Böning D, Tibes U, Schweigart U. Red cell hemoglobin, hydrogen ion and electrolyte concentrations during exercise in trained and untrained subjects.
EUROPEAN JOURNAL OF APPLIED PHYSIOLOGY AND OCCUPATIONAL PHYSIOLOGY 1976;
35:243-9. [PMID:
10157 DOI:
10.1007/bf00423283]
[Citation(s) in RCA: 16] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Red cell concentrations of hemoglobin (MCHC), H+, Na+, K+, Mg++, cl- were measured in femoral venous blood of six untrained (UT), six endurance trained (TR) and three semitrained (ST) subjects during graded increasing work (4, 8, 12, 18 and 24 mkp/s, 10-15 min on each step) on a bicycle ergometer. Before exercise no significant differences were detected for the measured variables when comparing UT and TR. During exercise MCHC, [Na+], [K+] and [Mg++] remained constant indicating lack of water shift into the erythrocytes in spite of a marked acidosis (lowest pH Blood value 7.225). This lack resulted from an elevated extracellular osmolality. [H+]Ery and [Cl-]Ery maximally increased by 2.0 X 10(-8) eq/kg H2O and 10 meq/l, respectively. The change was markedly greater in UT than in TR at equal load. However, if [H+] Ery and [Cl-] Ery were related to pH of whole blood, differences between groups, almost disappeared and the ions were distributed as predictable from in vitro experiments (Fitzsimmons and Sendroy, 1961). Behaviour of H+ and Cl- may be of importance for oxygen dissociation under in vivo conditions.
Collapse