1
|
Gutiérrez D, Rigosi E, Nagloo N, O'Carroll D, Warrant EJ. Spatial resolution and optical sensitivity in the compound eyes of two common European wasps, Vespula germanica and Vespula vulgaris. J Exp Biol 2024; 227:jeb246670. [PMID: 39058380 PMCID: PMC11418185 DOI: 10.1242/jeb.246670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 07/12/2024] [Indexed: 07/28/2024]
Abstract
Vespula germanica and Vespula vulgaris are two common European wasps that have ecological and economic importance as a result of their artificial introduction into many different countries and environments. Their success has undoubtedly been aided by their capacity for visually guided hunting, foraging, learning and using visual cues in the context of homing and navigation. However, the visual systems of V. germanica and V. vulgaris have not received any deep attention. We used electrophysiology, together with optical and anatomical techniques, to measure the spatial resolution and optical sensitivity of the compound eyes of both species. We found that both wasps have high anatomical spatial resolution with narrow interommatidial angles (Δϕ between 1.0 and 1.5 deg) and a distinct acute zone in the fronto-ventral part of the eye. These narrow interommatidial angles are matched to photoreceptors having narrow angular sensitivities (acute zone acceptance angles Δρ below 1.3 deg), indicating eyes of high spatial resolution that are well suited to their ecological needs. Additionally, we found that both species possess an optical sensitivity that is typical of other day-flying hymenopterans.
Collapse
Affiliation(s)
- Daniel Gutiérrez
- Lund Vision Group, Department of Biology, Lund University, Sölvegatan 35, Lund, S-22362, Sweden
| | - Elisa Rigosi
- Lund Vision Group, Department of Biology, Lund University, Sölvegatan 35, Lund, S-22362, Sweden
| | - Nicolas Nagloo
- Lund Vision Group, Department of Biology, Lund University, Sölvegatan 35, Lund, S-22362, Sweden
| | - David O'Carroll
- Lund Vision Group, Department of Biology, Lund University, Sölvegatan 35, Lund, S-22362, Sweden
| | - Eric J. Warrant
- Lund Vision Group, Department of Biology, Lund University, Sölvegatan 35, Lund, S-22362, Sweden
| |
Collapse
|
2
|
Rigosi E, Warrant EJ, O’Carroll DC. A new, fluorescence-based method for visualizing the pseudopupil and assessing optical acuity in the dark compound eyes of honeybees and other insects. Sci Rep 2021; 11:21267. [PMID: 34711871 PMCID: PMC8553845 DOI: 10.1038/s41598-021-00407-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 10/11/2021] [Indexed: 11/24/2022] Open
Abstract
Recent interest in applying novel imaging techniques to infer optical resolution in compound eyes underscores the difficulty of obtaining direct measures of acuity. A widely used technique exploits the principal pseudopupil, a dark spot on the eye surface representing the ommatidial gaze direction and the number of detector units (ommatidia) viewing that gaze direction. However, dark-pigmented eyes, like those of honeybees, lack a visible pseudopupil. Attempts over almost a century to estimate optical acuity in this species are still debated. Here, we developed a method to visualize a stable, reliable pseudopupil by staining the photoreceptors with fluorescent dyes. We validated this method in several species and found it to outperform the dark pseudopupil for this purpose, even in pale eyes, allowing more precise location of the gaze centre. We then applied this method to estimate the sampling resolution in the frontal part of the eye of the honeybee forager. We found a broad frontal acute zone with interommatidial angles below 2° and a minimum interommatidial angle of 1.3°, a broader, sharper frontal acute zone than previously reported. Our study provides a new method to directly measure the sampling resolution in most compound eyes of living animals.
Collapse
Affiliation(s)
- Elisa Rigosi
- grid.4514.40000 0001 0930 2361Department of Biology, Lund University, Sölvegatan 35, 22362 Lund, Sweden
| | - Eric J. Warrant
- grid.4514.40000 0001 0930 2361Department of Biology, Lund University, Sölvegatan 35, 22362 Lund, Sweden
| | - David C. O’Carroll
- grid.4514.40000 0001 0930 2361Department of Biology, Lund University, Sölvegatan 35, 22362 Lund, Sweden
| |
Collapse
|
3
|
Morphological and electrophysiological specializations of photoreceptors in the love spot of hover fly Volucella pellucens. Vis Neurosci 2021; 38:E015. [PMID: 34635193 DOI: 10.1017/s0952523821000146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Studies of functional variability in the compound eyes of flies reveal superior temporal resolution of photoreceptors from the frontal areas that mediate binocular vision, and in males mate recognition and pursuit. However, the mechanisms underlying differences in performance are not known. Here, we investigated properties of hover fly Volucella pellucens photoreceptors from two regions of the retina, the frontal-dorsal "love spot" and the lateral one. Morphologically, the microvilli of the frontal-dorsal photoreceptors were relatively few in number per rhabdomere cross-section, short and narrow. In electrophysiological experiments involving stimulation with prolonged white-noise and natural time intensity series, frontal-dorsal photoreceptors demonstrated comparatively high corner frequencies and information rates. Investigation of possible mechanisms responsible for their superior performance revealed significant differences in the properties of quantum bumps, and, unexpectedly, relatively high absolute sensitivity of the frontal-dorsal photoreceptors. Analysis of light adaptation indicated that photoreceptors from two regions adapt similarly but because frontal-dorsal photoreceptors were depolarized much stronger by the same stimuli than the lateral photoreceptors, they reached a deeper state of adaptation associated with higher corner frequencies of light response. Recordings from the photoreceptor axons were characterized by spike-like events that can significantly expand the frequency response range. Seamless integration of spikes into the graded voltage responses was enabled by light adaptation mechanisms that accelerate kinetics and decrease duration of depolarizing light response transients.
Collapse
|
4
|
Butterworth NJ, White TE, Byrne PG, Wallman JF. Love at first flight: wing interference patterns are species-specific and sexually dimorphic in blowflies (Diptera: Calliphoridae). J Evol Biol 2021; 34:558-570. [PMID: 33483961 DOI: 10.1111/jeb.13759] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 12/17/2020] [Indexed: 01/02/2023]
Abstract
Wing interference patterns (WIPs) are stable structural colours displayed on insect wings which are only visible at specific viewing geometries and against certain backgrounds. These patterns are widespread among flies and wasps, and growing evidence suggests that they may function as species- and sex-specific mating cues in a range of taxa. As such, it is expected that WIPs should differ between species and show clear sexual dimorphisms. However, the true extent to which WIPs vary between species, sexes and individuals is currently unclear, as previous studies have only taken a qualitative approach, without considering how WIPs might be perceived by the insect. Here, we perform the first quantitative analysis of inter- and intra-specific variation in WIPs across seven Australian species of the blowfly genus Chrysomya. Using multispectral digital imaging and a tentative model of blowfly colour vision, we provide quantitative evidence that WIPs are species-specific, highlight that the extent of divergence is greater in males than in females and demonstrate sexual dimorphisms in several species. These data suggest that WIPs have diversified substantially in blowflies as a result of either sexual or ecological selection.
Collapse
Affiliation(s)
- Nathan J Butterworth
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW, Australia.,School of Life Sciences, University of Technology Sydney, Ultimo, NSW, Australia
| | - Thomas E White
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Phillip G Byrne
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW, Australia
| | - James F Wallman
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW, Australia.,School of Life Sciences, University of Technology Sydney, Ultimo, NSW, Australia
| |
Collapse
|
5
|
Paterson JR, Edgecombe GD, García-Bellido DC. Disparate compound eyes of Cambrian radiodonts reveal their developmental growth mode and diverse visual ecology. SCIENCE ADVANCES 2020; 6:6/49/eabc6721. [PMID: 33268353 PMCID: PMC7821881 DOI: 10.1126/sciadv.abc6721] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 10/20/2020] [Indexed: 05/28/2023]
Abstract
Radiodonts are nektonic stem-group euarthropods that played various trophic roles in Paleozoic marine ecosystems, but information on their vision is limited. Optical details exist only in one species from the Cambrian Emu Bay Shale of Australia, here assigned to Anomalocaris aff. canadensis We identify another type of radiodont compound eye from this deposit, belonging to 'Anomalocaris' briggsi This ≤4-cm sessile eye has >13,000 lenses and a dorsally oriented acute zone. In both taxa, lenses were added marginally and increased in size and number throughout development, as in many crown-group euarthropods. Both species' eyes conform to their inferred lifestyles: The macrophagous predator A. aff. canadensis has acute stalked eyes (>24,000 lenses each) adapted for hunting in well-lit waters, whereas the suspension-feeding 'A.' briggsi could detect plankton in dim down-welling light. Radiodont eyes further demonstrate the group's anatomical and ecological diversity and reinforce the crucial role of vision in early animal ecosystems.
Collapse
Affiliation(s)
- John R Paterson
- Palaeoscience Research Centre, School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia.
| | - Gregory D Edgecombe
- Department of Earth Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Diego C García-Bellido
- School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
- South Australian Museum, North Terrace, Adelaide, SA 5000, Australia
| |
Collapse
|
6
|
Butterworth NJ, Wallman JF, Drijfhout FP, Johnston NP, Keller PA, Byrne PG. The evolution of sexually dimorphic cuticular hydrocarbons in blowflies (Diptera: Calliphoridae). J Evol Biol 2020; 33:1468-1486. [PMID: 32722879 DOI: 10.1111/jeb.13685] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/13/2020] [Accepted: 07/20/2020] [Indexed: 12/01/2022]
Abstract
Cuticular hydrocarbons (CHCs) are organic compounds found on the cuticles of all insects which can act as close-contact pheromones, while also providing a hydrophobic barrier to water loss. Given their widespread importance in sexual behaviour and survival, CHCs have likely contributed heavily to the adaptation and speciation of insects. Despite this, the patterns and mechanisms of their diversification have been studied in very few taxa. Here, we perform the first study of CHC diversification in blowflies, focussing on wild populations of the ecologically diverse genus Chrysomya. We convert CHC profiles into qualitative and quantitative traits and assess their inter- and intra-specific variation across 10 species. We also construct a global phylogeny of Chrysomya, onto which CHCs were mapped to explore the patterns of their diversification. For the first time, we demonstrate that blowflies express an exceptional diversity of CHCs, which have diversified in a nonphylogenetic and punctuated manner, are species-specific and sexually dimorphic. It is likely that both ecological and sexual selection have shaped these patterns of CHC diversification, and our study now provides a comprehensive framework for testing such hypotheses.
Collapse
Affiliation(s)
- Nathan J Butterworth
- Centre for Sustainable Ecosystem Solutions, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW, Australia
| | - James F Wallman
- Centre for Sustainable Ecosystem Solutions, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW, Australia.,School of Life Sciences, University of Technology Sydney, Ultimo, NSW, Australia
| | - Falko P Drijfhout
- School of Chemical and Physical Sciences, Keele University, Keele, UK
| | - Nikolas P Johnston
- Centre for Sustainable Ecosystem Solutions, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW, Australia
| | - Paul A Keller
- School of Chemistry and Molecular Bioscience, Molecular Horizons, University of Wollongong and Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| | - Phillip G Byrne
- Centre for Sustainable Ecosystem Solutions, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
7
|
Varennes LP, Krapp HG, Viollet S. A novel setup for 3D chasing behavior analysis in free flying flies. J Neurosci Methods 2019; 321:28-38. [PMID: 30991032 DOI: 10.1016/j.jneumeth.2019.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/10/2019] [Accepted: 04/12/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND Insects catching prey or mates on the wing perform one of the fastest behaviours observed in nature. Some dipteran flies are aerial acrobats specialized to detect, chase and capture their targets within the blink of an eye. Studies of aerial pursuits and its underlying sensorimotor control have been a long-standing subject of interest in neuroethology research. NEW METHOD We designed an actuated dummy target to trigger chasing flights in male blowflies. Our setup generates arbitrary 2D target trajectories in the horizontal plane combining translation up to 1 m/s and angular rotation up to 720°/s. RESULTS Using stereovision methods we reconstructed target and pursuer positions every 5 ms with a maximum 3D error of 5 mm. The pursuer's body pitch and yaw angles were resolved within an error range of 6deg. An embedded observation point provides a close-up view of the pursuer's final approach and enables us to measure its body roll angle. We observed banked turns and sideslip which have not been reported for chasing blowflies in the past. COMPARISON WITH EXISTING METHOD(S) Previous studies focused on pursuit along circular paths or interception of translating targets while our method allows us to generate more complex target trajectories. Measurements of body orientation in earlier accounts were limited to the heading direction while we extended the analysis to include the full body orientation during pursuit. CONCLUSIONS Our setup offers an opportunity to investigate kinematics and governing visual parameters of chasing behaviour in species up to the size of blowflies under a large variety of experimental conditions.
Collapse
Affiliation(s)
- Léandre P Varennes
- Department of Bioengineering, Imperial College London, SW7 2AZ London, UK; Aix-Marseille Universite, CNRS, Institute of Movement Science, UMR 7287, Marseille 13288, France.
| | - Holger G Krapp
- Department of Bioengineering, Imperial College London, SW7 2AZ London, UK.
| | - Stéphane Viollet
- Aix-Marseille Universite, CNRS, Institute of Movement Science, UMR 7287, Marseille 13288, France.
| |
Collapse
|
8
|
Ogawa Y, Ryan LA, Palavalli-Nettimi R, Seeger O, Hart NS, Narendra A. Spatial Resolving Power and Contrast Sensitivity Are Adapted for Ambient Light Conditions in Australian Myrmecia Ants. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
9
|
Bagheri ZM, Jessop AL, Kato S, Partridge JC, Shaw J, Ogawa Y, Hemmi JM. A new method for mapping spatial resolution in compound eyes suggests two visual streaks in fiddler crabs. J Exp Biol 2019; 223:jeb.210195. [DOI: 10.1242/jeb.210195] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 12/01/2019] [Indexed: 11/20/2022]
Abstract
Visual systems play a vital role in guiding the behaviour of animals. Understanding the visual information animals are able to acquire is therefore key to understanding their visually-mediated decision making. Compound eyes, the dominant eye type in arthropods, are inherently low-resolution structures. Their ability to resolve spatial detail depends on sampling resolution (interommatidial angle) and the quality of ommatidial optics. Current techniques for estimating interommatidial angles are difficult, and generally require in vivo measurements. Here, we present a new method for estimating interommatidial angles based on the detailed analysis of 3D Micro-CT images of fixed samples. Using custom-made MATLAB software we determine the optical axes of individual ommatidia and project these axes into the three-dimensional space around the animal. The combined viewing directions of all ommatidia, estimated from geometrical optics, allow us to estimate interommatidial angles and map the animal's sampling resolution across its entire visual field. The resulting topographic representations of visual acuity match very closely the previously published data obtained from both fiddler and grapsid crabs. However, the new method provides additional detail that was not previously detectable and reveals that fiddler crabs, rather than having a single horizontal visual streak as is common in flat world inhabitants, likely have two parallel streaks located just above and below the visual horizon. A key advantage of our approach is that it can be used on appropriately preserved specimens allowing the technique to be applied to animals such as deep-sea crustaceans that are inaccessible or unsuitable for in vivo approaches.
Collapse
Affiliation(s)
- Zahra M. Bagheri
- School of Biological Sciences, the University of Western Australia, Perth, Australia
| | - Anna-Lee Jessop
- School of Biological Sciences, the University of Western Australia, Perth, Australia
| | - Susumu Kato
- School of Biological Sciences, the University of Western Australia, Perth, Australia
| | - Julian C. Partridge
- The UWA Oceans Institute, the University of Western Australia, Perth, Australia
| | - Jeremy Shaw
- Centre for Microscopy, Characterisation and Analysis, the University of Western Australia, Perth, Australia
| | - Yuri Ogawa
- School of Biological Sciences, the University of Western Australia, Perth, Australia
| | - Jan M. Hemmi
- School of Biological Sciences, the University of Western Australia, Perth, Australia
- The UWA Oceans Institute, the University of Western Australia, Perth, Australia
| |
Collapse
|
10
|
Rigosi E, Wiederman SD, O'Carroll DC. Photoreceptor signalling is sufficient to explain the detectability threshold of insect aerial pursuers. ACTA ACUST UNITED AC 2017; 220:4364-4369. [PMID: 29187619 DOI: 10.1242/jeb.166207] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 09/25/2017] [Indexed: 11/20/2022]
Abstract
An essential biological task for many flying insects is the detection of small, moving targets, such as when pursuing prey or conspecifics. Neural pathways underlying such 'target-detecting' behaviours have been investigated for their sensitivity and tuning properties (size, velocity). However, which stage of neuronal processing limits target detection is not yet known. Here, we investigated several skilled, aerial pursuers (males of four insect species), measuring the target-detection limit (signal-to-noise ratio) of light-adapted photoreceptors. We recorded intracellular responses to moving targets of varying size, extended well below the nominal resolution of single ommatidia. We found that the signal detection limit (2× photoreceptor noise) matches physiological or behavioural target-detection thresholds observed in each species. Thus, across a diverse range of flying insects, individual photoreceptor responses to changes in light intensity establish the sensitivity of the feature detection pathway, indicating later stages of processing are dedicated to feature tuning, tracking and selection.
Collapse
Affiliation(s)
- Elisa Rigosi
- Department of Biology, Lund University, Sölvegatan 35, S-22362 Lund, Sweden
| | - Steven D Wiederman
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia
| | - David C O'Carroll
- Department of Biology, Lund University, Sölvegatan 35, S-22362 Lund, Sweden
| |
Collapse
|
11
|
Eichorn C, Hrabar M, Van Ryn EC, Brodie BS, Blake AJ, Gries G. How flies are flirting on the fly. BMC Biol 2017; 15:2. [PMID: 28193269 PMCID: PMC5307768 DOI: 10.1186/s12915-016-0342-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 12/09/2016] [Indexed: 11/22/2022] Open
Abstract
Background Flies have some of the most elaborate visual systems in the Insecta, often featuring large, sexually dimorphic eyes with specialized “bright zones” that may have a functional role during mate-seeking behavior. The fast visual system of flies is considered to be an adaptation in support of their advanced flight abilities. Here, we show that the immense processing speed of the flies’ photoreceptors plays a crucial role in mate recognition. Results Video-recording wing movements of abdomen-mounted common green bottle flies, Lucilia sericata, under direct light at 15,000 frames per second revealed that wing movements produce a single, reflected light flash per wing beat. Such light flashes were not evident when we video-recorded wing movements under diffuse light. Males of L. sericata are strongly attracted to wing flash frequencies of 178 Hz, which are characteristic of free-flying young females (prospective mates), significantly more than to 212, 235, or 266 Hz, characteristic of young males, old females, and old males, respectively. In the absence of phenotypic traits of female flies, and when given a choice between light emitting diodes that emitted either constant light or light pulsed at a frequency of 110, 178, 250, or 290 Hz, males show a strong preference for the 178-Hz pulsed light, which most closely approximates the wing beat frequency of prospective mates. Conclusions We describe a previously unrecognized visual mate recognition system in L. sericata. The system depends upon the sex- and age-specific frequencies of light flashes reflecting off moving wings, and the ability of male flies to distinguish between the frequency of light flashes produced by rival males and prospective mates. Our findings imply that insect photoreceptors with fast processing speed may not only support agile flight with advanced maneuverability but may also play a supreme role in mate recognition. The low mating propensity of L. sericata males on cloudy days, when light flashes from the wings of flying females are absent, seems to indicate that these flies synchronize sexual communication with environmental conditions that optimize the conspicuousness of their communication signals, as predicted by sensory drive theory. Electronic supplementary material The online version of this article (doi:10.1186/s12915-016-0342-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Courtney Eichorn
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada
| | - Michael Hrabar
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada
| | - Emma C Van Ryn
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada
| | - Bekka S Brodie
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada
| | - Adam J Blake
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada
| | - Gerhard Gries
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada.
| |
Collapse
|
12
|
Douglass JK, Wehling MF. Rapid mapping of compound eye visual sampling parameters with FACETS, a highly automated wide-field goniometer. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2016; 202:839-851. [PMID: 27655343 DOI: 10.1007/s00359-016-1119-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 07/27/2016] [Accepted: 07/29/2016] [Indexed: 11/29/2022]
Abstract
A highly automated goniometer instrument (called FACETS) has been developed to facilitate rapid mapping of compound eye parameters for investigating regional visual field specializations. The instrument demonstrates the feasibility of analyzing the complete field of view of an insect eye in a fraction of the time required if using non-motorized, non-computerized methods. Faster eye mapping makes it practical for the first time to employ sample sizes appropriate for testing hypotheses about the visual significance of interspecific differences in regional specializations. Example maps of facet sizes are presented from four dipteran insects representing the Asilidae, Calliphoridae, and Stratiomyidae. These maps provide the first quantitative documentation of the frontal enlarged-facet zones (EFZs) that typify asilid eyes, which, together with the EFZs in male Calliphoridae, are likely to be correlated with high-spatial-resolution acute zones. The presence of EFZs contrasts sharply with the almost homogeneous distribution of facet sizes in the stratiomyid. Moreover, the shapes of EFZs differ among species, suggesting functional specializations that may reflect differences in visual ecology. Surveys of this nature can help identify species that should be targeted for additional studies, which will elucidate fundamental principles and constraints that govern visual field specializations and their evolution.
Collapse
Affiliation(s)
- John K Douglass
- Eglin Air Force Base, 101 W. Eglin Blvd., Eglin AFB, FL, 32542, USA.
| | - Martin F Wehling
- Eglin Air Force Base, 101 W. Eglin Blvd., Eglin AFB, FL, 32542, USA
| |
Collapse
|
13
|
Smith JL, Palermo NA, Theobald JC, Wells JD. The forensically important blow fly, Chrysomya megacephala (Diptera: Calliphoridae), is more likely to walk than fly to carrion at low light levels. Forensic Sci Int 2016; 266:245-249. [PMID: 27343754 DOI: 10.1016/j.forsciint.2016.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 05/13/2016] [Accepted: 06/04/2016] [Indexed: 11/20/2022]
Abstract
One factor that influences estimates of time since death using entomological evidence is whether or not blow flies nocturnally oviposit. Field studies focusing on egg laying have found it occurs on an inconsistent basis. A key but poorly understood factor in nocturnal oviposition is a blow fly's ability to locate carrion under low light levels. It has been speculated that blow flies are more likely to walk than fly to carrion during the night, but this has not been empirically tested. We directly compared guided walking versus flying using infrared sensors under low light levels in laboratory conditions for Chrysomya megacephala (F.) (Diptera: Calliphoridae), a blow fly previously described to be nocturnal. We found C. megacephala is more likely to walk than fly toward carrion under low light levels (p=0.016). We did not, however, find differences between males and females for walking (p=0.48) or flying (p=0.42) despite male C. megacephala possessing eyes better suited for increased light capture. These results demonstrate the need to better understand where blow flies go at night, as bodies found within a fly's walking distance are more likely to be colonized.
Collapse
Affiliation(s)
- Joshua L Smith
- Department of Biological Sciences, Florida International University, 11200 SW 8th St, Miami, FL 33199, United States.
| | - Nicholas A Palermo
- Department of Biological Sciences, Florida International University, 11200 SW 8th St, Miami, FL 33199, United States
| | - Jamie C Theobald
- Department of Biological Sciences, Florida International University, 11200 SW 8th St, Miami, FL 33199, United States
| | - Jeffrey D Wells
- Department of Biological Sciences, Florida International University, 11200 SW 8th St, Miami, FL 33199, United States
| |
Collapse
|
14
|
Smith JL, Palermo NA, Theobald JC, Wells JD. Body Size, Rather Than Male Eye Allometry, Explains Chrysomya megacephala (Diptera: Calliphoridae) Activity in Low Light. JOURNAL OF INSECT SCIENCE (ONLINE) 2015; 15:iev114. [PMID: 26411786 PMCID: PMC4626669 DOI: 10.1093/jisesa/iev114] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 08/31/2015] [Indexed: 05/31/2023]
Abstract
Male Chrysomya megacephala (F.) blow fly compound eyes contain an unusual area of enlarged dorsal facets believed to allow for increased light capture. This region is absent in females and has been hypothesized to aid in mate tracking in low light conditions or at greater distances. Many traits used in the attraction and capture of mates are allometric, growing at different rates relative to body size. Previous reports concerning C. megacephala eye properties did not include measurements of body size, making the relationship between the specialized eye region and body size unclear. We examined different morphological features of the eye among individuals of varying sizes. We found total eye size scaled proportionately to body size, but the number of enlarged dorsal facets increased as body size increased. This demonstrated that larger males have an eye that is morphologically different than smaller males. On the basis of external morphology, we hypothesized that since larger males have larger and a greater number of dorsally enlarged facets, and these facets are believed to allow for increased light capture, larger males would be active in lower light levels than smaller males and females of equal size. In a laboratory setting, larger males were observed to become active earlier in the morning than smaller males, although they did not remain active later in the evening. However, females followed the same pattern at similar light levels suggesting that overall body size rather than specialized male eye morphology is responsible for increased activity under low light conditions.
Collapse
Affiliation(s)
- J L Smith
- Department of Biological Sciences, Florida International University, OE 167, 11200 SW 8th St, Miami, FL 33199
| | - N A Palermo
- Department of Biological Sciences, Florida International University, OE 167, 11200 SW 8th St, Miami, FL 33199
| | - J C Theobald
- Department of Biological Sciences, Florida International University, OE 167, 11200 SW 8th St, Miami, FL 33199
| | - J D Wells
- Department of Biological Sciences, Florida International University, OE 167, 11200 SW 8th St, Miami, FL 33199
| |
Collapse
|
15
|
Visual ecology of flies with particular reference to colour vision and colour preferences. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2014; 200:497-512. [PMID: 24664124 DOI: 10.1007/s00359-014-0895-1] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 02/19/2014] [Accepted: 02/25/2014] [Indexed: 10/25/2022]
Abstract
The visual ecology of flies is outstanding among insects due to a combination of specific attributes. Flies' compound eyes possess an open rhabdom and thus separate rhabdomeres in each ommatidium assigned to two visual pathways. The highly sensitive, monovariant neural superposition system is based on the excitation of the peripheral rhabdomeres of the retinula cells R1-6 and controls optomotor reactions. The two forms of central rhabdomeres of R7/8 retinula cells in each ommatidium build up a system with four photoreceptors sensitive in different wavelength ranges and thought to account for colour vision. Evidence from wavelength discrimination tests suggests that all colour stimuli are assigned to one of just four colour categories, but cooperation of the two pathways is also evident. Flies use colour cues for various behavioural reactions such as flower visitation, proboscis extension, host finding, and egg deposition. Direct evidence for colour vision, the ability to discriminate colours according to spectral shape but independent of intensity, has been demonstrated for few fly species only. Indirect evidence for colour vision provided from electrophysiological recordings of the spectral sensitivity of photoreceptors and opsin genes indicates similar requisites in various flies; the flies' responses to coloured targets, however, are much more diverse.
Collapse
|
16
|
Mazo C, Theobald JC. To keep on track during flight, fruitflies discount the skyward view. Biol Lett 2014; 10:20131103. [PMID: 24554476 DOI: 10.1098/rsbl.2013.1103] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
When small flying insects go off their intended course, they use the resulting pattern of motion on their eye, or optic flow, to guide corrective steering. A change in heading generates a unique, rotational motion pattern and a change in position generates a translational motion pattern, and each produces corrective responses in the wingbeats. Any image in the flow field can signal rotation, but owing to parallax, only the images of nearby objects can signal translation. Insects that fly near the ground might therefore respond more strongly to translational optic flow that occurs beneath them, as the nearby ground will produce strong optic flow. In these experiments, rigidly tethered fruitflies steered in response to computer-generated flow fields. When correcting for unintended rotations, flies weight the motion in their upper and lower visual fields equally. However, when correcting for unintended translations, flies weight the motion in the lower visual fields more strongly. These results are consistent with the interpretation that fruitflies stabilize by attending to visual areas likely to contain the strongest signals during natural flight conditions.
Collapse
Affiliation(s)
- Chantell Mazo
- Department of Biological Sciences, Florida International University, , Miami, FL 33199, USA
| | | |
Collapse
|
17
|
Zhao F, Bottjer DJ, Hu S, Yin Z, Zhu M. Complexity and diversity of eyes in early Cambrian ecosystems. Sci Rep 2013; 3:2751. [PMID: 24067397 PMCID: PMC3783037 DOI: 10.1038/srep02751] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 09/06/2013] [Indexed: 12/05/2022] Open
Abstract
Here we report exceptionally preserved non-biomineralized compound eyes of a non-trilobite arthropod Cindarella eucalla from the lower Cambrian Chengjiang Lagerstätte, China. The specimen represents the oldest microanatomical evidence confirming the occurrence of highly developed vision in the early Cambrian, over 2,000 ommatidia in each eye. Moreover, a quantitative analysis of the distribution of eyes related to life habit, feeding types, and phyla respectively, from the Chengjiang biota indicates that specimens with eyes mostly belong to the arthropods, and they usually were actively mobile epifaunal and nektonic forms as hunters or scavengers. Arthropods took the lead in evolution of ‘good vision' and domination in Cambrian communities, which supports the hypothesis that the origin and evolution of ‘good vision' was a key trait that promoted preferential diversification and formed the foundation of modern benthic ecosystems in the early Cambrian ocean.
Collapse
Affiliation(s)
- Fangchen Zhao
- 1] State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China [2] Department of Earth Sciences, University of Southern California, Los Angeles, California 90089, USA
| | | | | | | | | |
Collapse
|
18
|
Uchiyama H, Awata H, Kinoshita M, Arikawa K. Rough eyes of the Northeast-Asian wood white, Leptidea amurensis. J Exp Biol 2013; 216:3414-21. [PMID: 23685978 DOI: 10.1242/jeb.089169] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The northeast-Asian wood white, Leptidea amurensis (Lepidoptera, Pieridae), belongs to the Dismorphiinae, a subfamily of the family Pieridae. We studied the structure of the compound eye in this species through a combination of anatomy, molecular biology and intracellular electrophysiology, with a particular focus on the evolution of butterfly eyes. We found that their eyes consist of three types of ommatidia, with a basic set of one short-, one middle- and one long-wavelength-absorbing visual pigment. The spectral sensitivities of the photoreceptors are rather simple, and peak in the ultraviolet, blue and green wavelength regions. The ommatidia have neither perirhabdomal nor fluorescent pigments, which modulate photoreceptor spectral sensitivities in a number of other butterfly species. These features are primitive, but the eyes of Leptidea exhibit another unique feature: the rough appearance of the ventral two-thirds of the eye. The roughness is due to the irregular distribution of facets of two distinct sizes. As this phenomenon exists only in males, it may represent a newly evolved sex-related feature.
Collapse
Affiliation(s)
- Hironobu Uchiyama
- Laboratory of Neuroethology, Sokendai The Graduate University for Advanced Studies, Shonan Village, Hayama, Kanagawa 240-0193, Japan
| | | | | | | |
Collapse
|
19
|
Floreano D, Pericet-Camara R, Viollet S, Ruffier F, Brückner A, Leitel R, Buss W, Menouni M, Expert F, Juston R, Dobrzynski MK, L'Eplattenier G, Recktenwald F, Mallot HA, Franceschini N. Miniature curved artificial compound eyes. Proc Natl Acad Sci U S A 2013; 110:9267-72. [PMID: 23690574 PMCID: PMC3677439 DOI: 10.1073/pnas.1219068110] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In most animal species, vision is mediated by compound eyes, which offer lower resolution than vertebrate single-lens eyes, but significantly larger fields of view with negligible distortion and spherical aberration, as well as high temporal resolution in a tiny package. Compound eyes are ideally suited for fast panoramic motion perception. Engineering a miniature artificial compound eye is challenging because it requires accurate alignment of photoreceptive and optical components on a curved surface. Here, we describe a unique design method for biomimetic compound eyes featuring a panoramic, undistorted field of view in a very thin package. The design consists of three planar layers of separately produced arrays, namely, a microlens array, a neuromorphic photodetector array, and a flexible printed circuit board that are stacked, cut, and curved to produce a mechanically flexible imager. Following this method, we have prototyped and characterized an artificial compound eye bearing a hemispherical field of view with embedded and programmable low-power signal processing, high temporal resolution, and local adaptation to illumination. The prototyped artificial compound eye possesses several characteristics similar to the eye of the fruit fly Drosophila and other arthropod species. This design method opens up additional vistas for a broad range of applications in which wide field motion detection is at a premium, such as collision-free navigation of terrestrial and aerospace vehicles, and for the experimental testing of insect vision theories.
Collapse
Affiliation(s)
- Dario Floreano
- Laboratory of Intelligent Systems, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Nordström K, O'Carroll DC. Feature detection and the hypercomplex property in insects. Trends Neurosci 2009; 32:383-91. [PMID: 19541374 DOI: 10.1016/j.tins.2009.03.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Revised: 03/20/2009] [Accepted: 03/25/2009] [Indexed: 10/20/2022]
Abstract
Discerning a target amongst visual 'clutter' is a complicated task that has been elegantly solved by flying insects, as evidenced by their mid-air interactions with conspecifics and prey. The neurophysiology of small-target motion detectors (STMDs) underlying these complex behaviors has recently been described and suggests that insects use mechanisms similar to those of hypercomplex cells of the mammalian visual cortex to achieve target-specific tuning. Cortical hypercomplex cells are end-stopped, which means that they respond optimally to small moving targets, with responses to extended bars attenuated. We review not only the underlying mechanisms involved in this tuning but also how recently proposed models provide a possible explanation for another remarkable property of these neurons - their ability to respond robustly to the motion of targets even against moving backgrounds.
Collapse
|
21
|
Visual ecology of Indian carpenter bees II: adaptations of eyes and ocelli to nocturnal and diurnal lifestyles. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2009; 195:571-83. [PMID: 19363615 DOI: 10.1007/s00359-009-0432-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Revised: 02/25/2009] [Accepted: 03/04/2009] [Indexed: 10/20/2022]
Abstract
Most bees are diurnal, with behaviour that is largely visually mediated, but several groups have made evolutionary shifts to nocturnality, despite having apposition compound eyes unsuited to vision in dim light. We compared the anatomy and optics of the apposition eyes and the ocelli of the nocturnal carpenter bee, Xylocopa tranquebarica, with two sympatric species, the strictly diurnal X. leucothorax and the occasionally crepuscular X. tenuiscapa. The ocelli of the nocturnal X. tranquebarica are unusually large (diameter ca. 1 mm) and poorly focussed. Moreover, their apposition eyes show specific visual adaptations for vision in dim light, including large size, large facets and very wide rhabdoms, which together make these eyes 9 times more sensitive than those of X. tenuiscapa and 27 times more sensitive than those of X. leucothorax. These differences in optical sensitivity are surprisingly small considering that X. tranquebarica can fly on moonless nights when background luminance is as low as 10(-5) cd m(-2), implying that this bee must employ additional visual strategies to forage and find its way back to the nest. These strategies may include photoreceptors with longer integration times and higher contrast gains as well as higher neural summation mechanisms for increasing visual reliability in dim light.
Collapse
|
22
|
Barnett PD, Nordström K, O'carroll DC. Retinotopic organization of small-field-target-detecting neurons in the insect visual system. Curr Biol 2007; 17:569-78. [PMID: 17363248 DOI: 10.1016/j.cub.2007.02.039] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2006] [Revised: 02/04/2007] [Accepted: 02/12/2007] [Indexed: 11/25/2022]
Abstract
BACKGROUND Despite having tiny brains and relatively low-resolution compound eyes, many fly species frequently engage in precisely controlled aerobatic pursuits of conspecifics. Recent investigations into high-order processing in the fly visual system have revealed a class of neurons, coined small-target-motion detectors (STMDs), capable of responding robustly to target motion against the motion of background clutter. Despite limited spatial acuity in the insect eye, these neurons display exquisite sensitivity to small targets. RESULTS We recorded intracellularly from morphologically identified columnar neurons in the lobula complex of the hoverfly Eristalis tenax. We show that these columnar neurons with exquisitely small receptive fields, like their large-field counterparts recently described from both male and female flies, have an extreme selectivity for the motion of small targets. In doing so, we provide the first physiological characterization of small-field neurons in female flies. These retinotopically organized columnar neurons include both direction-selective and nondirection-selective classes covering a large area of visual space. CONCLUSIONS The retinotopic arrangement of lobula columnar neurons sensitive to the motion of small targets makes a strong case for these neurons as important precursors in the local processing of target motion. Furthermore, the continued response of STMDs with such small receptive fields to the motion of small targets in the presence of moving background clutter places further constraints on the potential mechanisms underlying their small-target tuning.
Collapse
Affiliation(s)
- Paul D Barnett
- Discipline of Physiology, School of Molecular and Biomedical Science, The University of Adelaide, SA, Australia
| | | | | |
Collapse
|
23
|
Straw AD, Warrant EJ, O'Carroll DC. A `bright zone' in male hoverfly (Eristalis tenax) eyes and associated faster motion detection and increased contrast sensitivity. J Exp Biol 2006; 209:4339-54. [PMID: 17050849 DOI: 10.1242/jeb.02517] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Eyes of the hoverfly Eristalis tenax are sexually dimorphic such that males have a fronto-dorsal region of large facets. In contrast to other large flies in which large facets are associated with a decreased interommatidial angle to form a dorsal `acute zone' of increased spatial resolution, we show that a dorsal region of large facets in males appears to form a `bright zone' of increased light capture without substantially increased spatial resolution. Theoretically, more light allows for increased performance in tasks such as motion detection. To determine the effect of the bright zone on motion detection, local properties of wide field motion detecting neurons were investigated using localized sinusoidal gratings. The pattern of local preferred directions of one class of these cells, the HS cells, in Eristalis is similar to that reported for the blowfly Calliphora. The bright zone seems to contribute to local contrast sensitivity; high contrast sensitivity exists in portions of the receptive field served by large diameter facet lenses of males and is not observed in females. Finally, temporal frequency tuning is also significantly faster in this frontal portion of the world, particularly in males, where it overcompensates for the higher spatial-frequency tuning and shifts the predicted local velocity optimum to higher speeds. These results indicate that increased retinal illuminance due to the bright zone of males is used to enhance contrast sensitivity and speed motion detector responses. Additionally, local neural properties vary across the visual world in a way not expected if HS cells serve purely as matched filters to measure yaw-induced visual motion.
Collapse
Affiliation(s)
- Andrew D Straw
- Discipline of Physiology, School of Molecular and Biomedical Science, The University of Adelaide, SA 5005, Australia.
| | | | | |
Collapse
|
24
|
Stavenga DG. Angular and spectral sensitivity of fly photoreceptors. II. Dependence on facet lens F-number and rhabdomere type in Drosophila. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2003; 189:189-202. [PMID: 12664095 DOI: 10.1007/s00359-003-0390-6] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2002] [Revised: 12/16/2002] [Accepted: 12/20/2002] [Indexed: 11/30/2022]
Abstract
A wave-optical model for the integrated facet lens-rhabdomere system of fly eyes is used to calculate the effective light power in the rhabdomeres when the eye is illuminated with a point light source or with an extended source. Two rhabdomere types are considered: the slender rhabdomeres of R7,8 photoreceptors and the wider, but tapering R1-6 rhabdomeres. The angular sensitivities of the two rhabdomere types have been calculated as a function of F-number and wavelength by fitting Gaussian functions to the effective light power. For a given F-number, the angular sensitivity broadens with wavelength for the slender rhabdomeres, but it stays approximately constant for the wider rhabdomeres. The integrated effective light power increases with the rhabdomere diameter, but it is for both rhabdomere types nearly independent of the light wavelength and F-number. The results are used to interpret the small F-number of Drosophila facet lenses. Presumably the small head puts a limit to the size of the facet lens and favors a short focal length.
Collapse
Affiliation(s)
- D G Stavenga
- Department of Neurobiophysics, University of Groningen, 9747 AG, Groningen, The Netherlands.
| |
Collapse
|
25
|
Abstract
The acuity of compound eyes is determined by interommatidial angles, optical quality, and rhabdom dimensions. It is also affected by light levels and speed of movement. In insects, interommatidial angles vary from tens of degrees in Apterygota, to as little as 0.24 degrees in dragonflies. Resolution better than this is not attainable in compound eyes of realistic size. The smaller the interommatidial angle the greater the distance at which objects--prey, predators, or foliage--can be resolved. Insects with different lifestyles have contrasting patterns of interommatidial angle distribution, related to forward flight, capture on the wing, and predation on horizontal surfaces.
Collapse
Affiliation(s)
- M F Land
- Sussex Centre for Neuroscience, School of Biological Sciences, University of Sussex, Brighton BN1 9QG, UK
| |
Collapse
|
26
|
Marshall NJ, Land MF. Some optical features of the eyes of stomatopods. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 1993. [DOI: 10.1007/bf00197766] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
Warrant EJ, McIntyre PD. Arthropod eye design and the physical limits to spatial resolving power. Prog Neurobiol 1993; 40:413-61. [PMID: 8446759 DOI: 10.1016/0301-0082(93)90017-m] [Citation(s) in RCA: 107] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- E J Warrant
- Department of Zoology, University of Lund, Sweden
| | | |
Collapse
|
28
|
Abstract
The spatial and spectral properties of an eye can often be directly linked to the behaviour and habitat of the animal. In a honey bee (Apis mellifera) society, the drones use the well-developed dorsal part of the eye to detect the queen against the sky during her nuptial flight. Recently it has become clear that the dorsal area of the drone's eye serves its task by cleverly combining a number of optical mechanisms, thus achieving a high spatial acuity as well as a high sensitivity precisely in the wavelength range of interest--the ultraviolet to blue range. Since the various optical specializations in the drone eye have now been recognized, they can be traced in the eyes of other species: thus, the drone eye serves as a model to give a better understanding of the relationship between structure and function of compound eyes in particular, but also of visual systems in general.
Collapse
Affiliation(s)
- D G Stavenga
- Dept of Biophysics, University of Groningen, The Netherlands
| |
Collapse
|
29
|
Functional morphology of the divided compound eye of the honeybee drone (Apis mellifera). Tissue Cell 1991; 23:525-35. [DOI: 10.1016/0040-8166(91)90010-q] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/1991] [Indexed: 11/19/2022]
|
30
|
van Hateren JH. Directional tuning curves, elementary movement detectors, and the estimation of the direction of visual movement. Vision Res 1990; 30:603-14. [PMID: 2339513 DOI: 10.1016/0042-6989(90)90071-r] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Both the insect brain and the vertebrate retina detect visual movement with neurons having broad, cosine-shaped directional tuning curves oriented in either of two perpendicular directions. This article shows that this arrangement can lead to isotropic estimates of the direction of movement: for any direction the estimate is unbiased (no systematic errors) and equally accurate (constant random errors). A simple and robust computational scheme is presented that accounts for the directional tuning curves as measured in movement sensitive neurons in the blowfly. The scheme includes movement detectors of various spans, and predicts several phenomena of movement perception in man.
Collapse
Affiliation(s)
- J H van Hateren
- Department of Biophysics, University of Groningen, The Netherlands
| |
Collapse
|