Norsk P, Bonde-Petersen F, Warberg J. Central transmural venous pressure and plasma arginine vasopressin during negative pressure breathing in man.
EUROPEAN JOURNAL OF APPLIED PHYSIOLOGY AND OCCUPATIONAL PHYSIOLOGY 1986;
55:440-4. [PMID:
3758048 DOI:
10.1007/bf00422748]
[Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
After overnight food and fluid restriction, 8 normal healthy males were examined in the upright sitting position before (prestudy), during and after (recovery) negative pressure breathing (NPB) with a pressure (P = difference between airway pressure and barometric pressure) of -9.6 +/- 0.5 to -10.4 +/- 0.4 mm Hg for 30 min. Plasma arginine vasopressin (pAVP) did not change significantly comparing prestudy with 10 and 30 min of NPB or comparing recovery with NPB at 10, 20 or 30 min. However, at 20 min of NBP, pAVP was slightly lower than at prestudy (p less than 0.05). Central venous pressure (CVP) decreased significantly during NPB, and central transmural venous pressure (CVP-P) increased significantly from -0.9 +/- 0.8 mm Hg to 3.8 +/- 0.7, 4.3 +/- 0.7 and 4.5 +/- 0.6 mm Hg (p less than 0.001) after 10, 20 and 30 min, respectively. Systolic, diastolic and mean arterial pressure and heart rate did not change significantly during NPB. Diuresis, natriuresis, kaliuresis, osmotic excretion and clearance were slightly increased during the recovery hour after NPB compared to prestudy, while urine osmolality decreased during NPB (n = 6). However, none of these changes were significant. There was no significant correlation between CVP-P and pAVP. In conclusion, -10 mm Hg NPB for 30 min in upright sitting subjects did not change pAVP consistently, while CVP-P was significantly increased and HR and arterial pressures were unchanged. This lends support to the concept that arterial baroreceptors and not cardiopulmonary mechanoreceptors are of importance in regulating AVP secretion in man.
Collapse