1
|
Falconi M, Higgins NP, Spurio R, Pon CL, Gualerzi CO. Expression of the gene encoding the major bacterial nucleoid protein H-NS is subject to transcriptional auto-repression. Mol Microbiol 2006; 10:273-282. [PMID: 28776853 DOI: 10.1111/j.1365-2958.1993.tb01953.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Expression of a promoterless cat gene fused to a DNA fragment of approximately 400 bp, beginning at -313 of Escherichia coli hns, was significantly repressed in E. coli and Salmonella typhimurium strains with wild-type hns but not in mutants carrying hns alleles. CAT expression from fusions containing a shorter (110 bp) segment of hns was essentially unaffected in the same genetic backgrounds. The stage of growth was found to influence the extent of repression which was maximum (approximately 75%) in mid-log cultures and negligible in cells entering the stationary phase. The level of repression in early-log phase was lower than in mid-log phase cultures, probably because of the presence of high levels of Fis protein, which counteracts the H-NS inhibition by stimulating hns transcription. The effects observed in vivo were mirrored by similar results obtained in vitro upon addition of purified H-NS and Fis protein to transcriptional systems programmed with the same hns caf fusions. Electrophoretic gel shift assays, DNase I footprinting and cyclic permutation get analyses revealed that H-NS binds preferentially to the upstream region of its own gene recognizing two rather extended segments of DNA on both sides of a bend centred around -150. When these sites are filled by H-NS, an additional site between approximately -20 and -65, which partly overlaps the promoter, is also occupied. Binding of H-NS to this site is probably the ultimate cause of transcriptional auto-repression.
Collapse
Affiliation(s)
- Maurizio Falconi
- Department of Biology, University of Camerino, 62032 Camerino (MC), Italy.Department of Biochemistry, University of Alabama, Birmingham, Alabama, USA
| | - N Patrick Higgins
- Department of Biology, University of Camerino, 62032 Camerino (MC), Italy.Department of Biochemistry, University of Alabama, Birmingham, Alabama, USA
| | - Roberto Spurio
- Department of Biology, University of Camerino, 62032 Camerino (MC), Italy.Department of Biochemistry, University of Alabama, Birmingham, Alabama, USA
| | - Cynthia L Pon
- Department of Biology, University of Camerino, 62032 Camerino (MC), Italy.Department of Biochemistry, University of Alabama, Birmingham, Alabama, USA
| | - Claudio O Gualerzi
- Department of Biology, University of Camerino, 62032 Camerino (MC), Italy.Department of Biochemistry, University of Alabama, Birmingham, Alabama, USA
| |
Collapse
|
2
|
Soutourina OA, Krin E, Laurent-Winter C, Hommais F, Danchin A, Bertin PN. Regulation of bacterial motility in response to low pH in Escherichia coli: the role of H-NS protein. MICROBIOLOGY (READING, ENGLAND) 2002; 148:1543-1551. [PMID: 11988529 DOI: 10.1099/00221287-148-5-1543] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The effect of detrimental conditions on bacterial motility in Escherichia coli was investigated. Expression profiling of mutant E. coli strains by DNA arrays and analysis of phenotypic traits demonstrated that motility and low-pH resistance are coordinately regulated. Analysis of transcriptional fusions suggests that bacterial motility in response to an acidic environment is mediated via the control by H-NS of flhDC expression. Moreover, the results suggested that the presence of an extended mRNA 5' end and DNA topology are required in this process. Finally, the presence of a similar regulatory region in several Gram-negative bacteria implies that this mechanism is largely conserved.
Collapse
Affiliation(s)
- Olga A Soutourina
- Unité de Génétique des Génomes Bactériens1 and Génopole-Plateau Protéomique2, Institut Pasteur, Paris, France
| | - Evelyne Krin
- Unité de Génétique des Génomes Bactériens1 and Génopole-Plateau Protéomique2, Institut Pasteur, Paris, France
| | - Christine Laurent-Winter
- Unité de Génétique des Génomes Bactériens1 and Génopole-Plateau Protéomique2, Institut Pasteur, Paris, France
| | - Florence Hommais
- Unité de Génétique des Génomes Bactériens1 and Génopole-Plateau Protéomique2, Institut Pasteur, Paris, France
| | - Antoine Danchin
- Unité de Génétique des Génomes Bactériens1 and Génopole-Plateau Protéomique2, Institut Pasteur, Paris, France
| | - Philippe N Bertin
- Unité de Génétique des Génomes Bactériens1 and Génopole-Plateau Protéomique2, Institut Pasteur, Paris, France
| |
Collapse
|
3
|
Tendeng C, Badaut C, Krin E, Gounon P, Ngo S, Danchin A, Rimsky S, Bertin P. Isolation and characterization of vicH, encoding a new pleiotropic regulator in Vibrio cholerae. J Bacteriol 2000; 182:2026-32. [PMID: 10715012 PMCID: PMC101921 DOI: 10.1128/jb.182.7.2026-2032.2000] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During the last decade, the hns gene and its product, the H-NS protein, have been extensively studied in Escherichia coli. H-NS-like proteins seem to be widespread in gram-negative bacteria. However, unlike in E. coli and in Salmonella enterica serovar Typhimurium, little is known about their role in the physiology of those organisms. In this report, we describe the isolation of vicH, an hns-like gene in Vibrio cholerae, the etiological agent of cholera. This gene was isolated from a V. cholerae genomic library by complementation of different phenotypes associated with an hns mutation in E. coli. It encodes a 135-amino-acid protein showing approximately 50% identity with both H-NS and StpA in E. coli. Despite a low amino acid conservation in the N-terminal part, VicH is able to cross-react with anti-H-NS antibodies and to form oligomers in vitro. The vicH gene is expressed as a single gene from two promoters in tandem and is induced by cold shock. A V. cholerae wild-type strain expressing a vicHDelta92 gene lacking its 3' end shows pleiotropic alterations with regard to mucoidy and salicin metabolism. Moreover, this strain is unable to swarm on semisolid medium. Similarly, overexpression of the vicH wild-type gene results in an alteration of swarming behavior. This suggests that VicH could be involved in the virulence process in V. cholerae, in particular by affecting flagellum biosynthesis.
Collapse
MESH Headings
- Amino Acid Sequence
- Bacterial Proteins/chemistry
- Bacterial Proteins/genetics
- Bacterial Proteins/isolation & purification
- Bacterial Proteins/metabolism
- Base Sequence
- Benzyl Alcohols/metabolism
- Cloning, Molecular
- Cold Temperature
- Cross Reactions
- DNA-Binding Proteins/chemistry
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/isolation & purification
- DNA-Binding Proteins/metabolism
- Escherichia coli/genetics
- Gene Expression Regulation, Bacterial/genetics
- Genes, Bacterial/genetics
- Genes, Bacterial/physiology
- Genes, Regulator
- Genetic Complementation Test
- Glucosides
- Molecular Sequence Data
- Mutation/genetics
- Phenotype
- Polysaccharides, Bacterial/metabolism
- Promoter Regions, Genetic/genetics
- RNA, Bacterial/analysis
- RNA, Bacterial/biosynthesis
- RNA, Bacterial/genetics
- RNA, Messenger/analysis
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Sequence Alignment
- Vibrio cholerae/cytology
- Vibrio cholerae/genetics
- Vibrio cholerae/pathogenicity
- Vibrio cholerae/physiology
Collapse
Affiliation(s)
- C Tendeng
- Unité de Régulation de l'Expression Génétique, Institut Pasteur, F-75724 Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Prosseda G, Fradiani PA, Di Lorenzo M, Falconi M, Micheli G, Casalino M, Nicoletti M, Colonna B. A role for H-NS in the regulation of the virF gene of Shigella and enteroinvasive Escherichia coli. Res Microbiol 1998; 149:15-25. [PMID: 9766205 DOI: 10.1016/s0923-2508(97)83619-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We have investigated the role of H-NS, one of the major components of the bacterial nucleoid, in the expression of the virF gene present on the large virulence plasmid of Shigella and enteroinvasive Escherichia coli in response to different environmental conditions. VirF is an AraC-like protein which activates at least two promoters, virB and virG, both repressed by H-NS. Band shift experiments reveal that the affinity of H-NS for the virF and virB promoters is comparable, while the affinity for the virG promoter is higher. Polyacrylamide gel electrophoresis of three DNA fragments containing the virF, the virB and the VirG promoters demonstrates, in agreement with computer predictions, that they have an intrinsically curved structure, confirming the preference of H-NS for bent DNA. In vivo transcriptional analysis of virF mRNA shows that H-NS negatively controls the expression of virF at 30 degrees C. The expression of a virF-lacZ translational fusion in E.coli wild type and in an hns-defective derivative grown at 30 degrees or 37 degrees C and at pH 6.0 or 7.0 indicates that, in the absence of H-NS, virF expression becomes insensitive to temperature and to limited pH changes. Our results strongly suggest that H-NS controls virF expression by binding to the virF promoter and by repressing its expression at low temperature and at low pH.
Collapse
Affiliation(s)
- G Prosseda
- Dip.Biologia Cellulare e dello Sviluppo, Università La Sapienza, Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Bertin P, Terao E, Lee EH, Lejeune P, Colson C, Danchin A, Collatz E. The H-NS protein is involved in the biogenesis of flagella in Escherichia coli. J Bacteriol 1994; 176:5537-40. [PMID: 8071234 PMCID: PMC196744 DOI: 10.1128/jb.176.17.5537-5540.1994] [Citation(s) in RCA: 152] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The function of the flagellum-chemotaxis regulon requires the expression of many genes and is positively regulated by the cyclic AMP-catabolite activator protein (cAMP-CAP) complex. In this paper, we show that motile behavior was affected in Escherichia coli hns mutants. The loss of motility resulted from a complete lack of flagella. A decrease in the level of transcription of the flhD and fliA genes, which are both required for the synthesis of flagella, was observed in the presence of an hns mutation. Furthermore, the Fla- phenotype was not reversed to the wild type in the presence of a cfs mutation which renders the flagellum synthesis independent of the cAMP-CAP complex. These results suggest that the H-NS protein acts as a positive regulator of genes involved in the biogenesis of flagella by a mechanism independent of the cAMP-CAP pathway.
Collapse
Affiliation(s)
- P Bertin
- Unité de Régulation de l'Expression Génétique, Institut Pasteur, Paris, France
| | | | | | | | | | | | | |
Collapse
|
6
|
Levinthal M, Lejeune P, Danchin A. The H-NS protein modulates the activation of the ilvIH operon of Escherichia coli K12 by Lrp, the leucine regulatory protein. MOLECULAR & GENERAL GENETICS : MGG 1994; 242:736-43. [PMID: 8152423 DOI: 10.1007/bf00283429] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The H-NS protein, the product of the hns gene, plays a central role in the cellular response of bacteria to environmental stresses such as modification of osmolarity and temperature. The leucine regulatory protein (Lrp) controls a wide array of operons both as an activator (e.g. ilvIH) and as a repressor. We demonstrate that H-NS can decrease the activity of Lrp in stationary phase and under conditions of high osmolarity. Strains containing hns mutations have higher levels of Lrp-activated ilvIH transcription, while strains carrying the hns+ allele on a pBR322 plasmid have lower activity of Lrp-directed ilvIH gene expression.
Collapse
Affiliation(s)
- M Levinthal
- Department of Biological Sciences, Purdue University, W. Lafayette, IN 47907
| | | | | |
Collapse
|
7
|
Ussery DW, Hinton JC, Jordi BJ, Granum PE, Seirafi A, Stephen RJ, Tupper AE, Berridge G, Sidebotham JM, Higgins CF. The chromatin-associated protein H-NS. Biochimie 1994; 76:968-80. [PMID: 7748941 DOI: 10.1016/0300-9084(94)90022-1] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
H-NS is a major component of chromatin in enteric bacteria. H-NS plays a structural role in organising the chromosome, and influences DNA rearrangements as well as the expression of many genes. The biochemical and functional characteristics of H-NS are distinct from those of 'typical' DNA-binding proteins and much remains to be learned about the mechanism(s) by which H-NS acts. In this article we review our current understanding of the role of H-NS, and describe possible models by which H-NS might influence DNA structure and gene expression.
Collapse
Affiliation(s)
- D W Ussery
- Imperial Cancer Research Fund Laboratories, University of Oxford, John Radcliffe Hospital, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|