1
|
A Systematic Evaluation of Methods for Tailoring Genome-Scale Metabolic Models. Cell Syst 2017; 4:318-329.e6. [PMID: 28215528 DOI: 10.1016/j.cels.2017.01.010] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 11/26/2016] [Accepted: 01/12/2017] [Indexed: 01/06/2023]
Abstract
Genome-scale models of metabolism can illuminate the molecular basis of cell phenotypes. Since some enzymes are only active in specific cell types, several algorithms use omics data to construct cell-line- and tissue-specific metabolic models from genome-scale models. However, these methods are often not rigorously benchmarked, and it is unclear how algorithm and parameter selection (e.g., gene expression thresholds, metabolic constraints) affects model content and predictive accuracy. To investigate this, we built hundreds of models of four different cancer cell lines using six algorithms, four gene expression thresholds, and three sets of metabolic constraints. Model content varied substantially across different parameter sets, but the algorithms generally increased accuracy in gene essentiality predictions. However, model extraction method choice had the largest impact on model accuracy. We further highlight how assumptions during model development influence model prediction accuracy. These insights will guide further development of context-specific models, thus more accurately resolving genotype-phenotype relationships.
Collapse
|
2
|
Zielinski DC, Jamshidi N, Corbett AJ, Bordbar A, Thomas A, Palsson BO. Systems biology analysis of drivers underlying hallmarks of cancer cell metabolism. Sci Rep 2017; 7:41241. [PMID: 28120890 PMCID: PMC5264163 DOI: 10.1038/srep41241] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 12/19/2016] [Indexed: 12/18/2022] Open
Abstract
Malignant transformation is often accompanied by significant metabolic changes. To identify drivers underlying these changes, we calculated metabolic flux states for the NCI60 cell line collection and correlated the variance between metabolic states of these lines with their other properties. The analysis revealed a remarkably consistent structure underlying high flux metabolism. The three primary uptake pathways, glucose, glutamine and serine, are each characterized by three features: (1) metabolite uptake sufficient for the stoichiometric requirement to sustain observed growth, (2) overflow metabolism, which scales with excess nutrient uptake over the basal growth requirement, and (3) redox production, which also scales with nutrient uptake but greatly exceeds the requirement for growth. We discovered that resistance to chemotherapeutic drugs in these lines broadly correlates with the amount of glucose uptake. These results support an interpretation of the Warburg effect and glutamine addiction as features of a growth state that provides resistance to metabolic stress through excess redox and energy production. Furthermore, overflow metabolism observed may indicate that mitochondrial catabolic capacity is a key constraint setting an upper limit on the rate of cofactor production possible. These results provide a greater context within which the metabolic alterations in cancer can be understood.
Collapse
Affiliation(s)
- Daniel C Zielinski
- Department of Bioengineering, University of California, San Diego, La Jolla CA 92093-0412, USA
| | - Neema Jamshidi
- Department of Bioengineering, University of California, San Diego, La Jolla CA 92093-0412, USA.,Institute of Engineering in Medicine, University of California, San Diego, La Jolla CA 92093-0412, USA
| | - Austin J Corbett
- Department of Bioengineering, University of California, San Diego, La Jolla CA 92093-0412, USA
| | - Aarash Bordbar
- Department of Bioengineering, University of California, San Diego, La Jolla CA 92093-0412, USA
| | - Alex Thomas
- Department of Bioinformatics and Systems Biology, University of California, San Diego, La Jolla CA 92093-0412, USA.,The Novo Nordisk Center for Biosustainability at the University of California San Diego School of Medicine, University of California, San Diego, La Jolla CA 92093-0412, USA.,Department of Pediatrics, University of California, San Diego, La Jolla CA 92093-0412, USA
| | - Bernhard O Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla CA 92093-0412, USA.,Department of Pediatrics, University of California, San Diego, La Jolla CA 92093-0412, USA
| |
Collapse
|
3
|
Su JH, Xu F, Lu XL, Lu TJ. Fluid flow induced calcium response in osteoblasts: mathematical modeling. J Biomech 2011; 44:2040-6. [PMID: 21665208 DOI: 10.1016/j.jbiomech.2011.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 05/03/2011] [Accepted: 05/03/2011] [Indexed: 11/28/2022]
Abstract
Fluid flow in the bone lacuno-canalicular network can induce dynamic fluctuation of intracellular calcium concentration ([Ca(2+)](i)) in osteoblasts, which plays an important role in bone remodeling. There has been limited progress in the mathematical modeling of this process probably due to its complexity, which is controlled by various factors such as Ca(2+) channels and extracellular messengers. In this study we developed a mathematical model to describe [Ca(2+)](i) response induced by fluid shear stress (SS) by integrating the major factors involved and analyzed the effects of different experimental setups (e.g. [Ca(2+)](i) baseline, pretreatment with ATP). In this model we considered the ATP release process and the activities of multiple ion channels and purinergic receptors. The model was further verified quantitatively by comparing the simulation results with experimental data reported in literature. The results showed that: (i) extracellular ATP concentration has more significant effect on [Ca(2+)](i) baseline (73% increase in [Ca(2+)](i) with extracellular ATP concentration varying between 0 and 10 μM), as compared to that induced by SS (25% variation in [Ca(2+)](i) with SS varying from 0 to 3.5 Pa); (ii) Pretreatment with ATP-medium results in different [Ca(2+)](i) response as compared to the control group (ATP-free medium) under SS; (iii) Relative [Ca(2+)](i) fluctuation over baseline is more reliable to show the [Ca(2+)](i) response process than the absolute [Ca(2+)](i) response peak. The developed model may improve the experimental design and facilitate our understanding of the mechanotransduction process in osteoblasts.
Collapse
Affiliation(s)
- J H Su
- Biomedical Engineering and Biomechanics Center, School of Aerospace, Xi'an Jiaotong University, 710049 Xi'an, PR China
| | | | | | | |
Collapse
|
4
|
Frixione E, Pérez-Olvera O. Light-adapting migration of the screening-pigment in crayfish photoreceptors is a two-stage movement comprising an all-or-nothing initial phase. JOURNAL OF NEUROBIOLOGY 1991; 22:238-48. [PMID: 1890416 DOI: 10.1002/neu.480220304] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The light-adapting response of the screening-pigment in crayfish retinal photoreceptors, previously described as a monophasic movement, was found to consist of two stages with different properties: (1) a rapid initial expansion that once started proceeds for at least half of the full distance, and (2) a slower and more variable continuation of the movement. The two components were resolved in isolated eyes stimulated under conditions expected to restrict Na+ influx into the photoreceptors. Only the second stage of the response to light was inhibited when Na+ was substituted with choline, or if the normal saline contained amiloride, a diuretic that hinders Na+ entry across many cell membranes. Amiloride in a medium without Na+ delayed, but did not curb, the first stage, whereas the rest of the movement was markedly restrained. Partial replacement of Na+ with Li+ blocked the second stage without affecting the rapid initial shift triggered by light. Exposure of dark-adapted eyes to high Na+ levels or to ouabain in the presence of Na+ in the dark also elicited a two-staged pigment dispersion to the light-adapted position. Low Na+ concentrations or amiloride affected the latency, but not the rate or extent, of the first stage of migration in ouabain-treated eyes. Consistent though less significant results were obtained with cyanide and the Na+ ionophore monensin. These observations suggest a differential control of pigment position over two defined domains along the photoreceptors, probably to integrate a double mechanism of light-adaptation: an all-or-nothing partial shift of the pigment screen as a safety factor against overexposure, followed by a regulated adjustment according to stimulation intensity.
Collapse
Affiliation(s)
- E Frixione
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, México, DF
| | | |
Collapse
|
5
|
Gaten E. The ultrastructure of the compound eye ofMunida rugosa (Crustacea: Anomura) and pigment migration during light and dark adaptation. J Morphol 1990; 205:243-253. [DOI: 10.1002/jmor.1052050302] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
6
|
Stowe S, de Couet HG, Davis D. Photoreceptor membrane turnover in the crayfish Cherax destructor: electron microscopy and anti-rhodopsin electron-microscopic immunocytochemistry. Cell Tissue Res 1990. [DOI: 10.1007/bf00305244] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Calcium uptake by smooth endoplasmic reticulum of peeled retinal photoreceptors of the crayfish. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 1988. [DOI: 10.1007/bf01342706] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|