1
|
Abstract
We review literature on the metabolism of ribo- and deoxyribonucleotides, nucleosides, and nucleobases in Escherichia coli and Salmonella,including biosynthesis, degradation, interconversion, and transport. Emphasis is placed on enzymology and regulation of the pathways, at both the level of gene expression and the control of enzyme activity. The paper begins with an overview of the reactions that form and break the N-glycosyl bond, which binds the nucleobase to the ribosyl moiety in nucleotides and nucleosides, and the enzymes involved in the interconversion of the different phosphorylated states of the nucleotides. Next, the de novo pathways for purine and pyrimidine nucleotide biosynthesis are discussed in detail.Finally, the conversion of nucleosides and nucleobases to nucleotides, i.e.,the salvage reactions, are described. The formation of deoxyribonucleotides is discussed, with emphasis on ribonucleotidereductase and pathways involved in fomation of dUMP. At the end, we discuss transport systems for nucleosides and nucleobases and also pathways for breakdown of the nucleobases.
Collapse
|
2
|
Yaoi T, Laksanalamai P, Jiemjit A, Kagawa HK, Alton T, Trent JD. Cloning and characterization of ftsZ and pyrF from the archaeon Thermoplasma acidophilum. Biochem Biophys Res Commun 2000; 275:936-45. [PMID: 10973825 DOI: 10.1006/bbrc.2000.3401] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To characterize cytoskeletal components of archaea, the ftsZ gene from Thermoplasma acidophilum was cloned and sequenced. In T. acidophilum ftsZ, which is involved in cell division, was found to be in an operon with the pyrF gene, which encodes orotidine-5'-monophosphate decarboxylase (ODC), an essential enzyme in pyrimidine biosynthesis. Both ftsZ and pyrF from T. acidophilum were expressed in Escherichia coli and formed functional proteins. FtsZ expression in wild-type E. coli resulted in the filamentous phenotype characteristic of ftsZ mutants. T. acidophilum pyrF expression in an E. coli mutant lacking pyrF complemented the mutation and rescued the strain. Sequence alignments of ODCs from archaea, bacteria, and eukarya reveal five conserved regions, two of which have homology to 3-hexulose-6-phosphate synthase (HPS), suggesting a common substrate recognition and binding motif.
Collapse
Affiliation(s)
- T Yaoi
- NASA Ames Research Center, Moffett Field, California 94035, USA
| | | | | | | | | | | |
Collapse
|
3
|
Lewis LA, Gipson M, Hartman K, Ownbey T, Vaughn J, Dyer DW. Phase variation of HpuAB and HmbR, two distinct haemoglobin receptors of Neisseria meningitidis DNM2. Mol Microbiol 1999; 32:977-89. [PMID: 10361300 DOI: 10.1046/j.1365-2958.1999.01409.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have previously described HpuAB, a two-component receptor that mediates binding to haemoglobin (Hb), haemoglobin-haptoglobin (Hb-Hp) and apo-haptoglobin (Hp). In this communication, we constructed non-polar mutations in the hpuA and hpuB loci to examine the individual roles of HpuA and HpuB. Our results indicate that both HpuA and HpuB are required for the acquisition of Fe from Hb and Hb-Hp. We isolated Hb utilization-positive (Hb+) variants of our Hb utilization-negative (Hb-) hpu mutants at a frequency of 10(-3) and demonstrated that the Hb+ phenotype resulted from the expression of a second Hb receptor, HmbR. Expression of HmbR in DNM2 was found to be controlled by translational frameshifting involving a polyguanine (G) tract located within the hmbR locus. The hpuA locus also contains a poly(G) tract, which suggested that meningococci could phase vary each Hb receptor independently by slip-strand mispairing in the poly(G) tracts found in hpuA and hmbR. Thus, we isolated a naturally occurring Hb- variant of DNM2, designated DNM2 Hb-, which did not express either HpuAB or HmbR. Hb+ variants of DNM2Hb- were selected and examined for HpuAB and HmbR expression. In each instance, acquisition of HpuAB or HmbR expression was correlated with phase variation in the poly(G) tract of each Hb receptor.
Collapse
Affiliation(s)
- L A Lewis
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, 1053 BMSB, 940 Stanton L. Young Blvd, Oklahoma City, OK 73190, USA.
| | | | | | | | | | | |
Collapse
|
4
|
Kholti A, Charlier D, Gigot D, Huysveld N, Roovers M, Glansdorff N. pyrH-encoded UMP-kinase directly participates in pyrimidine-specific modulation of promoter activity in Escherichia coli. J Mol Biol 1998; 280:571-82. [PMID: 9677289 DOI: 10.1006/jmbi.1998.1910] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The carAB operon of the enterics Escherichia coli K-12 and Salmonella typhimurium LT2, encoding the sole carbamoylphosphate synthetase (CPSase) of these organisms, is transcribed from two promoters in tandem, carP1 upstream and carP2 downstream, repressed respectively by pyrimidines and arginine. We present evidence that the pyrH gene product (the hexameric UMP-kinase) directly participates in the pyrimidine-specific control of carP1 activity. Indeed, we have isolated in E. coli a particular type of pyrH mutation (pyrH41) that retains a quasi-normal UMP-kinase activity, but yet is impaired in the pyrimidine-specific repression of the P1 promoter of the carAB operon of E. coli and of S. typhimurium. Moreover, the pyrimidine-dependent inhibition of in vivo Dam methylase modification of adenine -106 upstream of the carP1 promoter is altered in this pyrH mutant. The recessive pyrH41 allele bears a single C-G to A-T transversion that converts alanine 94 into glutamic acid (A94E). Although overexpression of pyrH41 results in UMP-kinase levels far above that of a wild-type strain, pyrimidine-specific repression of the carAB operon is not restored under these conditions. Similarly, overexpression of the UMP-CMP-kinase gene of Dictyostelium discoideum in the pyrH41 mutant does not restore pyrimidine-mediated control of carP1 promoter activity, in spite of the elevated UMP-kinase activity measured in such transformants. These results indicate that besides its catalytic function in the de novo pyrimidine biosynthesis, E. coli UMP-kinase fulfils an additional, but previously unrecognized role in the regulation of the carAB operon. UMP-kinase might function as the real sensor of the internal pyrimidine nucleotide pool and act in concert with the integration host factor (IHF) and aminopeptidase A (PepA alias CarP and XerB) in the elaboration of the complex nucleoprotein structure required for pyrimidine-specific repression of carP1 promoter activity.
Collapse
Affiliation(s)
- A Kholti
- Laboratoire de Microbiologie, Université Libre de Bruxelles, 1-av. E. Gryson, Brussels, B-1070, Belgium
| | | | | | | | | | | |
Collapse
|
5
|
Athanasopoulos V, Praszkier J, Pittard AJ. The replication of an IncL/M plasmid is subject to antisense control. J Bacteriol 1995; 177:4730-41. [PMID: 7543895 PMCID: PMC177239 DOI: 10.1128/jb.177.16.4730-4741.1995] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
A 2,385-bp sequence that contains the information for the autonomous replication of the IncL/M plasmid pMU604 was characterized. Genetic analyses revealed that the replicon specifies at least four structural genes, designated repA, repB, repC, and rnaI. The repA gene encodes a protein with a molecular weight of 40,861 which probably functions as an initiator for replication. The functions of the proteins of the repB and repC genes are unclear; however, mutations in the start codon of repB reduced the expression of both repB and repA, indicating that these two genes are translationally coupled. The rnal gene encodes a small antisense RNA of about 75 to 77 bases and is responsible for the incompatibility phenotype, thus implicating its role as the main copy number determinant. RNAI exerts its effect in trans to repress the expression of repA at the posttranscriptional level. Furthermore, two complementary sequences of 8 bases, with the potential to interact and form a putative pseudoknot structure, were identified in the leader region of the repA mRNA. Base-pairing between the two complementary sequences was shown to be critical for efficient repA expression. A model for the regulation of pMU604 replication involving both translational coupling and pseudoknot formation is proposed.
Collapse
MESH Headings
- Amino Acid Sequence
- Bacterial Proteins/genetics
- Base Sequence
- Blotting, Northern
- DNA Helicases
- DNA Replication
- DNA-Binding Proteins
- Gene Expression Regulation, Bacterial
- Genes, Bacterial/genetics
- Genes, Reporter
- Models, Genetic
- Molecular Sequence Data
- Nucleic Acid Conformation
- Plasmids/genetics
- Proteins
- RNA, Antisense/genetics
- RNA, Bacterial/genetics
- RNA, Messenger/genetics
- RNA, Small Interfering
- Recombinant Fusion Proteins/biosynthesis
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
- Trans-Activators
- Transcription, Genetic
Collapse
Affiliation(s)
- V Athanasopoulos
- Department of Microbiology, University of Melbourne, Parkville, Victoria, Australia
| | | | | |
Collapse
|
6
|
Abstract
We present edition VIII of the genetic map of Salmonella typhimurium LT2. We list a total of 1,159 genes, 1,080 of which have been located on the circular chromosome and 29 of which are on pSLT, the 90-kb plasmid usually found in LT2 lines. The remaining 50 genes are not yet mapped. The coordinate system used in this edition is neither minutes of transfer time in conjugation crosses nor units representing "phage lengths" of DNA of the transducing phage P22, as used in earlier editions, but centisomes and kilobases based on physical analysis of the lengths of DNA segments between genes. Some of these lengths have been determined by digestion of DNA by rare-cutting endonucleases and separation of fragments by pulsed-field gel electrophoresis. Other lengths have been determined by analysis of DNA sequences in GenBank. We have constructed StySeq1, which incorporates all Salmonella DNA sequence data known to us. StySeq1 comprises over 548 kb of nonredundant chromosomal genomic sequences, representing 11.4% of the chromosome, which is estimated to be just over 4,800 kb in length. Most of these sequences were assigned locations on the chromosome, in some cases by analogy with mapped Escherichia coli sequences.
Collapse
Affiliation(s)
- K E Sanderson
- Department of Biological Sciences, University of Calgary, Alberta, Canada
| | | | | |
Collapse
|
7
|
Strych U, Wohlfarth S, Winkler UK. Orotidine-5'-monophosphate decarboxylase from Pseudomonas aeruginosa PAO1: cloning, overexpression, and enzyme characterization. Curr Microbiol 1994; 29:353-9. [PMID: 7765522 DOI: 10.1007/bf01570229] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Orotidine-5'-monophosphate decarboxylase (OMPdecase) catalyzes the final step in pyrimidine biosynthesis, the conversion of orotidine-5'-monophosphate (OMP) to uridine-5'-monophosphate. The pyrF gene, encoding OMPdecase, was isolated from a chromosomal library of Pseudomonas aeruginosa PAO1 by screening for complementation of an Escherichia coli and a P. aeruginosa pyrF mutant. The nucleotide sequence of a 2510-bp chromosomal DNA fragment, complementing both strains, was determined (EMBL accession number X65613). On this a 696-bp open reading frame capable of encoding the 24 kDa OMPdecase was identified. Despite a generally good correspondence to other OMPdecase sequences, the P. aeruginosa gene was unique in that it did not constitute part of an operon. The pyrF gene was amplified by polymerase chain reaction, overexpressed in the pT7-7/E. coli BL21(DE3) system and purified to near electrophoretic homogeneity by anion exchange chromatography. Characterization of the purified enzyme revealed the following data, a Km value for OMP of 9.91 microM and an isoelectric point of 6.65. No major decrease in enzyme activity was observed in a pH range between 7.8 and 10.2. Gel electrophoresis under nondenaturing conditions suggested that the native form of OMPdecase is the dimer.
Collapse
Affiliation(s)
- U Strych
- Ruhr-Universität Bochum, Lehrstuhl für Biologie der Mikroorganismen, Germany
| | | | | |
Collapse
|
8
|
Roth JR, Lawrence JG, Rubenfield M, Kieffer-Higgins S, Church GM. Characterization of the cobalamin (vitamin B12) biosynthetic genes of Salmonella typhimurium. J Bacteriol 1993; 175:3303-16. [PMID: 8501034 PMCID: PMC204727 DOI: 10.1128/jb.175.11.3303-3316.1993] [Citation(s) in RCA: 190] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Salmonella typhimurium synthesizes cobalamin (vitamin B12) de novo under anaerobic conditions. Of the 30 cobalamin synthetic genes, 25 are clustered in one operon, cob, and are arranged in three groups, each group encoding enzymes for a biochemically distinct portion of the biosynthetic pathway. We have determined the DNA sequence for the promoter region and the proximal 17.1 kb of the cob operon. This sequence includes 20 translationally coupled genes that encode the enzymes involved in parts I and III of the cobalamin biosynthetic pathway. A comparison of these genes with the cobalamin synthetic genes from Pseudomonas denitrificans allows assignment of likely functions to 12 of the 20 sequenced Salmonella genes. Three additional Salmonella genes encode proteins likely to be involved in the transport of cobalt, a component of vitamin B12. However, not all Salmonella and Pseudomonas cobalamin synthetic genes have apparent homologs in the other species. These differences suggest that the cobalamin biosynthetic pathways differ between the two organisms. The evolution of these genes and their chromosomal positions is discussed.
Collapse
Affiliation(s)
- J R Roth
- Department of Biology, University of Utah, Salt Lake City 84112
| | | | | | | | | |
Collapse
|
9
|
Praszkier J, Wilson IW, Pittard AJ. Mutations affecting translational coupling between the rep genes of an IncB miniplasmid. J Bacteriol 1992; 174:2376-83. [PMID: 1372603 PMCID: PMC205861 DOI: 10.1128/jb.174.7.2376-2383.1992] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nature of translational coupling between repB and repA, the overlapping rep genes of the IncB plasmid pMU720, was examined. Mutations in the start codon of the promoter proximal gene, repB, reduced the efficiency of translation of both rep genes. Moreover, there was no independent initiation of repA translation in the absence of repB translation. The position of the repB stop codon was crucial for the efficient expression of repA, with the wild-type positioning being optimal. Translational coupling was found to be totally dependent on the formation of a pseudoknot structure. A model which invokes formation of a pseudoknot to facilitate initiation of repA is proposed.
Collapse
Affiliation(s)
- J Praszkier
- Department of Microbiology, University of Melbourne, Parkville, Victoria, Australia
| | | | | |
Collapse
|