that ccd(Vfi) regulates its expression in a fashion similar to the ccd(F) operon of the conjugative plasmid F. We also establish that this cassette is functional and expressed in its chromosomal context in V. fischeri CIP 103206T. We tested its functional interactions with the ccdAB(F) system and found that CcdA(Vfi) is specific for its associated CcdB(Vfi) and cannot prevent CcdB(F) toxicity. Based on these results, we discuss the possible biological functions of these TA systems in superintegrons.
Collapse
|
12
|
Smith AB, López-Villarejo J, Diago-Navarro E, Mitchenall LA, Barendregt A, Heck AJ, Lemonnier M, Maxwell A, Díaz-Orejas R. A common origin for the bacterial toxin-antitoxin systems parD and ccd, suggested by analyses of toxin/target and toxin/antitoxin interactions. PLoS One 2012; 7:e46499. [PMID: 23029540 PMCID: PMC3460896 DOI: 10.1371/journal.pone.0046499] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 08/31/2012] [Indexed: 11/18/2022] Open
Abstract
Bacterial toxin-antitoxin (TA) systems encode two proteins, a potent inhibitor of cell proliferation (toxin) and its specific antidote (antitoxin). Structural data has revealed striking similarities between the two model TA toxins CcdB, a DNA gyrase inhibitor encoded by the ccd system of plasmid F, and Kid, a site-specific endoribonuclease encoded by the parD system of plasmid R1. While a common structural fold seemed at odds with the two clearly different modes of action of these toxins, the possibility of functional crosstalk between the parD and ccd systems, which would further point to their common evolutionary origin, has not been documented. Here, we show that the cleavage of RNA and the inhibition of protein synthesis by the Kid toxin, two activities that are specifically counteracted by its cognate Kis antitoxin, are altered, but not inhibited, by the CcdA antitoxin. In addition, Kis was able to inhibit the stimulation of DNA gyrase-mediated cleavage of DNA by CcdB, albeit less efficiently than CcdA. We further show that physical interactions between the toxins and antitoxins of the different systems do occur and define the stoichiometry of the complexes formed. We found that CcdB did not degrade RNA nor did Kid have any reproducible effect on the tested DNA gyrase activities, suggesting that these toxins evolved to reach different, rather than common, cellular targets.
Collapse
Affiliation(s)
- Andrew B. Smith
- Departament of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Juan López-Villarejo
- Department of Molecular Microbiology, Centro de Investigaciones Biológicas-CSIC, Madrid, Spain
| | - Elizabeth Diago-Navarro
- Department of Molecular Microbiology, Centro de Investigaciones Biológicas-CSIC, Madrid, Spain
| | - Lesley A. Mitchenall
- Departament of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Arjan Barendregt
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands
| | - Albert J. Heck
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands
| | - Marc Lemonnier
- Department of Molecular Microbiology, Centro de Investigaciones Biológicas-CSIC, Madrid, Spain
| | - Anthony Maxwell
- Departament of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Ramón Díaz-Orejas
- Department of Molecular Microbiology, Centro de Investigaciones Biológicas-CSIC, Madrid, Spain
- * E-mail:
| |
Collapse
|
13
|
Matsye PD, Lawrence GW, Youssef RM, Kim KH, Lawrence KS, Matthews BF, Klink VP. The expression of a naturally occurring, truncated allele of an α-SNAP gene suppresses plant parasitic nematode infection. PLANT MOLECULAR BIOLOGY 2012; 80:131-55. [PMID: 22689004 DOI: 10.1007/s11103-012-9932-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 05/17/2012] [Indexed: 05/23/2023]
Abstract
Transcriptional mapping experiments of the major soybean cyst nematode resistance locus, rhg1, identified expression of the vesicular transport machinery component, α soluble NSF attachment protein (α-SNAP), occurring during defense. Sequencing the α-SNAP coding regions from the resistant genotypes G. max ([Peking/PI 548402]) and G. max ([PI 437654]) revealed they are identical, but differ from the susceptible G. max ([Williams 82/PI 518671]) by the presence of several single nucleotide polymorphisms. Using G. max ([Williams 82/PI 518671]) as a reference, a G → T(2,822) transversion in the genomic DNA sequence at a functional splice site of the α-SNAP([Peking/PI 548402]) allele produced an additional 17 nucleotides of mRNA sequence that contains an in-frame stop codon caused by a downstream G → A(2,832) transition. The G. max ([Peking/PI 548402]) genotype has cell wall appositions (CWAs), structures identified as forming as part of a defense response by the activity of the vesicular transport machinery. In contrast, the 17 nt α-SNAP([Peking/PI 548402]) mRNA motif is not found in G. max ([PI 88788]) that exhibits defense to H. glycines, but lack CWAs. The α-SNAP([PI 88788]) promoter contains sequence elements that are nearly identical to the α-SNAP([Peking/PI 548402]) allele, but differs from the G. max ([Williams 82/PI 518671]) ortholog. Overexpressing the α-SNAP([Peking/PI 548402]) allele in the susceptible G. max ([Williams 82/PI 518671]) genotype suppressed H. glycines infection. The experiments indicate a role for the vesicular transport machinery during infection of soybean by the soybean cyst nematode. However, increased GmEREBP1, PR1, PR2, PR5 gene activity but suppressed PR3 expression accompanied the overexpression of the α-SNAP([Peking/PI 548402]) allele prior to infection.
Collapse
Affiliation(s)
- Prachi D Matsye
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
De Jonge N, Simic M, Buts L, Haesaerts S, Roelants K, Garcia-Pino A, Sterckx Y, De Greve H, Lah J, Loris R. Alternative interactions define gyrase specificity in the CcdB family. Mol Microbiol 2012; 84:965-78. [DOI: 10.1111/j.1365-2958.2012.08069.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Ibrahim HMM, Alkharouf NW, Meyer SLF, Aly MAM, Gamal El-Din AEKY, Hussein EHA, Matthews BF. Post-transcriptional gene silencing of root-knot nematode in transformed soybean roots. Exp Parasitol 2011; 127:90-9. [PMID: 20599433 DOI: 10.1016/j.exppara.2010.06.037] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Revised: 06/15/2010] [Accepted: 06/29/2010] [Indexed: 11/16/2022]
Abstract
RNAi constructs targeted to four different genes were examined to determine their efficacy to reduce galls formed by Meloidogyne incognita in soybean roots. These genes have high similarity with essential soybean cyst nematode (Heterodera glycines) and Caenorhabditis elegans genes. Transformed roots were challenged with M. incognita. Two constructs, targeted to genes encoding tyrosine phosphatase (TP) and mitochondrial stress-70 protein precursor (MSP), respectively, strongly interfered with M. incognita gall formation. The number of galls formed on roots transformed with constructs targeting the M. incognita TP and MSP genes was reduced by 92% and 94.7%, respectively. The diameter of M. incognita inside these transformed roots was 5.4 and 6.5 times less than the diameter of M. incognita found inside control plants transformed with the empty vector. These results indicate that silencing the genes encoding TP and MSP can greatly decrease gall formation and shows a promising solution for broadening resistance of plants against this plant-parasitic nematode.
Collapse
Affiliation(s)
- Heba M M Ibrahim
- United States Department of Agriculture, Plant Sciences Institute, Beltsville, MD 20705, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Fulwiler AL, Soysa DR, Ullman B, Yates PA. A rapid, efficient and economical method for generating leishmanial gene targeting constructs. Mol Biochem Parasitol 2010; 175:209-12. [PMID: 21055426 DOI: 10.1016/j.molbiopara.2010.10.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 10/19/2010] [Accepted: 10/22/2010] [Indexed: 11/18/2022]
Abstract
Targeted gene replacement is a powerful tool in Leishmania genetics that can be time-consuming to implement. One tedious aspect that delays progress is the multi-step construction of gene targeting vectors. To accelerate this process, we developed a streamlined method that allows the assembly of a complete targeting vector from all its constituent parts in a single-step multi-fragment ligation. The individual components to be assembled are flanked by sites for the restriction endonuclease SfiI that generates non-identical, non-palindromic three base 3'-overhangs designed to allow annealing and ligation of the parts only in the proper order. The method was optimized by generating constructs for targeting the Leishmania donovani inosine monophosphate dehydrogenase gene (LdIMPDH) encoding six different drug resistance markers, and was found to be rapid and efficient. These constructs were successfully employed to generate heterozygous LdIMPDH gene replacement mutants. This method is adaptable for generating targeting vectors for a variety of species.
Collapse
Affiliation(s)
- Audrey L Fulwiler
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR 97239-3098, USA
| | | | | | | |
Collapse
|
17
|
Diago-Navarro E, Hernandez-Arriaga AM, López-Villarejo J, Muñoz-Gómez AJ, Kamphuis MB, Boelens R, Lemonnier M, Díaz-Orejas R. parD toxin-antitoxin system of plasmid R1 - basic contributions, biotechnological applications and relationships with closely-related toxin-antitoxin systems. FEBS J 2010; 277:3097-117. [DOI: 10.1111/j.1742-4658.2010.07722.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Klink VP, Kim KH, Martins V, Macdonald MH, Beard HS, Alkharouf NW, Lee SK, Park SC, Matthews BF. A correlation between host-mediated expression of parasite genes as tandem inverted repeats and abrogation of development of female Heterodera glycines cyst formation during infection of Glycine max. PLANTA 2009; 230:53-71. [PMID: 19347355 DOI: 10.1007/s00425-009-0926-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Accepted: 03/12/2009] [Indexed: 05/20/2023]
Abstract
Host-mediated (hm) expression of parasite genes as tandem inverted repeats was investigated as a means to abrogate the formation of mature Heterodera glycines (soybean cyst nematode) female cysts during its infection of Glycine max (soybean). A Gateway-compatible hm plant transformation system was developed specifically for these experiments in G. max. Three steps then were taken to identify H. glycines candidate genes. First, a pool of 150 highly conserved H. glycines homologs of genes having lethal mutant phenotypes or phenocopies from the free living nematode Caenorhabditis elegans were identified. Second, annotation of those 150 genes on the Affymetrix soybean GeneChip allowed for the identification of a subset of 131 genes whose expression could be monitored during the parasitic phase of the H. glycines life cycle. Third, a microarray analyses identified a core set of 32 genes with induced expression (>2.0-fold, log base 2) during the parasitic stages of infection. H. glycines homologs of small ribosomal protein 3a and 4 (Hg-rps-3a [accession number CB379877] and Hg-rps-4 [accession number CB278739]), synaptobrevin (Hg-snb-1 [accession number BF014436]) and a spliceosomal SR protein (Hg-spk-1 [accession number BI451523.1]) were tested for functionality in hm expression studies. Effects on H. glycines development were observed 8 days after infection. Experiments demonstrated that 81-93% fewer females developed on transgenic roots containing the genes engineered as tandem inverted repeats. The effect resembles RNA interference. The methodology has been used here as an alternative approach to engineer resistance to H. glycines.
Collapse
Affiliation(s)
- Vincent P Klink
- Department of Biological Sciences, Mississippi State University, Harned Hall, Rm 310, Mississippi State, MS 39762, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Guglielmini J, Szpirer C, Milinkovitch MC. Automated discovery and phylogenetic analysis of new toxin-antitoxin systems. BMC Microbiol 2008; 8:104. [PMID: 18578869 PMCID: PMC2446400 DOI: 10.1186/1471-2180-8-104] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Accepted: 06/25/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Although often viewed as elements "at the service of" bacteria, plasmids exhibit replication and maintenance mechanisms that make them purely "selfish DNA" candidates. Toxin-antitoxin (TA) systems are a spectacular example of such mechanisms: a gene coding for a cytotoxic stable protein is preceded by a gene coding for an unstable antitoxin. The toxin being more stable than the antitoxin, absence of the operon causes a reduction of the amount of the latter relative to the amount of the former. Thus, a cell exhibiting a TA system on a plasmid is 'condemned' either not to loose it or to die. RESULTS Different TA systems have been described and classified in several families, according to similarity and functional parameters. However, given the small size and large divergence among TA system sequences, it is likely that many TA systems are not annotated as such in the rapidly accumulating NCBI database. To detect these putative TA systems, we developed an algorithm that searches public databases on the basis of predefined similarity and TA-specific structural constraints. This approach, using a single starting query sequence for each of the ParE, Doc, and VapC families, and two starting sequences for the MazF/CcdB family, identified over 1,500 putative TA systems. These groups of sequences were analyzed phylogenetically for a better classification and understanding of TA systems evolution. CONCLUSION The phylogenetic distributions of the newly uncovered TA systems are very different within the investigated families. The resulting phylogenetic trees are available for browsing and searching through a java program available at http://ueg.ulb.ac.be/tiq/.
Collapse
Affiliation(s)
- Julien Guglielmini
- Laboratory of Evolutionary Genetics, Institute for Molecular Biology & Medicine, Université Libre de Bruxelles (ULB), 12 rue Jeener & Brachet, 6041 Gosselies, Belgium.
| | | | | |
Collapse
|
20
|
Abstract
Toxin-antitoxin (TA) systems are widespread among bacterial chromosomes and mobile genetic elements. Although in plasmids TA systems have a clear role in their vertical inheritance by selectively killing plasmid-free daughter cells (postsegregational killing or addiction phenomenon), the physiological role of chromosomally encoded ones remains under debate. The assumption that chromosomally encoded TA systems are part of stress response networks and/or programmed cell death machinery has been called into question recently by the observation that none of the five canonical chromosomally encoded TA systems in the Escherichia coli chromosome seem to confer any selective advantage under stressful conditions (V. Tsilibaris, G. Maenhaut-Michel, N. Mine, and L. Van Melderen, J. Bacteriol. 189:6101-6108, 2007). Their prevalence in bacterial chromosomes indicates that they might have been acquired through horizontal gene transfer. Once integrated in chromosomes, they might in turn interfere with their homologues encoded by mobile genetic elements. In this work, we show that the chromosomally encoded Erwinia chrysanthemi ccd (control of cell death) (ccd(Ech)) system indeed protects the cell against postsegregational killing mediated by its F-plasmid ccd (ccd(F)) homologue. Moreover, competition experiments have shown that this system confers a fitness advantage under postsegregational conditions mediated by the ccd(F) system. We propose that ccd(Ech) acts as an antiaddiction module and, more generally, that the integration of TA systems in bacterial chromosomes could drive the evolution of plasmid-encoded ones and select toxins that are no longer recognized by the antiaddiction module.
Collapse
|
21
|
Oberer M, Zangger K, Gruber K, Keller W. The solution structure of ParD, the antidote of the ParDE toxin antitoxin module, provides the structural basis for DNA and toxin binding. Protein Sci 2007; 16:1676-88. [PMID: 17656583 PMCID: PMC2203376 DOI: 10.1110/ps.062680707] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
ParD is the antidote of the plasmid-encoded toxin-antitoxin (TA) system ParD-ParE. These modules rely on differential stabilities of a highly expressed but labile antidote and a stable toxin expressed from one operon. Consequently, loss of the coding plasmid results in loss of the protective antidote and poisoning of the cell. The antidote protein usually also exhibits an autoregulatory function of the operon. In this paper, we present the solution structure of ParD. The repressor activity of ParD is mediated by the N-terminal half of the protein, which adopts a ribbon-helix-helix (RHH) fold. The C-terminal half of the protein is unstructured in the absence of its cognate binding partner ParE. Based on homology with other RHH proteins, we present a model of the ParD-DNA interaction, with the antiparallel beta-strand being inserted into the major groove of DNA. The fusion of the N-terminal DNA-binding RHH motif to the toxin-binding unstructured C-terminal domain is discussed in its evolutionary context.
Collapse
Affiliation(s)
- Monika Oberer
- Institut für Chemie, Arbeitsgruppe Strukturbiologie, Karl-Franzens-Universität Graz, A-8010 Graz, Austria
| | | | | | | |
Collapse
|
22
|
Wilbaux M, Mine N, Guérout AM, Mazel D, Van Melderen L. Functional interactions between coexisting toxin-antitoxin systems of the ccd family in Escherichia coli O157:H7. J Bacteriol 2007; 189:2712-9. [PMID: 17259320 PMCID: PMC1855815 DOI: 10.1128/jb.01679-06] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Toxin-antitoxin (TA) systems are widely represented on mobile genetic elements as well as in bacterial chromosomes. TA systems encode a toxin and an antitoxin neutralizing it. We have characterized a homolog of the ccd TA system of the F plasmid (ccd(F)) located in the chromosomal backbone of the pathogenic O157:H7 Escherichia coli strain (ccd(O157)). The ccd(F) and the ccd(O157) systems coexist in O157:H7 isolates, as these pathogenic strains contain an F-related virulence plasmid carrying the ccd(F) system. We have shown that the chromosomal ccd(O157) system encodes functional toxin and antitoxin proteins that share properties with their plasmidic homologs: the CcdB(O157) toxin targets the DNA gyrase, and the CcdA(O157) antitoxin is degraded by the Lon protease. The ccd(O157) chromosomal system is expressed in its natural context, although promoter activity analyses revealed that its expression is weaker than that of ccd(F). ccd(O157) is unable to mediate postsegregational killing when cloned in an unstable plasmid, supporting the idea that chromosomal TA systems play a role(s) other than stabilization in bacterial physiology. Our cross-interaction experiments revealed that the chromosomal toxin is neutralized by the plasmidic antitoxin while the plasmidic toxin is not neutralized by the chromosomal antitoxin, whether expressed ectopically or from its natural context. Moreover, the ccd(F) system is able to mediate postsegregational killing in an E. coli strain harboring the ccd(O157) system in its chromosome. This shows that the plasmidic ccd(F) system is functional in the presence of its chromosomal counterpart.
Collapse
Affiliation(s)
- Myriam Wilbaux
- Laboratoire de Génétique des Procaryotes, Institut de Biologie et Médecine Moléculaires, Université Libre de Bruxelles, 12 Rue des Professeurs Jeener et Brachet, 6041 Gosselies, Belgium
| | | | | | | | | |
Collapse
|
23
|
Madl T, Van Melderen L, Mine N, Respondek M, Oberer M, Keller W, Khatai L, Zangger K. Structural basis for nucleic acid and toxin recognition of the bacterial antitoxin CcdA. J Mol Biol 2006; 364:170-85. [PMID: 17007877 DOI: 10.1016/j.jmb.2006.08.082] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Revised: 08/25/2006] [Accepted: 08/29/2006] [Indexed: 11/28/2022]
Abstract
Toxin-antitoxin systems are highly abundant in plasmids and bacterial chromosomes. They ensure plasmid maintenance by killing bacteria that have lost the plasmid. Their expression is autoregulated at the level of transcription. Here, we present the solution structure of CcdA, the antitoxin of the ccd system, as a free protein (16.7 kDa) and in complex with its cognate DNA (25.3 kDa). CcdA is composed of two distinct and independent domains: the N-terminal domain, responsible for DNA binding, which establishes a new family of the ribbon-helix-helix fold and the C-terminal region, which is responsible for the interaction with the toxin CcdB. The C-terminal domain is intrinsically unstructured and forms a tight complex with the toxin. We show that CcdA specifically recognizes a 6 bp palindromic DNA sequence within the operator-promoter (OP) region of the ccd operon and binds to DNA by insertion of the positively charged N-terminal beta-sheet into the major groove. The binding of up to three CcdA dimers to a 33mer DNA of its operator-promoter region was studied by NMR spectroscopy, isothermal titration calorimetry and single point mutation. The highly flexible C-terminal region of free CcdA explains its susceptibility to proteolysis by the Lon ATP-dependent protease.
Collapse
Affiliation(s)
- Tobias Madl
- Institute of Chemistry, University of Graz, Graz 8010, Austria
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Buts L, De Jonge N, Loris R, Wyns L, Dao-Thi MH. Crystallization of the C-terminal domain of the addiction antidote CcdA in complex with its toxin CcdB. Acta Crystallogr Sect F Struct Biol Cryst Commun 2005; 61:949-52. [PMID: 16511204 PMCID: PMC1991321 DOI: 10.1107/s1744309105029258] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2005] [Accepted: 09/15/2005] [Indexed: 11/10/2022]
Abstract
CcdA and CcdB are the antidote and toxin of the ccd addiction module of Escherichia coli plasmid F. The CcdA C-terminal domain (CcdAC36; 36 amino acids) was crystallized in complex with CcdB (dimer of 2 x 101 amino acids) in three different crystal forms, two of which diffract to high resolution. Form II belongs to space group P2(1)2(1)2(1), with unit-cell parameters a = 37.6, b = 60.5, c = 83.8 A and diffracts to 1.8 A resolution. Form III belongs to space group P2(1), with unit-cell parameters a = 41.0, b = 37.9, c = 69.6 A, beta = 96.9 degrees, and diffracts to 1.9 A resolution.
Collapse
Affiliation(s)
- Lieven Buts
- Department of Molecular and Cellular Interactions, Vlaams Interinuversitair Instituut voor Biotechnologie and Laboratorium voor Ultrastructuur, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel, Belgium
| | - Natalie De Jonge
- Department of Molecular and Cellular Interactions, Vlaams Interinuversitair Instituut voor Biotechnologie and Laboratorium voor Ultrastructuur, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel, Belgium
| | - Remy Loris
- Department of Molecular and Cellular Interactions, Vlaams Interinuversitair Instituut voor Biotechnologie and Laboratorium voor Ultrastructuur, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel, Belgium
| | - Lode Wyns
- Department of Molecular and Cellular Interactions, Vlaams Interinuversitair Instituut voor Biotechnologie and Laboratorium voor Ultrastructuur, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel, Belgium
| | - Minh-Hoa Dao-Thi
- Department of Molecular and Cellular Interactions, Vlaams Interinuversitair Instituut voor Biotechnologie and Laboratorium voor Ultrastructuur, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel, Belgium
| |
Collapse
|
25
|
Szpirer CY, Milinkovitch MC. Separate-component-stabilization system for protein and DNA production without the use of antibiotics. Biotechniques 2005; 38:775-81. [PMID: 15945374 DOI: 10.2144/05385rr02] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Plasmid instability is a significant concern in the industrial utilization of microorganisms for protein or DNA production. Here we report on the development of a new and highly effective stabilization system based on the use of the ccd antidote/poison genes. For the first time, we separated the antidote gene from the poison gene: localizing the former in the plasmid and integrating the latter in the bacterial chromosome. We show that this separate-component-stabilization (SCS) strategy: (i) allows for perfect stabilization without the use of antibiotics; (ii) increases three to five times the recombinant protein production levels; and (iii) does not require any specific modification of the protein production process or culture medium. We illustrate that point by using the classical T7 promotor (i.e., used in most expression systems). Finally, we demonstrate that the SCS system increases by five the yield in DNA production, a result especially important for the design and production of gene therapy constructs void of any antibiotic resistance gene.
Collapse
Affiliation(s)
- Cédric Y Szpirer
- Laboratory of Evolutionary Genetics, Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, Charleroi-Gosselies, Belgium.
| | | |
Collapse
|
26
|
Gerdes K, Christensen SK, Løbner-Olesen A. Prokaryotic toxin–antitoxin stress response loci. Nat Rev Microbiol 2005; 3:371-82. [PMID: 15864262 DOI: 10.1038/nrmicro1147] [Citation(s) in RCA: 843] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Although toxin-antitoxin gene cassettes were first found in plasmids, recent database mining has shown that these loci are abundant in free-living prokaryotes, including many pathogenic bacteria. For example, Mycobacterium tuberculosis has 38 chromosomal toxin-antitoxin loci, including 3 relBE and 9 mazEF loci. RelE and MazF are toxins that cleave mRNA in response to nutritional stress. RelE cleaves mRNAs that are positioned at the ribosomal A-site, between the second and third nucleotides of the A-site codon. It has been proposed that toxin-antitoxin loci function in bacterial programmed cell death, but evidence now indicates that these loci provide a control mechanism that helps free-living prokaryotes cope with nutritional stress.
Collapse
Affiliation(s)
- Kenn Gerdes
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark.
| | | | | |
Collapse
|
27
|
Abstract
Transcription of the P1 plasmid addiction operon, a prototypical toxin-antitoxin system, is negatively autoregulated by the products of the operon. The Phd repressor-antitoxin protein binds to 8-bp palindromic Phd-binding sites in the promoter region and thereby represses transcription. The toxin, Doc, mediates cooperative interactions between adjacent Phd-binding sites and thereby enhances repression. Here, we describe a homologous operon from Salmonella enterica serovar Typhimurium which has the same pattern of regulation but an altered repressor-operator specificity. This difference in specificity maps to the seventh amino acid of the repressor and to the symmetric first and eighth positions of the corresponding palindromic repressor-binding sites. Thus, the repressor-operator interface has coevolved so as to retain the interaction while altering the specificity. Within an alignment of homologous repressors, the seventh amino acid of the repressor is highly variable, indicating that evolutionary changes in repressor specificity may be common in this protein family. We suggest that the robust properties of the negative feedback loop, the fuzzy recognition in the operator-repressor interface, and the duplication and divergence of the repressor-binding sites have facilitated the speciation of this repressor-operator interface. These three features may allow the repressor-operator system to percolate within a nearly neutral network of single-step mutations without the necessity of invoking simultaneous mutations, low-fitness intermediates, or other improbable or rate-limiting mechanisms.
Collapse
Affiliation(s)
- Xueyan Zhao
- Department of Biological Sciences, University of Alabama, Huntsville, AL 35758, USA
| | | |
Collapse
|
28
|
Dao-Thi MH, Van Melderen L, De Genst E, Afif H, Buts L, Wyns L, Loris R. Molecular basis of gyrase poisoning by the addiction toxin CcdB. J Mol Biol 2005; 348:1091-102. [PMID: 15854646 DOI: 10.1016/j.jmb.2005.03.049] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2005] [Revised: 03/17/2005] [Accepted: 03/18/2005] [Indexed: 11/20/2022]
Abstract
Gyrase is an ubiquitous bacterial enzyme that is responsible for disentangling DNA during DNA replication and transcription. It is the target of the toxin CcdB, a paradigm for plasmid addiction systems and related bacterial toxin-antitoxin systems. The crystal structure of CcdB and the dimerization domain of the A subunit of gyrase (GyrA14) dictates an open conformation for the catalytic domain of gyrase when CcdB is bound. The action of CcdB is one of a wedge that stabilizes a dead-end covalent gyrase:DNA adduct. Although CcdB and GyrA14 form a globally symmetric complex where the two 2-fold axes of both dimers align, the complex is asymmetric in its details. At the centre of the interaction site, the Trp99 pair of CcdB stacks with the Arg462 pair of GyrA14, explaining why the Arg462Cys mutation in the A subunit of gyrase confers resistance to CcdB. Overexpression of GyrA14 protects Escherichia coli cells against CcdB, mimicking the action of the antidote CcdA.
Collapse
Affiliation(s)
- Minh-Hoa Dao-Thi
- Laboratorium voor Ultrastructuur, Vrije Universiteit Brussel and Department of Molecular and Cellular Interactions, Vlaams Instituut voor Biotechnologie, Building E, Pleinlaan 2, B-1050 Brussels, Belgium
| | | | | | | | | | | | | |
Collapse
|
29
|
Kamada K, Hanaoka F, Burley SK. Crystal structure of the MazE/MazF complex: molecular bases of antidote-toxin recognition. Mol Cell 2003; 11:875-84. [PMID: 12718874 DOI: 10.1016/s1097-2765(03)00097-2] [Citation(s) in RCA: 248] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
A structure of the Escherichia coli chromosomal MazE/MazF addiction module has been determined at 1.7 A resolution. Addiction modules consist of stable toxin and unstable antidote proteins that govern bacterial cell death. MazE (antidote) and MazF (toxin) form a linear heterohexamer composed of alternating toxin and antidote homodimers (MazF(2)-MazE(2)-MazF(2)). The MazE homodimer contains a beta barrel from which two extended C termini project, making interactions with flanking MazF homodimers that resemble the plasmid-encoded toxins CcdB and Kid. The MazE/MazF heterohexamer structure documents that the mechanism of antidote-toxin recognition is common to both chromosomal and plasmid-borne addiction modules, and provides general molecular insights into toxin function, antidote degradation in the absence of toxin, and promoter DNA binding by antidote/toxin complexes.
Collapse
Affiliation(s)
- Katsuhiko Kamada
- Laboratories of Molecular Biophysics, The Rockefeller University, 1230 York Avenue, New York, New York 10021, USA
| | | | | |
Collapse
|
30
|
Allali N, Afif H, Couturier M, Van Melderen L. The highly conserved TldD and TldE proteins of Escherichia coli are involved in microcin B17 processing and in CcdA degradation. J Bacteriol 2002; 184:3224-31. [PMID: 12029038 PMCID: PMC135094 DOI: 10.1128/jb.184.12.3224-3231.2002] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microcin B17 (MccB17) is a peptide antibiotic produced by Escherichia coli strains carrying the pMccB17 plasmid. MccB17 is synthesized as a precursor containing an amino-terminal leader peptide that is cleaved during maturation. Maturation requires the product of the chromosomal tldE (pmbA) gene. Mature microcin is exported across the cytoplasmic membrane by a dedicated ABC transporter. In sensitive cells, MccB17 targets the essential topoisomerase II DNA gyrase. Independently, tldE as well as tldD mutants were isolated as being resistant to CcdB, another natural poison of gyrase encoded by the ccd poison-antidote system of plasmid F. This led to the idea that TldD and TldE could regulate gyrase function. We present in vivo evidence supporting the hypothesis that TldD and TldE have proteolytic activity. We show that in bacterial mutants devoid of either TldD or TldE activity, the MccB17 precursor accumulates and is not exported. Similarly, in the ccd system, we found that TldD and TldE are involved in CcdA and CcdA41 antidote degradation rather than being involved in the CcdB resistance mechanism. Interestingly, sequence database comparisons revealed that these two proteins have homologues in eubacteria and archaebacteria, suggesting a broader physiological role.
Collapse
Affiliation(s)
- Noureddine Allali
- Laboratoire de Génétique des Procaryotes, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, 6041 Gosselies, Belgium
| | | | | | | |
Collapse
|
31
|
Van Melderen L. Molecular interactions of the CcdB poison with its bacterial target, the DNA gyrase. Int J Med Microbiol 2002; 291:537-44. [PMID: 11890555 DOI: 10.1078/1438-4221-00164] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ccd poison/antidote system of the F plasmid encodes CcdB, a toxin targeting the essential DNA gyrase of E. coli, and CcdA, the unstable antidote that interacts with CcdB to neutralise its toxicity. Gyrase belongs to the topoisomerase II class of enzymes and is a well-validated target for efficient therapeutic drugs, i. e. the quinolones. CcdB acts on gyrase in a similar way as quinolones do, both compounds induce double-strand breaks in DNA. Interestingly, the CcdB-binding domain of gyrase is different than that of quinolones. Therefore, novel classes of therapeutic drugs could be derived from the analysis of the interaction between CcdB and gyrase.
Collapse
Affiliation(s)
- Laurence Van Melderen
- Laboratoire de Génétique des Procaryotes, Institut de Biologie et Médecine Moléculaires, Université Libre de Bruxelles, Gosselies, Belgium.
| |
Collapse
|
32
|
Santos-Sierra S, Pardo-Abarrio C, Giraldo R, Díaz-Orejas R. Genetic identification of two functional regions in the antitoxin of the parD killer system of plasmid R1. FEMS Microbiol Lett 2002; 206:115-9. [PMID: 11786266 DOI: 10.1111/j.1574-6968.2002.tb10995.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
We report the identification and genetic analysis of mutants in the antitoxin of the parD (kis, kid) killer system of plasmid R1. Missense mutants placed at codons 10, 11, 12 and 18 maintained the antitoxin activity of Kis, but not the ability of this protein to co-regulate the parD system together with the Kid toxin. Deletion of the last 33 amino acids of Kis inactivated the antitoxin activity of the protein and reduced substantially, but not completely, its regulatory activity. These results define two functional regions in Kis: an amino-terminal region which is specifically involved in regulation, and a carboxy-terminal region of the protein, which is important both for its regulatory and antitoxin activities.
Collapse
Affiliation(s)
- Sandra Santos-Sierra
- Centro de Investigaciones Biológicas (CSIC), Department of Molecular Microbiology, Velázquez 144, 28006, Madrid, Spain
| | | | | | | |
Collapse
|
33
|
Oberer M, Zangger K, Prytulla S, Keller W. The anti-toxin ParD of plasmid RK2 consists of two structurally distinct moieties and belongs to the ribbon-helix-helix family of DNA-binding proteins. Biochem J 2002; 361:41-7. [PMID: 11743881 PMCID: PMC1222296 DOI: 10.1042/0264-6021:3610041] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
NMR and CD spectroscopy have been used to characterize, both structurally and dynamically, the 82-amino-acid ParD protein of the post-segregational killing module of the broad-host-range plasmid RP4/RK2. ParD occurs as a dimer in solution and exercises two different control functions; an autoregulatory function by binding to its own promoter P(parDE) and a plasmid-stabilizing function by inhibiting ParE toxicity in cells that express ParD and ParE. Analysis of the secondary structure based on the chemical-shift indices, sequential nuclear Overhauser enhancements (NOEs) and (3)J(Halpha-NH) scalar coupling constants showed that the N-terminal domain of ParD consists of a short beta-ribbon followed by three alpha-helices, demonstrating that ParD contains a ribbon-helix-helix fold, a DNA-binding motif found in a family of small prokaryotic repressors. (15)N longitudinal (T(1)) and transverse (T(2)) relaxation measurements and hetero nuclear NOEs showed that ParD is divided into two separate domains, a well-ordered N-terminal domain and a very flexible C-terminal domain. An increase in secondary structure was observed upon addition of trifluoroethanol, suggested to result from the formation of structured stretches in the C-terminal part of the protein. This is the first experimental evidence that the DNA-binding domain of ParD belongs to the ribbon-helix-helix fold family, and this structural motif is proposed to be present in functionally similar antidote proteins.
Collapse
Affiliation(s)
- Monika Oberer
- Institut für Chemie, Arbeitsgruppe Strukturbiologie, Karl-Franzens-Universität Graz, Heinrichstrasse 28, A-8010 Graz, Austria
| | | | | | | |
Collapse
|
34
|
Afif H, Allali N, Couturier M, Van Melderen L. The ratio between CcdA and CcdB modulates the transcriptional repression of the ccd poison-antidote system. Mol Microbiol 2001; 41:73-82. [PMID: 11454201 DOI: 10.1046/j.1365-2958.2001.02492.x] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The ccd operon of the F plasmid encodes CcdB, a toxin targeting the essential gyrase of Escherichia coli, and CcdA, the unstable antidote that interacts with CcdB to neutralize its toxicity. Although work from our group and others has established that CcdA and CcdB are required for transcriptional repression of the operon, the underlying mechanism remains unclear. The results presented here indicate that, although CcdA is the DNA-binding element of the CcdA-CcdB complex, the stoichiometry of the two proteins determines whether or not the complex binds to the ccd operator-promoter region. Using electrophoretic mobility shift assays, we show that a (CcdA)2-(CcdB)2 complex binds DNA. The addition of extra CcdB to that protein-DNA complex completely abolishes DNA retardation. Based on these results, we propose a model in which the ratio between CcdA and CcdB regulates the repression state of the ccd operon. When the level of CcdA is superior or equal to that of CcdB, repression results. In contrast, derepression occurs when CcdB is in excess of CcdA. By ensuring an antidote-toxin ratio greater than one, this mechanism could prevent the harmful effect of CcdB in plasmid-containing bacteria.
Collapse
Affiliation(s)
- H Afif
- Laboratoire de Génétique des Procaryotes, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, 12 Rue des Professeurs Jeener et Brachet, 6041 Gosselies, Belgium
| | | | | | | |
Collapse
|
35
|
Tian QB, Ohnishi M, Murata T, Nakayama K, Terawaki Y, Hayashi T. Specific protein-DNA and protein-protein interaction in the hig gene system, a plasmid-borne proteic killer gene system of plasmid Rts1. Plasmid 2001; 45:63-74. [PMID: 11322821 DOI: 10.1006/plas.2000.1506] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The hig (host inhibition of growth) gene system of plasmid Rts1 belongs to the plasmid-encoded proteic killer gene family. Among the proteic killer genes described so far, hig is unique in that the toxin gene (higB) exists upstream of the antidote gene (higA). There are two promoters in the hig locus, Phig and PhigA, and only the former, which expresses both higB and higA genes, is negatively controlled by HigA and HigB proteins. In this study, we purified HigA protein by means of GST fusion. The electrophoretic mobility shift assay using the purified protein revealed that HigA specifically bound to the Phig region, but not to PhigA. The HigA-binding sequence was determined by DNase I footprinting assay to be a 56-bp sequence that completely covered the -35 and -10 boxes of Phig. The presence of two inverted repeats in the binding sequence and the identification of a dimer form of HigA by cross-linking experiment suggested that the protein bound to the Phig region as a dimer. HigB was purified as a GST fusion protein as well, though it was achieved only in the presence of HigA. HigA and GST-HigB formed a highly stable complex where the two proteins were present in an equimolar ratio.
Collapse
Affiliation(s)
- Q B Tian
- Department of Bacteriology, Shinshu University School of Medicine, Asahi 3-1-1, Matsumoto, 390-8621, Japan
| | | | | | | | | | | |
Collapse
|
36
|
Dao-Thi MH, Messens J, Wyns L, Backmann J. The thermodynamic stability of the proteins of the ccd plasmid addiction system. J Mol Biol 2000; 299:1373-86. [PMID: 10873460 DOI: 10.1006/jmbi.2000.3815] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The two opponents, toxin (CcdB, LetB or LetD, protein G, LynB) and antidote (CcdA, LetA, protein H, LynA), in the plasmid addiction system ccd of the F plasmid were studied by different biophysical methods. The thermodynamic stability was measured at different temperatures combining denaturant and thermally induced unfolding. It was found that both proteins denature in a two-state equilibrium (native dimer versus unfolded monomer) and that CcdA has a significantly lower thermodynamic stability. Using a numerical model, which was developed earlier by us, and on the basis of the determined thermodynamic parameters the concentration dependence of the denaturation transition temperature was obtained for both proteins. This concentration dependence may be of physiological significance, as the concentration of both ccd addiction proteins cannot exceed a certain limit because their expression is controlled by autoregulation. The influence of DNA on the thermal stability of the two proteins was probed. It was found that cognate DNA increases the melting temperature of CcdA. In the presence of non-specific DNA the thermal stability was not changed. The melting temperature of CcdB was not influenced by the applied double-stranded oligonucleotides, neither cognate nor unspecific.
Collapse
Affiliation(s)
- M H Dao-Thi
- Dienst Ultrastruktuur, Vrije Universiteit Brussel, Paardenstraat 65, Sint-Genesius-Rode, B-1640, Belgium
| | | | | | | |
Collapse
|
37
|
Gerdes K. Toxin-antitoxin modules may regulate synthesis of macromolecules during nutritional stress. J Bacteriol 2000; 182:561-72. [PMID: 10633087 PMCID: PMC94316 DOI: 10.1128/jb.182.3.561-572.2000] [Citation(s) in RCA: 223] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- K Gerdes
- Department of Molecular Biology, Odense University, SDU, DK-5230 Odense M, Denmark.
| |
Collapse
|
38
|
Oberer M, Lindner H, Glatter O, Kratky C, Keller W. Thermodynamic properties and DNA binding of the ParD protein from the broad host-range plasmid RK2/RP4 killing system. Biol Chem 1999; 380:1413-20. [PMID: 10661868 DOI: 10.1515/bc.1999.181] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
ParD is a small, acidic protein from the partitioning system of the plasmid RK2/RP4. The ParD protein exhibits specific DNA binding activity and, as the antidote component of a toxin-antidote plasmid addiction system, ParD forms a tight complex in solution with its toxin antagonist, the ParE protein. Unopposed ParE acts as a toxin that causes growth retardation and killing of plasmid cured cells. ParD negatively autoregulates its expression by binding to an operator sequence in the parDE promoter region. This DNA binding activity is crucial for the regulation of the relative abundance of toxin and antidote which ultimately determines life or death for the bacterial host and its daughter cells. In light scattering studies and gel filtration chromatography we observed the existence of a stable dimer of ParD in solution. The stoichiometry of ParD-DNA complex formation appeared to be 4:1, the molecular mass of the complex was 72.1 kDa. The alpha-helical content of ParD as determined by CD-spectrometry was 35%. The protein exhibited high thermostability with a T(M) of 64 degrees C and deltaH of 25 kcal/mol as shown by differential scanning calorimetry. Upon complex formation the T(M) increased by 10 degrees C. The thermal unfolding of the ParD protein was highly reversible as observed in repeated DSC scans of the same sample. The recovery of the native fold was proven by CD-spectroscopy.
Collapse
Affiliation(s)
- M Oberer
- Institut für Physikalische Chemie, Karl-Franzens-Universität Graz, Austria
| | | | | | | | | |
Collapse
|
39
|
Engelberg-Kulka H, Glaser G. Addiction modules and programmed cell death and antideath in bacterial cultures. Annu Rev Microbiol 1999; 53:43-70. [PMID: 10547685 DOI: 10.1146/annurev.micro.53.1.43] [Citation(s) in RCA: 281] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In bacteria, programmed cell death is mediated through "addiction modules" consisting of two genes. The product of the second gene is a stable toxin, whereas the product of the first is a labile antitoxin. Here we extensively review what is known about those modules that are borne by one of a number of Escherichia coli extrachromosomal elements and are responsible for the postsegregational killing effect. We focus on a recently discovered chromosomally borne regulatable addiction module in E. coli that responds to nutritional stress and also on an antideath gene of the E. coli bacteriophage lambda. We consider the relation of these two to programmed cell death and antideath in bacterial cultures. Finally, we discuss the similarities between basic features of programmed cell death and antideath in both prokaryotes and eukaryotes and the possibility that they share a common evolutionary origin.
Collapse
Affiliation(s)
- H Engelberg-Kulka
- Department of Molecular Biology, Hebrew University Hadassah-Medical School, Jerusalem, Israel.
| | | |
Collapse
|
40
|
Bahassi EM, O'Dea MH, Allali N, Messens J, Gellert M, Couturier M. Interactions of CcdB with DNA gyrase. Inactivation of Gyra, poisoning of the gyrase-DNA complex, and the antidote action of CcdA. J Biol Chem 1999; 274:10936-44. [PMID: 10196173 DOI: 10.1074/jbc.274.16.10936] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The F plasmid-carried bacterial toxin, the CcdB protein, is known to act on DNA gyrase in two different ways. CcdB poisons the gyrase-DNA complex, blocking the passage of polymerases and leading to double-strand breakage of the DNA. Alternatively, in cells that overexpress CcdB, the A subunit of DNA gyrase (GyrA) has been found as an inactive complex with CcdB. We have reconstituted the inactive GyrA-CcdB complex by denaturation and renaturation of the purified GyrA dimer in the presence of CcdB. This inactivating interaction involves the N-terminal domain of GyrA, because similar inactive complexes were formed by denaturing and renaturing N-terminal fragments of the GyrA protein in the presence of CcdB. Single amino acid mutations, both in GyrA and in CcdB, that prevent CcdB-induced DNA cleavage also prevent formation of the inactive complexes, indicating that some essential interaction sites of GyrA and of CcdB are common to both the poisoning and the inactivation processes. Whereas the lethal effect of CcdB is most probably due to poisoning of the gyrase-DNA complex, the inactivation pathway may prevent cell death through formation of a toxin-antitoxin-like complex between CcdB and newly translated GyrA subunits. Both poisoning and inactivation can be prevented and reversed in the presence of the F plasmid-encoded antidote, the CcdA protein. The products of treating the inactive GyrA-CcdB complex with CcdA are free GyrA and a CcdB-CcdA complex of approximately 44 kDa, which may correspond to a (CcdB)2(CcdA)2 heterotetramer.
Collapse
Affiliation(s)
- E M Bahassi
- Laboratoire de Génétique des Procaryotes, Département de Biologie Moléculaire, Université Libre de Bruxelles, rue des Chevaux 67, B-1640 Rhode-Saint-Genèse, Belgium
| | | | | | | | | | | |
Collapse
|
41
|
Grønlund H, Gerdes K. Toxin-antitoxin systems homologous with relBE of Escherichia coli plasmid P307 are ubiquitous in prokaryotes. J Mol Biol 1999; 285:1401-15. [PMID: 9917385 DOI: 10.1006/jmbi.1998.2416] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Toxin-antitoxin systems encoded by bacterial plasmids and chromosomes specify two proteins, a cytotoxin and an antitoxin. The antitoxins neutralize the cognate toxins by forming tight complexes with them. The antitoxins are unstable due to degradation by cellular proteases (Lon or Clp), whereas the toxins are stable. Here we show that orf7 (denoted relBP307) and orf6 (denoted relEP307) of Escherichia coli plasmid P307 are homologous to the relBE genes of E. coli and constitute a two-component toxin-antitoxin system: (i) relEP307 encodes a cytotoxin lethal or inhibitory to host cells; (ii) relBP307 encodes an antitoxin that prevents the lethal action of the relE-encoded toxin; (iii) RelBP307 antitoxin is degraded by Lon protease; (iv) RelBP307 antitoxin autoregulates the relBE operon of P307 at the level of transcription; (v) RelEP307 toxin acts as a co-repressor of transcription; and (vi) the relBE system stabilizes a mini-P307 replicon by the killing of plasmid-free cells. Using database searching, we found relBE homologues on the chromosomes of many Gram-negative and Gram-positive bacteria. Even more surprising, numerous relBE-homologous gene systems are present on the chromosomes of Archae. Thus, toxin-antitoxin systems homologous with relBE of E. coli are ubiquitous in prokaryotic organisms.
Collapse
Affiliation(s)
- H Grønlund
- Department of Molecular Biology, Odense University, Campusvej 55, Odense M, DK-5230, Denmark
| | | |
Collapse
|
42
|
Ebel W, Trempy JE. Escherichia coli RcsA, a positive activator of colanic acid capsular polysaccharide synthesis, functions To activate its own expression. J Bacteriol 1999; 181:577-84. [PMID: 9882673 PMCID: PMC93413 DOI: 10.1128/jb.181.2.577-584.1999] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Capsule (cps) gene expression in Escherichia coli is controlled by a complex network of regulators. Transcription of the cps operon is controlled by at least two positive regulators, RcsA and RcsB. We show here that RcsA functions to activate its own expression, as seen by the 100-fold-increased expression of a rcsA::lacZ transcriptional fusion in strains with high levels of RcsA protein, either due to a mutation in lon or due to overexpression of RcsA from a multicopy plasmid. Expression of the rcsA::lacZ fusion is increased by but not dependent on the presence of RcsB. In addition, the effects of H-NS and RcsB on the expression of rcsA are independent of each other. A sequence motif, conserved between the E. coli cps promoter and the Erwinia amylovora ams promoter and previously shown to be the RcsA-RcsB binding site, was identified in the rcsA promoter region and shown to be required for high-level expression of rcsA.
Collapse
Affiliation(s)
- W Ebel
- Department of Microbiology, Oregon State University, Corvallis, Oregon 97331-3804, USA
| | | |
Collapse
|
43
|
Holčík M, Iyer VM. Conditionally lethal genes associated with bacterial plasmids. MICROBIOLOGY (READING, ENGLAND) 1997; 143 ( Pt 11):3403-3416. [PMID: 9387219 DOI: 10.1099/00221287-143-11-3403] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Martin Holčík
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa Ontario Canada K1S5B6
| | - V M Iyer
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa Ontario Canada K1S5B6
| |
Collapse
|
44
|
Van Melderen L, Thi MH, Lecchi P, Gottesman S, Couturier M, Maurizi MR. ATP-dependent degradation of CcdA by Lon protease. Effects of secondary structure and heterologous subunit interactions. J Biol Chem 1996; 271:27730-8. [PMID: 8910366 DOI: 10.1074/jbc.271.44.27730] [Citation(s) in RCA: 180] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
CcdA, the antidote protein of the ccd post-segregational killing system carried by the F plasmid, was degraded in vitro by purified Lon protease from Escherichia coli. CcdA had a low affinity for Lon (Km >/=200 microM), and the peptide bond turnover number was approximately 10 min-1. CcdA formed tight complexes with purified CcdB, the killer protein encoded in the ccd operon, and fluorescence and hydrodynamic measurements suggested that interaction with CcdB converted CcdA to a more compact conformation. CcdB prevented CcdA degradation by Lon and blocked the ability of CcdA to activate the ATPase activity of Lon, suggesting that Lon may recognize bonding domains of proteins exposed when their partners are absent. Degradation of CcdA required ATP hydrolysis; however, CcdA41, consisting of the carboxyl-terminal 41 amino acids of CcdA and lacking the alpha-helical secondary structure present in CcdA, was degraded without ATP hydrolysis. Lon cleaved CcdA primarily between aliphatic and hydrophilic residues, and CcdA41 was cleaved at the same peptide bonds, indicating that ATP hydrolysis does not affect cleavage specificity. CcdA lost alpha-helical structure at elevated temperatures (Tm approximately 50 degrees C), and its degradation became independent of ATP hydrolysis at this temperature. ATP hydrolysis may be needed to disrupt interactions that stabilize the secondary structure of proteins allowing the disordered protein greater access to the proteolytic active sites.
Collapse
Affiliation(s)
- L Van Melderen
- Laboratoire de Genetique, Departement de Biologie Moleculaire, Universite Libre de Bruxelles, rue des Chevaux, 67, B-1640 Rhode Saint Genese, Belgium
| | | | | | | | | | | |
Collapse
|
45
|
Magnuson R, Lehnherr H, Mukhopadhyay G, Yarmolinsky MB. Autoregulation of the plasmid addiction operon of bacteriophage P1. J Biol Chem 1996; 271:18705-10. [PMID: 8702525 DOI: 10.1074/jbc.271.31.18705] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The P1 plasmid addiction operon increases the apparent stability of a plasmid that carries it by killing plasmid-free (cured) segregants. The operon consists of a gene encoding an endotoxin responsible for death on curing (doc), preceded by a gene encoding a relatively unstable antidote that can prevent host death (phd). When the copy number of the operon was increased, expression of a lacZ reporter fused to the promoter of the operon decreased, indicating that expression of the operon was stabilized by an autoregulatory circuit. Transcription of the lacZ reporter was repressed about 10-fold when phd, without doc, was expressed from an exogenous promoter. DNase I footprinting showed that Phd binds a perfect 10-base pair palindromic DNA sequence and, at higher concentrations, an adjacent, imperfect palindrome. The palindromic sites are located between the -10 region of the putative promoter and the start codon of phd. Electrophoretic mobility of DNA containing the promoter region was retarded in the presence of Phd and further retarded in the presence of Phd and Doc. When doc was co-expressed with phd, repression of the lacZ fusion was enhanced more than 100-fold. Thus, both products of the addiction operon participate in its autoregulation.
Collapse
Affiliation(s)
- R Magnuson
- Laboratory of Biochemistry, NCI, National Institutes of Health, Bethesda, Maryland 20892-4225, USA
| | | | | | | |
Collapse
|
46
|
Sobecky PA, Easter CL, Bear PD, Helinski DR. Characterization of the stable maintenance properties of the par region of broad-host-range plasmid RK2. J Bacteriol 1996; 178:2086-93. [PMID: 8606188 PMCID: PMC177909 DOI: 10.1128/jb.178.7.2086-2093.1996] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A 3.2-kb fragment encoding five genes, parCBA/DE, in two divergently transcribed operons promotes stable maintenance of the replicon of the broad-host-range plasmid RK2 in a vector-independent manner in Escherichia coli. The parDE operon has been shown to contribute to stabilization through the postsegregational killing of plasmid-free daughter cells, while the parCBA operon encodes a resolvase, ParA, that mediates the resolution of plasmid multimers through site-specific recombination. To date, evidence indicates that multimer resolution alone does not play a significant role in RK2 stable maintenance by the parCBA operon in E. coli. It has been proposed, instead, that the parCBA region encodes an additional stability mechanism, a partition system, that ensures that each daughter cell receives a plasmid copy at cell division. However, studies carried out to date have not directly determined the plasmid stabilization activity of the parCBA operon alone. An assessment was made of the relative contributions of postsegregational killing (parDE) and the putative partitioning system (parCBA) to the stabilization of mini-RK2 replicons in E. coli. Mini-RK2 replicons carrying either the entire 3.2-kb (parCBA/DE) fragment or the 2.3-kb parCBA region alone were found to be stably maintained in two E. coli strains tested. The stabilization found is not due to resolution of multimers. The stabilizing effectiveness of parCBA was substantially reduced when the plasmid copy number was lowered, as in the case of E. coli cells carrying a temperature-sensitive mini-RK2 replicon grown at a nonpermissive temperature. The presence of the entire 3.2-kb region effectively stabilized the replicon, however, under both low- and high-copy-number-conditions. In those instances of decreased plasmid copy number, the postsegregational killing activity, encoded by parDE, either as part of the 3.2-kb fragment or alone played the major role in the stabilization of mini-RK2 replicons within the growing bacterial population. Our findings indicate that the parCBA operon functions to stabilize by a mechanism other than cell killing and resolution of plasmid multimers, while the parDE operon functions solely to stabilize plasmids by cell killing. The relative contribution of each system to stabilization depends on plasmid copy number and the particular E. coli host.
Collapse
Affiliation(s)
- P A Sobecky
- Department of Biology and Center for Molecular Genetics, University of California, San Diego, La Jolla, California 92093-0634, USA
| | | | | | | |
Collapse
|
47
|
Johnson EP, Strom AR, Helinski DR. Plasmid RK2 toxin protein ParE: purification and interaction with the ParD antitoxin protein. J Bacteriol 1996; 178:1420-9. [PMID: 8631720 PMCID: PMC177817 DOI: 10.1128/jb.178.5.1420-1429.1996] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The parDE operon, located within the 3.2-kb stabilization region of plasmid RK2, encodes antitoxin (ParD) and toxin (ParE) proteins that stabilize the maintenance of this broad-host-range plasmid via a postsegregational killing mechanism. A ParE protein derivative, designated ParE', was purified by construction of a fusion protein, GST-ParE, followed by glutathione-agarose binding and cleavage of the fusion protein. ParE' has three additional amino acids on the N terminus and a methionine residue in place of the native leucine residue. The results of glutathione-agarose affinity binding and glutaraldehyde cross-linking indicate that ParE' exists as a dimer in solution and that it binds to the dimeric form of ParD to form a tetrameric complex. The formation of this complex is presumably responsible for the ability of ParD to neutralize ParE toxin activity. Previous studies demonstrated that the parDE operon is autoregulated as a result of the binding of the ParD protein to the parDE promoter. ParE' also binds to the parDE promoter but only in the presence of the autoregulatory ParD protein. ParE', in the presence or absence of the ParD protein, does not bind to any other part of the 3.2-kb stabilization region. The binding of the ParE' protein to ParD did not alter the DNase I footprint pattern obtained as a result of ParD binding to the parDE promoter. The role of ParE in binding along with ParD to the promoter, if any, remains unclear.
Collapse
Affiliation(s)
- E P Johnson
- Department of Biology, University of California at San Diego, La Jolla 92037-0634, USA
| | | | | |
Collapse
|
48
|
Bahassi EM, Salmon MA, Van Melderen L, Bernard P, Couturier M. F plasmid CcdB killer protein: ccdB gene mutants coding for non-cytotoxic proteins which retain their regulatory functions. Mol Microbiol 1995; 15:1031-7. [PMID: 7623659 DOI: 10.1111/j.1365-2958.1995.tb02278.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The ccd locus of the F plasmid codes for two gene products, CcdA and CcdB, which contribute to the plasmid's high stability by post-segregational killing of plasmid-free bacteria. Like the quinolones, the CcdB protein is a poison of the DNA-topoisomerase II complexes, while CcdA acts as an antidote against CcdB. In addition to these poison-antipoison properties, the CcdA and CcdB proteins act together at transcription level to repress their own synthesis. In this work, we have isolated, in vivo, and characterized several non-killer CcdB mutants. All missense mutations which inactivate CcdB killer activity are located in the region coding for the last three C-terminal residues. However, the resulting mutant CcdB proteins retain their autoregulatory properties. We conclude that the last three C-terminal residues of CcdB play a key role in poisoning but are not involved in repressor formation.
Collapse
Affiliation(s)
- E M Bahassi
- Département de Biologie Moléculaire, Université Libre de Bruxelles, Rhode-Saint-Genèse, Belgium
| | | | | | | | | |
Collapse
|