1
|
Koutsoumanis K, Allende A, Bolton D, Bover‐Cid S, Chemaly M, Herman L, Hilbert F, Lindqvist R, Nauta M, Nonno R, Peixe L, Skandamis P, Ru G, Simmons M, De Cesare A, Escamez PF, Suffredini E, Ortiz‐Pelaez A, Ordonez AA. Evaluation of alternative methods of tunnel composting (submitted by the European Composting Network) II. EFSA J 2024; 22:e8745. [PMID: 38681740 PMCID: PMC11046411 DOI: 10.2903/j.efsa.2024.8745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024] Open
Abstract
Two alternative methods for producing compost in a tunnel, from certain category (Cat.) 3 animal by-products (ABP) and other non-ABP material, were assessed. The first method proposed a minimum temperature of 55°C for 72 h and the second 60°C for 48 h, both with a maximum particle size of 200 mm. The assessment of the Panel on Biological Hazards (BIOHAZ) exclusively focused on Cat. 3 ABP materials (catering waste and processed foodstuffs of animal origin no longer intended for human consumption). The proposed composting processes were evaluated for their efficacy to achieve a reduction of at least 5 log10 of Enterococcus faecalis and Salmonella Senftenberg (775W, H2S negative) and at least 3 log10 of relevant thermoresistant viruses. The applicant provided a list of biological hazards that may enter the composting process and selected parvoviruses as the indicator of the thermoresistant viruses. The evidence provided by the applicant included: (a) literature data on thermal inactivation of biological hazards; (b) results from validation studies on the reduction of E. faecalis, Salmonella Senftenberg 775W H2S negative and canine parvovirus carried out in composting plants across Europe; (c) and experimental data from direct measurements of reduction of infectivity of murine parvovirus in compost material applying the time/temperature conditions of the two alternative methods. The evidence provided showed the capacity of the proposed alternative methods to reduce E. faecalis and Salmonella Senftenberg 775W H2S negative by at least 5 log10, and parvoviruses by at least 3 log10. The BIOHAZ Panel concluded that the two alternative methods under assessment can be considered to be equivalent to the processing method currently approved in the Commission Regulation (EU) No 142/2011.
Collapse
|
2
|
Koutsoumanis K, Allende A, Alvarez Ordoñez A, Bolton D, Bover‐Cid S, Chemaly M, Herman L, Hilbert F, Lindqvist R, Nauta M, Nonno R, Peixe L, Skandamis P, Suffredini E, Fernandez Escamez P, Gonzales‐Barron U, Roberts H, Ru G, Simmons M, Cruz RB, Lourenço Martins J, Messens W, Ortiz‐Pelaez A, Simon AC, De Cesare A. Assessment on the efficacy of methods 2 to 5 and method 7 set out in Commission Regulation (EU) No 142/2011 to inactivate relevant pathogens when producing processed animal protein of porcine origin intended to feed poultry and aquaculture animals. EFSA J 2023; 21:e08093. [PMID: 37416785 PMCID: PMC10320699 DOI: 10.2903/j.efsa.2023.8093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023] Open
Abstract
An assessment was conducted on the level of inactivation of relevant pathogens that could be present in processed animal protein of porcine origin intended to feed poultry and aquaculture animals when methods 2 to 5 and method 7, as detailed in Regulation (EU) No 142/2011, are applied. Five approved scenarios were selected for method 7. Salmonella Senftenberg, Enterococcus faecalis, spores of Clostridium perfringens and parvoviruses were shortlisted as target indicators. Inactivation parameters for these indicators were extracted from extensive literature search and a recent EFSA scientific opinion. An adapted Bigelow model was fitted to retrieved data to estimate the probability that methods 2 to 5, in coincidental and consecutive modes, and the five scenarios of method 7 are able to achieve a 5 log10 and a 3 log10 reduction of bacterial indicators and parvoviruses, respectively. Spores of C. perfringens were the indicator with the lowest probability of achieving the target reduction by methods 2 to 5, in coincidental and consecutive mode, and by the five considered scenarios of method 7. An expert knowledge elicitation was conducted to estimate the certainty of achieving a 5 log10 reduction of spores of C. perfringens considering the results of the model and additional evidence. A 5 log10 reduction of C. perfringens spores was judged: 99-100% certain for methods 2 and 3 in coincidental mode; 98-100% certain for method 7 scenario 3; 80-99% certain for method 5 in coincidental mode; 66-100% certain for method 4 in coincidental mode and for method 7 scenarios 4 and 5; 25-75% certain for method 7 scenario 2; and 0-5% certain for method 7 scenario 1. Higher certainty is expected for methods 2 to 5 in consecutive mode compared to coincidental mode.
Collapse
|
3
|
Koutsoumanis K, Allende A, Bolton D, Bover‐Cid S, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Peixe L, Ru G, Simmons M, Skandamis P, Suffredini E, Bottari B, Cummins E, Ylivainio K, Muñoz Guajardo I, Ortiz‐Pelaez A, Alvarez‐Ordóñez A. Inactivation of indicator microorganisms and biological hazards by standard and/or alternative processing methods in Category 2 and 3 animal by-products and derived products to be used as organic fertilisers and/or soil improvers. EFSA J 2021; 19:e06932. [PMID: 34900004 PMCID: PMC8638561 DOI: 10.2903/j.efsa.2021.6932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The European Commission requested EFSA to assess if different thermal processes achieve a 5 log10 reduction in Enterococcus faecalis or Salmonella Senftenberg (775W) and (if relevant) a 3 log10 reduction in thermoresistant viruses (e.g. Parvovirus) as well as if different chemical processes achieve a 3 log10 reduction of eggs of Ascaris sp., in eight groups of Category 2 and 3 derived products and animal by-products (ABP). These included (1) ash derived from incineration, co-incineration and combustion; (2) glycerine derived from the production of biodiesel and renewable fuels; (3) other materials derived from the production of biodiesel and renewable fuels; (4) hides and skins; (5) wool and hair; (6) feathers and down; (7) pig bristles; and (8) horns, horn products, hooves and hoof products. Data on the presence of viral hazards and on thermal and chemical inactivation of the targeted indicator microorganisms and biological hazards under relevant processing conditions were extracted via extensive literature searches. The evidence was assessed via expert knowledge elicitation. The certainty that the required log10 reductions in the most resistant indicator microorganisms or biological hazards will be achieved for each of the eight groups of materials mentioned above by the thermal and/or chemical processes was (1) 99-100% for the two processes assessed; (2) 98-100% in Category 2 ABP, at least 90-99% in Category 3 ABP; (3) 90-99% in Category 2 ABP; at least 66-90% in Category 3 ABP; (4) 10-66% and 33-66%; (5) 1-33% and 10-50%; (6) 66-90%; (7) 33-66% and 50-95%; (8) 66-95%, respectively. Data generation on the occurrence and reduction of biological hazards by thermal and/or chemical methods in these materials and on the characterisation of the usage pathways of ABP as organic fertilisers/soil improvers is recommended.
Collapse
|
4
|
Conventional and Innovative Hygienization of Feedstock for Biogas Production: Resistance of Indicator Bacteria to Thermal Pasteurization, Pulsed Electric Field Treatment, and Anaerobic Digestion. ENERGIES 2021. [DOI: 10.3390/en14071938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Animal by-products (ABP) can be valorized via anaerobic digestion (AD) for biogas energy generation. The digestate issued from AD process is usually used to fertilize farming land for agricultural activities, which may cause potential sanitary risk to the environment. The European Union (EU) requires that certain ABP be thermally pasteurized in order to minimize this sanitary risk. This process is called hygienization, which can be replaced by alternative nonthermal technologies like pulsed electric field (PEF). In the present study, Enterococcus faecalis ATCC 19433 and Escherichia coli ATCC 25922 were used as indicator bacteria. Their resistance to thermal pasteurization and PEF treatment were characterized. Results show that Ent. faecalis and E. coli are reduced by 5 log10 in less than 1 min during thermal pasteurization at 70 °C. The critical electric field strength was estimated at 18 kV∙cm−1 for Ent. faecalis and 1 kV∙cm−1 for E. coli. “G+” bacteria Ent. faecalis are generally more resistant than “G−” bacteria E. coli. AD process also plays an important role in pathogens inactivation, whose performance depends on the microorganisms considered, digestion temperature, residence time, and type of feedstock. Thermophilic digestion is usually more efficient in pathogens removal than mesophilic digestion.
Collapse
|
5
|
Espinosa MF, Sancho AN, Mendoza LM, Mota CR, Verbyla ME. Systematic review and meta-analysis of time-temperature pathogen inactivation. Int J Hyg Environ Health 2020; 230:113595. [DOI: 10.1016/j.ijheh.2020.113595] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/04/2020] [Accepted: 07/06/2020] [Indexed: 11/16/2022]
|
6
|
Koutsoumanis K, Allende A, Bolton DJ, Bover‐Cid S, Chemaly M, Davies R, De Cesare A, Herman LM, Hilbert F, Lindqvist R, Nauta M, Peixe L, Ru G, Simmons M, Skandamis P, Suffredini E, Escámez PF, Ortiz‐Peláez A, Ashe S, Alvarez‐Ordóñez A. Evaluation of Alternative Methods of Tunnel Composting (submitted by the European Composting Network). EFSA J 2020; 18:e06226. [PMID: 32774510 PMCID: PMC7404150 DOI: 10.2903/j.efsa.2020.6226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Two alternative methods for the production of compost from certain category 3 animal by-products (catering waste and processed foodstuffs of animal origin) were assessed. The first proposed a minimum temperature of 55°C for 72 h; the second 60°C for 48 h, each with a maximum particle size of 200 mm. The proposed composting processes were assessed by the BIOHAZ Panel for their efficacy to achieve a reduction of 5 log10 of Enterococcus faecalis or Salmonella Senftenberg (775W, H2S negative) and a 3 log10 reduction of the infectivity titre of thermoresistant viruses, such as parvovirus, in the composted material, as set out in Annex V, Chapter 3, Section 2 of Commission Regulation (EU) No 142/2011. The assessment of the BIOHAZ Panel exclusively focused on the ABP raw materials (catering waste and processed foodstuffs) intended for human consumption. The applicant did not provide any validation experiments with direct measurement of the reduction of viability of endogenous indicators or spiked surrogate bacteria. However, from thermal inactivation parameters reported in the literature, it can be concluded that the proposed composting standards can achieve at least a 5 log10 reduction of Enterococcus faecalis or Salmonella Senftenberg 775W. The applicant did not consider thermoresistant viruses as a relevant hazard and therefore did not provide any data from direct measurements of the reduction of infectivity of spiked thermoresistant viruses, nor provide data from validation studies undertaken at national level or data from literature supporting the efficacy of the proposed composting standards on thermoresistant viruses. However, thermoresistant viruses should be considered to be a relevant hazard in this context and validation data should have been provided accordingly. The BIOHAZ Panel considers that the evidence provided by the applicant does not demonstrate that the requirements of Annex V, Chapter 3, Section 2 of Commission Regulation (EU) No 142/2011 are achieved.
Collapse
|
7
|
Using agro-industrial wastes for the cultivation of microalgae and duckweeds: Contamination risks and biomass safety concerns. Biotechnol Adv 2018; 36:1238-1254. [PMID: 29673973 PMCID: PMC7125918 DOI: 10.1016/j.biotechadv.2018.04.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 04/12/2018] [Accepted: 04/12/2018] [Indexed: 12/17/2022]
Abstract
Aquatic organisms, such as microalgae (Chlorella, Arthrospira (Spirulina), Tetrasselmis, Dunalliela etc.) and duckweed (Lemna spp., Wolffia spp. etc.) are a potential source for the production of protein-rich biomass and for numerous other high-value compounds (fatty acids, pigments, vitamins etc.). Their cultivation using agro-industrial wastes and wastewater (WaW) is of particular interest in the context of a circular economy, not only for recycling valuable nutrients but also for reducing the requirements for fresh water for the production of biomass. Recovery and recycling of nutrients is an unavoidable long-term approach for securing future food and feed production. Agro-industrial WaW are rich in nutrients and have been widely considered as a potential nutrient source for the cultivation of microalgae/duckweed. However, they commonly contain various hazardous contaminants, which could potentially taint the produced biomass, raising various concerns about the safety of their consumption. Herein, an overview of the most important contaminants, including heavy metals and metalloids, pathogens (bacteria, viruses, parasites etc.), and xenobiotics (hormones, antibiotics, parasiticides etc.) is given. It is concluded that pretreatment and processing of WaW is a requisite step for the removal of several contaminants. Among the various technologies, anaerobic digestion (AD) is widely used in practice and offers a technologically mature approach for WaW treatment. During AD, various organic and biological contaminants are significantly removed. Further removal of contaminants could be achieved by post-treatment and processing of digestates (solid/liquid separation, dilution etc.) to further decrease the concentration of contaminants. Moreover, during cultivation an additional removal may occur through various mechanisms, such as precipitation, degradation, and biotransformation. Since many jurisdictions regulate the presence of various contaminants in feed or food setting strict safety monitoring processes, it would be of particular interest to initiate a multi-disciplinary discussion whether agro-industrial WaW ought to be used to cultivate microalgae/duckweed for feed or food production and identify most feasible options for doing this safely. Based on the current body of knowledge it is estimated that AD and post-treatment of WaW can lower significantly the risks associated with heavy metals and pathogens, but it is yet unclear to what extent this is the case for certain persistent xenobiotics.
Collapse
|
8
|
Burch TR, Spencer SK, Borchardt SS, Larson RA, Borchardt MA. Fate of Manure-Borne Pathogens during Anaerobic Digestion and Solids Separation. JOURNAL OF ENVIRONMENTAL QUALITY 2018; 47:336-344. [PMID: 29634802 PMCID: PMC7166490 DOI: 10.2134/jeq2017.07.0285] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Anaerobic digestion can inactivate zoonotic pathogens present in cattle manure, which reduces transmission of these pathogens from farms to humans through the environment. However, the variability of inactivation across farms and over time is unknown because most studies have examined pathogen inactivation under ideal laboratory conditions or have focused on only one or two full-scale digesters at a time. In contrast, we sampled seven full-scale digesters treating cattle manure in Wisconsin for 9 mo on a biweekly basis ( = 118 pairs of influent and effluent samples) and used real-time quantitative polymerase chain reaction to analyze these samples for 19 different microbial genetic markers. Overall, inactivation of pathogens and fecal indicators was highly variable. When aggregated across digester and season, log-removal values for several representative microorganisms-bovine , -like CowM3, and bovine polyomavirus-were 0.78 ± 0.34, 0.70 ± 0.50, and 0.53 ± 0.58, respectively (mean ± SD). These log-removal values were up to two times lower than expected based on the scientific literature. Thus, our study indicates that full-scale anaerobic digestion of cattle manure requires optimization with regard to pathogen inactivation. Future studies should focus on identifying the potential causes of this suboptimal performance (e.g., overloading, poor mixing, poor temperature control). Our study also examined the fate of pathogens during manure separation and found that the majority of microbes we detected ended up in the liquid fraction of separated manure. This finding has important implications for the transmission of zoonotic pathogens through the environment to humans.
Collapse
Affiliation(s)
| | | | - Spencer S. Borchardt
- Wisconsin Water Science Center, USGS2615 Yellowstone Dr.MarshfieldWI54449
- Present address:
Kimley Horn and Associates2550 University Ave. W. Suite 238NSaint PaulMN55114
| | - Rebecca A. Larson
- Dep. of Biological Systems EngineeringUniv. of Wisconsin–Madison460 Henry Mall, Room 232EMadisonWI53706
| | | |
Collapse
|
9
|
Jiang Y, Dennehy C, Lawlor PG, Hu Z, Zhan X, Gardiner GE. Inactivation of enteric indicator bacteria and system stability during dry co-digestion of food waste and pig manure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 612:293-302. [PMID: 28850849 DOI: 10.1016/j.scitotenv.2017.08.214] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 08/08/2017] [Accepted: 08/20/2017] [Indexed: 06/07/2023]
Abstract
Provision of digestate with satisfactory biosafety is critical to land application of digestate and to the anaerobic digestion approach to treating manure and food waste (FW). No studies have been conducted on digestate biosafety in dry co-digestion systems. The aim of this study was to assess the inactivation efficiency and possible inactivation mechanism for three enteric indicator bacteria and the system stability during dry mesophilic anaerobic co-digestion of FW and pig manure (PM). The effects of two different inocula were examined at a rate of 50% based on volatile solids (VS): digestate taken from existing dry co-digestion digesters and dewatered anaerobic sludge from a local wastewater treatment plant. The FW/PM ratios of 50:50 and 75:25 on a VS basis were also assessed. The results showed that using digestate as the inoculum and a FW/PM ratio of 50:50 led to stable dry co-digestion, with the specific methane yield (SMY) of 252mL/gVSadded. Total volatile fatty acid (VFA) concentration was a significant inhibition factor for methane production during dry co-digestion (P<0.001). The data also showed that dry co-digestion of FW and PM effectively inactivated enteric indicator bacteria. E. coli and total coliforms counts decreased below the limit of detection (LOD, 102CFU/g) within 4-7days, with free VFA identified as a significant inactivation factor. Enterococci were more resistant but nonetheless the counts decreased below the LOD within 12days in the digestate inoculum systems and 26-31days in the sludge inoculum systems. The residence time was the most significant inactivation factor for enterococci, with the free VFA concentration playing a secondary role at high FW/PM ratio in the sludge inoculum system. In conclusion, digestate as inoculum and the FW/PM ratio of 50:50 were preferable operation conditions to realize system stability, methane production and enteric indicator bacteria inactivation.
Collapse
Affiliation(s)
- Yan Jiang
- Civil Engineering, College of Engineering & Informatics, National University of Ireland Galway, Ireland
| | - Conor Dennehy
- Civil Engineering, College of Engineering & Informatics, National University of Ireland Galway, Ireland
| | - Peadar G Lawlor
- Teagasc, Pig Development Department, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Zhenhu Hu
- School of Civil Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, China
| | - Xinmin Zhan
- Civil Engineering, College of Engineering & Informatics, National University of Ireland Galway, Ireland.
| | - Gillian E Gardiner
- Department of Science, Waterford Institute of Technology, Waterford, Ireland
| |
Collapse
|
10
|
Decrey L, Kazama S, Kohn T. Ammonia as an In Situ Sanitizer: Influence of Virus Genome Type on Inactivation. Appl Environ Microbiol 2016; 82:4909-20. [PMID: 27260358 PMCID: PMC4968548 DOI: 10.1128/aem.01106-16] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 05/26/2016] [Indexed: 01/16/2023] Open
Abstract
UNLABELLED Treatment of human excreta and animal manure (HEAM) is key in controlling the spread of persistent enteric pathogens, such as viruses. The extent of virus inactivation during HEAM storage and treatment appears to vary with virus genome type, although the reasons for this variability are not clear. Here, we investigated the inactivation of viruses of different genome types under conditions representative of HEAM storage or mesophilic digestion. The goals were to characterize the influence of HEAM solution conditions on inactivation and to determine the potential mechanisms involved. Specifically, eight viruses representing the four viral genome types (single-stranded RNA [ssRNA], double-stranded RNA [dsRNA], single-stranded DNA [ssDNA], and double-stranded DNA [dsDNA]) were exposed to synthetic solutions with well-controlled temperature (20 to 35°C), pH (8 to 9), and ammonia (NH3) concentrations (0 to 40 mmol liter(-1)). DNA and dsRNA viruses were considerably more resistant than ssRNA viruses, resulting in up to 1,000-fold-longer treatment times to reach a 4-log inactivation. The apparently slower inactivation of DNA viruses was rationalized by the higher stability of DNA than that of ssRNA in HEAM. Pushing the system toward harsher pH (>9) and temperature (>35°C) conditions, such as those encountered in thermophilic digestion and alkaline treatments, led to more consistent inactivation kinetics among ssRNA and other viruses. This suggests that the dependence of inactivation on genome type disappeared in favor of protein-mediated inactivation mechanisms common to all viruses. Finally, we recommend the use of MS2 as a conservative indicator to assess the inactivation of ssRNA viruses and the stable ΦX174 or dsDNA phages as indicators for persistent viruses. IMPORTANCE Viruses are among the most environmentally persistent pathogens. They can be present in high concentrations in human excreta and animal manure (HEAM). Therefore, appropriate treatment of HEAM is important prior to its reuse or discharge into the environment. Here, we investigated the factors that determine the persistence of viruses in HEAM, and we determined the main mechanisms that lead to their inactivation. Unlike other organisms, viruses can have four different genome types (double- or single-stranded RNA or DNA), and the viruses studied herein represent all four types. Genome type appeared to be the major determinant for persistence. Single-stranded RNA viruses are the most labile, because this genome type is susceptible to degradation in HEAM. In contrast, the other genome types are more stable; therefore, inactivation is slower and mainly driven by the degradation of viral proteins. Overall, this study allows us to better understand the behavior of viruses in HEAM.
Collapse
Affiliation(s)
- Loïc Decrey
- Laboratory of Environmental Chemistry, School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Shinobu Kazama
- Laboratory of Environmental Chemistry, School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland New Industry Creation Hatchery Center (NICHe), Sendai, Miyagi, Japan
| | - Tamar Kohn
- Laboratory of Environmental Chemistry, School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
11
|
Ariunbaatar J, Panico A, Yeh DH, Pirozzi F, Lens PNL, Esposito G. Enhanced mesophilic anaerobic digestion of food waste by thermal pretreatment: Substrate versus digestate heating. WASTE MANAGEMENT (NEW YORK, N.Y.) 2015; 46:176-181. [PMID: 26272711 DOI: 10.1016/j.wasman.2015.07.045] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 07/12/2015] [Accepted: 07/28/2015] [Indexed: 06/04/2023]
Abstract
Food waste (FW) represents a source of high potential renewable energy if properly treated with anaerobic digestion (AD). Pretreating the substrates could yield a higher biomethane production in a shorter time. In this study, the effects of thermal (heating the FW in a separate chamber) and thermophilic (heating the full reactor content containing both FW and inoculum) pretreatments at 50, 60, 70 and 80°C prior to mesophilic AD were studied through a series of batch experiments. Pretreatments at a lower temperature (50°C) and a shorter time (<12h) had a positive effect on the AD process. The highest enhancement of the biomethane production with an increase by 44-46% was achieved with a thermophilic pretreatment at 50°C for 6-12h or a thermal pretreatment at 80°C for 1.5h. Thermophilic pretreatments at higher temperatures (>55°C) and longer operating times (>12h) yielded higher soluble chemical oxygen demand (CODs), but had a negative effect on the methanogenic activity. The thermal pretreatments at the same conditions resulted in a lower solubilization of COD. Based on net energy calculations, the enhanced biomethane production is sufficient to heat up the FW for the thermal, but not for the thermophilic pretreatment.
Collapse
Affiliation(s)
- Javkhlan Ariunbaatar
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via Di Biasio, 43, 03043 Cassino, FR, Italy.
| | - Antonio Panico
- Telematic University Pegaso, Piazza Trieste e Trento, 48, 80132 Naples, Italy
| | - Daniel H Yeh
- Department of Civil and Environmental Engineering, University of South Florida, 4204 E. Fowler Avenue, Tampa, FL 33620, USA
| | - Francesco Pirozzi
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Via Claudio, 21, 80125 Naples, Italy
| | - Piet N L Lens
- UNESCO-IHE Institute for Water Education, Westvest 7, 2611 AX Delft, The Netherlands
| | - Giovanni Esposito
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via Di Biasio, 43, 03043 Cassino, FR, Italy
| |
Collapse
|
12
|
Risk to public and/or animal health of the treatment of dead‐in‐shell chicks (Category 2 material) to be used as raw material for the production of biogas or compost with Category 3 approved method. EFSA J 2015. [DOI: 10.2903/j.efsa.2015.4306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
13
|
Scheinemann HA, Dittmar K, Stöckel FS, Müller H, Krüger ME. Hygienisation and nutrient conservation of sewage sludge or cattle manure by lactic acid fermentation. PLoS One 2015; 10:e0118230. [PMID: 25786255 PMCID: PMC4364889 DOI: 10.1371/journal.pone.0118230] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 01/09/2015] [Indexed: 11/18/2022] Open
Abstract
Manure from animal farms and sewage sludge contain pathogens and opportunistic organisms in various concentrations depending on the health of the herds and human sources. Other than for the presence of pathogens, these waste substances are excellent nutrient sources and constitute a preferred organic fertilizer. However, because of the pathogens, the risks of infection of animals or humans increase with the indiscriminate use of manure, especially liquid manure or sludge, for agriculture. This potential problem can increase with the global connectedness of animal herds fed imported feed grown on fields fertilized with local manures. This paper describes a simple, easy-to-use, low-tech hygienization method which conserves nutrients and does not require large investments in infrastructure. The proposed method uses the microbiotic shift during mesophilic fermentation of cow manure or sewage sludge during which gram-negative bacteria, enterococci and yeasts were inactivated below the detection limit of 3 log10 cfu/g while lactobacilli increased up to a thousand fold. Pathogens like Salmonella, Listeria monocytogenes, Staphylococcus aureus, E. coli EHEC O:157 and vegetative Clostridium perfringens were inactivated within 3 days of fermentation. In addition, ECBO-viruses and eggs of Ascaris suum were inactivated within 7 and 56 days, respectively. Compared to the mass lost through composting (15-57%), the loss of mass during fermentation (< 2.45%) is very low and provides strong economic and ecological benefits for this process. This method might be an acceptable hygienization method for developed as well as undeveloped countries, and could play a key role in public and animal health while safely closing the nutrient cycle by reducing the necessity of using energy-inefficient inorganic fertilizer for crop production.
Collapse
Affiliation(s)
- Hendrik A. Scheinemann
- Institute of Bacteriology and Mycology, University of Leipzig, Faculty of Veterinary medicine, An den Tierkliniken 29, 04103 Leipzig, Germany
- Gesellschaft zur Förderung von Medizin-, Bio- und Umwelttechnologien e. V. Erich-Neuß-Weg 5, 06120 Halle (Saale), Germany
| | - Katja Dittmar
- Institute of Parasitology, University of Leipzig, Faculty of Veterinary medicine, An den Tierkliniken 35, 04103 Leipzig, Germany
| | - Frank S. Stöckel
- Institute of Parasitology, University of Leipzig, Faculty of Veterinary medicine, An den Tierkliniken 35, 04103 Leipzig, Germany
| | - Hermann Müller
- Institute of Virology, University of Leipzig, Faculty of Veterinary medicine, An den Tierkliniken 29, 04103 Leipzig, Germany
| | - Monika E. Krüger
- Institute of Bacteriology and Mycology, University of Leipzig, Faculty of Veterinary medicine, An den Tierkliniken 29, 04103 Leipzig, Germany
| |
Collapse
|
14
|
Fabbri A, Bonifazi G, Serranti S. Micro-scale energy valorization of grape marcs in winery production plants. WASTE MANAGEMENT (NEW YORK, N.Y.) 2015; 36:156-165. [PMID: 25529134 DOI: 10.1016/j.wasman.2014.11.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 11/24/2014] [Accepted: 11/27/2014] [Indexed: 06/04/2023]
Abstract
The Biochemical Methane Potential (BMP) of winery organic waste, with reference to two Italian red and white grapes (i.e. Nero Buono and Greco) by-products was investigated. The study was carried out to verify the possibility to reduce the production impact in a green-waste-management-chain-perspective. The possibility to efficiently utilize wine-related-by-products for energy production at a micro-scale (i.e. small-medium scale winery production plant) was also verified. Results showed as a good correlation can be established between the percentage of COD removal and the biogas production, as the winery can produce, from its waste methanization, about 7800 kW h year(-1) electrical and 8900 kW h year(-1) thermal. A critical evaluation was performed about the possibility to utilize the proposed approach to realize an optimal biomass waste management and an energetic valorization in a local-energy-production-perspective.
Collapse
Affiliation(s)
- Andrea Fabbri
- Department of Chemical Engineering, Materials & Environment - Sapienza University of Rome, Via Eudossiana 18, 00184 Roma, Italy
| | - Giuseppe Bonifazi
- Department of Chemical Engineering, Materials & Environment - Sapienza University of Rome, Via Eudossiana 18, 00184 Roma, Italy
| | - Silvia Serranti
- Department of Chemical Engineering, Materials & Environment - Sapienza University of Rome, Via Eudossiana 18, 00184 Roma, Italy.
| |
Collapse
|
15
|
Decrey L, Kazama S, Udert KM, Kohn T. Ammonia as an in situ sanitizer: inactivation kinetics and mechanisms of the ssRNA virus MS2 by NH3. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:1060-7. [PMID: 25496714 DOI: 10.1021/es5044529] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Sanitizing human and animal waste (e.g., urine, fecal sludge, or grey water) is a critical step in reducing the spread of disease and ensuring microbially safe reuse of waste materials. Viruses are particularly persistent pathogens and can be transmitted through inadequately sanitized waste. However, adequate storage or digestion of waste can strongly reduce the number of viruses due to increases in pH and uncharged aqueous ammonia (NH3), a known biocide. In this study we investigated the kinetics and mechanisms of inactivation of the single-stranded RNA virus MS2 under temperature, pH and NH3 conditions representative of waste storage. MS2 inactivation was mainly controlled by the activity of NH3 over a pH range of 7.0–9.5 and temperatures lower than 40 °C. Other bases (e.g., hydroxide, carbonate) additionally contributed to the observed reduction of infective MS2. The loss in MS2 infectivity could be rationalized by a loss in genome integrity, which was attributed to genome cleavage via alkaline transesterification. The contribution of each base to genome transesterification, and hence inactivation, could be related to the base pKa by means of a Bronsted relationship. The Bronsted relationship in conjunction with the activity of bases in solution enabled an accurate prediction of MS2 inactivation rates.
Collapse
|
16
|
Fröschle B, Heiermann M, Lebuhn M, Messelhäusser U, Plöchl M. Hygiene and Sanitation in Biogas Plants. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2015; 151:63-99. [PMID: 26337844 DOI: 10.1007/978-3-319-21993-6_3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The increasing number of agricultural biogas plants and higher amounts of digestate spread on agricultural land arouse a considerable interest in the hygiene situation of digested products. This chapter reviews the current knowledge on sanitation during anaerobic digestion and the hygienic status of digestate concerning a multitude of pathogens potentially compromising the health of humans, animals and plants. Physical, chemical and biological parameters influencing the efficiency of sanitation in anaerobic digestion are considered. The degree of germ reduction depends particularly on the resistance of the pathogen of concern, the processing conditions, the feedstock composition and the diligence of the operation management. Most scientific studies facing sanitation in biogas plants have provided data ascertaining reduction of pathogens by the biogas process. Some pathogens, however, are able to persist virtually unaffected due to the ability to build resistant permanent forms. As compared to the feedstock, the sanitary status of the digestate is thus improved or in the worst case, the sanitary quality remains almost unchanged. According to this, the spreading of digestate on agricultural area in accordance to current rules and best practice recommendations is considered to impose no additional risk for the health of humans, animals and plants.
Collapse
Affiliation(s)
- Bianca Fröschle
- Department for Quality Assurance and Analytics, Bavarian State Research Center for Agriculture, Lange Point 6, 85354, Freising, Germany,
| | | | | | | | | |
Collapse
|
17
|
Gunnarsdóttir R, Heiske S, Jensen PE, Schmidt JE, Villumsen A, Jenssen PD. Effect of anaerobiosis on indigenous microorganisms in blackwater with fish offal as co-substrate. WATER RESEARCH 2014; 63:1-9. [PMID: 24971812 DOI: 10.1016/j.watres.2014.05.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 05/20/2014] [Accepted: 05/21/2014] [Indexed: 06/03/2023]
Abstract
The aim of this study was to compare the effect of mesophilic anaerobic digestion with aerobic storage on the survival of selected indigenous microorganisms and microbial groups in blackwater, including the effect of addition of Greenlandic Halibut and shrimp offal. The methane yield of the different substrate mixtures was determined in batch experiments to study possible correlation between methanogenic activity in the anaerobic digesters and reduction of indigenous microorganisms in the blackwater. By the end of the experiments a recovery study was conducted to determine possible injury of the microorganisms. In both anaerobic and aerobic samples, survival of Escherichia coli was better in the presence of Greenlandic Halibut offal when compared to samples containing blackwater only and blackwater and shrimp offal, possibly due to more available carbon in the samples containing Greenlandic Halibut offal. Reduction of faecal streptococci was large under both anaerobic and aerobic conditions, and the results indicated a complete removal of faecal streptococci in the anaerobic samples containing blackwater and a mixture of blackwater and shrimp offal after 17 and 31 days, respectively. Amoxicillin resistant bacteria were reduced in the anaerobic samples in the beginning of the study but increased towards the end of it. The opposite pattern was observed in the aerobic samples, with a growth in the beginning followed by a reduction. During the anaerobic digestion tetracycline resistant bacteria showed the least reduction in the mixture of blackwater and shrimp offal, which had the lowest methane yield while the highest reduction was observed in the mixture of blackwater and Greenlandic Halibut, where the highest methane yield was measured Reduction of coliphages was larger under anaerobic conditions. Addition of fish offal had no effect on survival of coliphages. The results of the recovery study indicated that a fraction of the E. coli in the aerobic blackwater sample and of the faecal streptococci in both the anaerobic and aerobic samples containing blackwater and Greenlandic Halibut were injured only, and thus able to resuscitate during recovery. The use of anaerobic digestion in the Arctic is limited to substrate types like those tested in this study because of absence of agriculture. The results indicate that anaerobic digestion of wastewater could benefit from the addition of fish offal, with respect to both microbial reduction and energy production.
Collapse
Affiliation(s)
| | - Stefan Heiske
- Department of Chemical and Biochemical Engineering, Center for BioProcess Engineering, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark.
| | | | - Jens Ejbye Schmidt
- iEnergy, Masdar Institute of Science and Technology, PO Box 54224, Abu Dhabi, United Arab Emirates.
| | - Arne Villumsen
- Arctic Technology Centre, Technical University of Denmark, Kgs.Lyngby DK-2800, Denmark.
| | - Petter Deinboll Jenssen
- Department of Plant and Environmental Sciences, Norwegian University of Life Sciences, Ås, N-1432, Norway.
| |
Collapse
|
18
|
Fabbri A, Serranti S, Bonifazi G. Biochemical methane potential (BMP) of artichoke waste: the inoculum effect. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2014; 32:207-214. [PMID: 24616343 DOI: 10.1177/0734242x14521680] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The aim of this work was to investigate anaerobic digestibility of artichoke waste resulting from industrial transformation. A series of batch anaerobic digestion tests was performed in order to evaluate the biochemical methane potential of the matrix in respect of the process. A comparison of the different performances of the laboratory-scale reactors operating in mesophilic conditions and utilizing three different values of the inoculum/substrate ratio was carried out. The best performance was achieved with an inoculum/substrate ratio of 2. Artichoke-processing byproducts showed a classical organic waste decomposition behaviour: a fast start-up phase, an acclimation stage, and a final stabilization phase. Following this approach, artichoke waste reached chemical oxygen demand removal of about 90% in 40 days. The high methane yield (average 408.62 mL CH4 gvs (-1) voltatile solids), makes artichoke waste a good product to be utilized in anaerobic digestion plants for biogas production.
Collapse
Affiliation(s)
- Andrea Fabbri
- Department of Chemical Engineering, Materials & Environment - Sapienza University of Rome, Roma, Italy
| | | | | |
Collapse
|
19
|
Elving J, Vinnerås B, Albihn A, Ottoson JR. Thermal treatment for pathogen inactivation as a risk mitigation strategy for safe recycling of organic waste in agriculture. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2014; 49:679-689. [PMID: 25035917 DOI: 10.1080/03601234.2014.922783] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Thermal treatment at temperatures between 46.0°C and 55.0°C was evaluated as a method for sanitization of organic waste, a temperature interval less commonly investigated but important in connection with biological treatment processes. Samples of dairy cow feces inoculated with Salmonella Senftenberg W775, Enterococcus faecalis, bacteriophage ϕX174, and porcine parvovirus (PPV) were thermally treated using block thermostats at set temperatures in order to determine time-temperature regimes to achieve sufficient bacterial and viral reduction, and to model the inactivation rate. Pasteurization at 70°C in saline solution was used as a comparison in terms of bacterial and viral reduction and was proven to be effective in rapidly reducing all organisms with the exception of PPV (decimal reduction time of 1.2 h). The results presented here can be used to construct time-temperature regimes in terms of bacterial inactivation, with D-values ranging from 0.37 h at 55°C to 22.5 h at 46.0°C and 0.45 h at 55.0°C to 14.5 h at 47.5°C for Salmonella Senftenberg W775 and Enterococcus faecalis, respectively and for relevant enteric viruses based on the ϕX174 phage with decimal reduction times ranging from 1.5 h at 55°C to 16.5 h at 46°C. Hence, the study implies that considerably lower treatment temperatures than 70°C can be used to reach a sufficient inactivation of bacterial pathogens and potential process indicator organisms such as the ϕX174 phage and raises the question whether PPV is a valuable process indicator organism considering its extreme thermotolerance.
Collapse
Affiliation(s)
- Josefine Elving
- a Department of Chemistry, Environment and Feed Hygiene, National Veterinary Institute (SVA) , Uppsala , Sweden
| | | | | | | |
Collapse
|
20
|
Bøtner A, Belsham GJ. Virus survival in slurry: Analysis of the stability of foot-and-mouth disease, classical swine fever, bovine viral diarrhoea and swine influenza viruses. Vet Microbiol 2012; 157:41-9. [DOI: 10.1016/j.vetmic.2011.12.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 11/25/2011] [Accepted: 12/08/2011] [Indexed: 10/14/2022]
|
21
|
Gao T, Bowlby E, Tong Y, Wu JTY, Wong L, Tower RJ, Pang X, Li X. Evaluation of the matrix effect of thermophilic anaerobic digestion on inactivation of infectious laryngotracheitis virus using real-time PCR and viral cell culture. BIORESOURCE TECHNOLOGY 2012; 110:692-696. [PMID: 22349192 DOI: 10.1016/j.biortech.2012.01.166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 01/04/2012] [Accepted: 01/07/2012] [Indexed: 05/31/2023]
Abstract
The matrix effect of the thermophilic anaerobic digestion (TAD) process on inactivation of infectious laryngotracheitis virus (ILTV) was evaluated. Viral cell culture and real-time PCR were used for assessing removal of the viral infectivity and degradation of viral DNA, respectively. Results showed that the TAD-derived matrix alone can inactivate the virus and destroy the nucleic acid helix core of ILTV in a time-and- dose-dependent manner. No cytopathogenic effect (CPE) was observed in the cells exposed to ILTV pre-treated with TAD matrix for 1.5h in experiment 1 and for 16h in experiment 2. There was a significant statistical difference between TAD matrix treated and non-treated cultures (p<0.001, Chi-test). Amplifiable ILT viral DNA was reduced 2.27 log by 1.5h-treatment and was not present by 16h-treatment with TAD matrix, indicating complete viral DNA fragmentation. The TAD process is an environmentally friendly way for disposing of poultry biowaste and carcasses.
Collapse
Affiliation(s)
- Tiejun Gao
- Highmark Renewables Research LP, AFDP Room-1-037, 6004-118 Street, Edmonton, Alberta, Canada T6G 2E1.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Ward AJ, Hobbs PJ, Holliman PJ, Jones DL. Optimisation of the anaerobic digestion of agricultural resources. BIORESOURCE TECHNOLOGY 2008; 99:7928-40. [PMID: 18406612 DOI: 10.1016/j.biortech.2008.02.044] [Citation(s) in RCA: 438] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Revised: 02/25/2008] [Accepted: 02/28/2008] [Indexed: 05/16/2023]
Abstract
It is in the interest of operators of anaerobic digestion plants to maximise methane production whilst concomitantly reducing the chemical oxygen demand of the digested material. Although the production of biogas through anaerobic digestion is not a new idea, commercial anaerobic digestion processes are often operated at well below their optimal performance due to a variety of factors. This paper reviews current optimisation techniques associated with anaerobic digestion and suggests possible areas where improvements could be made, including the basic design considerations of a single or multi-stage reactor configuration, the type, power and duration of the mixing regime and the retention of active microbial biomass within the reactor. Optimisation of environmental conditions within the digester such as temperature, pH, buffering capacity and fatty acid concentrations is also discussed. The methane-producing potential of various agriculturally sourced feedstocks has been examined, as has the advantages of co-digestion to improve carbon-to-nitrogen ratios and the use of pre-treatments and additives to improve hydrolysis rates or supplement essential nutrients which may be limiting. However, perhaps the greatest shortfall in biogas production is the lack of reliable sensory equipment to monitor key parameters and suitable, parallelised control systems to ensure that the process continually operates at optimal performance. Modern techniques such as software sensors and powerful, flexible controllers are capable of solving these problems. A direct comparison can be made here with, for instance, oil refineries where a more mature technology uses continuous in situ monitoring and associated feedback procedures to routinely deliver continuous, optimal performance.
Collapse
Affiliation(s)
- Alastair J Ward
- School of Chemistry, University of Wales - Bangor, Bangor, Gwynedd LL57 2UW, UK.
| | | | | | | |
Collapse
|
23
|
Sahlström L, Bagge E, Emmoth E, Holmqvist A, Danielsson-Tham ML, Albihn A. A laboratory study of survival of selected microorganisms after heat treatment of biowaste used in biogas plants. BIORESOURCE TECHNOLOGY 2008; 99:7859-7865. [PMID: 18513960 DOI: 10.1016/j.biortech.2007.09.071] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2006] [Revised: 06/27/2007] [Accepted: 09/26/2007] [Indexed: 05/26/2023]
Abstract
The aim of the study was to assess the effect of pasteurisation, as set by the European regulation EC 1774/2002, on selected pathogens and indicator organisms. Unpasteurised substrate (biowaste), including animal by-products from a full-scale biogas plant was heat treated under laboratory conditions at 70 degrees C and 55 degrees C for 30 min and 60 min. Heat treatment at 55 degrees C for 60 min was not sufficient to achieve a hygienically acceptable product. Heat treatment at 70 degrees C for 30 min and 60 min was effective in reducing pathogenic bacteria, Ascaris suum eggs, Swine vesicular disease virus and indicator organisms. However, this level of pasteurisation will still not reduce the quantity of Clostridia spores, or completely inactivate heat-resistant viruses such as Porcine parvovirus or Salmonella phage 28B. The results still give cause for some concern regarding the use of digested residue from biogasplants in agriculture.
Collapse
Affiliation(s)
- Leena Sahlström
- National Veterinary Institute (SVA), SE-751 89 Uppsala, Sweden.
| | | | | | | | | | | |
Collapse
|
24
|
Ottoson J, Schnürer A, Vinnerås B. In situ ammonia production as a sanitation agent during anaerobic digestion at mesophilic temperature. Lett Appl Microbiol 2008; 46:325-30. [DOI: 10.1111/j.1472-765x.2007.02317.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Jong BC, Kim BH, Chang IS, Liew PWY, Choo YF, Kang GS. Enrichment, performance, and microbial diversity of a thermophilic mediatorless microbial fuel cell. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2006; 40:6449-54. [PMID: 17120579 DOI: 10.1021/es0613512] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
A thermophilic mediatorless microbial fuel cell (ML-MFC) was developed for continuous electricity production while treating artificial wastewater concurrently. A maximum power density of 1030 +/- 340 mW/m2 was generated continuously at 55 degrees C with an anode retention time of 27 min (11 mL h(-1)) and continuous pumping of air-saturated phosphate buffer into the cathode compartment at the retention time of 0.7 min (450 mL h(-1)). Meanwhile, about 80% of the electrons available from acetate oxidation were recovered as current. Denaturing gradient gel electrophoresis (DGGE) and direct 16S-rRNA gene analysis revealed that the bacterial diversity in this ML-MFC system was lower than the inoculum. Direct 16S rDNA analysis showed that the dominant bacteria representing 57.8% of total population in anode compartment was phylogenetically very closely related to an uncultured clone, clone E4. Two sheets of graphite used as the anode showed different dominant bacterial population. For the first time, it is shown that thermophilic electrochemically active bacteria can be enriched to concurrently generate electricity and treat artificial wastewater in a thermophilic ML-MFC.
Collapse
Affiliation(s)
- Bor Chyan Jong
- Bioelectrochemistry Laboratory, Water Environment & Remediation Research Center, Korea Institute of Science and Technology, Seoul 136-791, Korea
| | | | | | | | | | | |
Collapse
|
26
|
Iranpour R, Cox HHJ, Oh S, Fan S, Kearney RJ, Abkian V, Haug RT. Thermophilic-anaerobic digestion to produce class A biosolids: initial full-scale studies at Hyperion Treatment Plant. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2006; 78:170-80. [PMID: 16566524 DOI: 10.2175/106143005x89625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The highest quality of biosolids is called exceptional quality. To qualify for this classification, biosolids must comply with three criteria: (1) metal concentrations, (2) vector-attraction reduction, and (3) the Class A pathogen-density requirements. The City of Los Angeles Bureau of Sanitation Hyperion Treatment Plant (HTP) (Playa del Rey, California) meets the first two requirements. Thus, the objective of this study was to ensure that HTP's biosolids production would meet the Class A pathogen-reduction requirements following the time-temperature regimen for batch processing (U.S. EPA, 1993; Subsection 32, Alternative 1). Because regulations require the pathogen limits to be met at the last point of plant control, biosolids sampling was not limited to immediately after the digesters, i.e., the digester outflows. The sampling extended to several locations in HTP's postdigestion train, in particular, the last points of plant control, i.e., the truck loading facility and the farm for land application. A two-stage, thermophilic-continuous-batch process, consisting of a battery of six egg-shaped digesters, was established in late 2001 for phase I of this study and modified in early 2002 for phase II. As the biosolids were discharged from the second-stage digesters, the Salmonella sp. (pathogen) and fecal-coliform (indicator) densities were well below the limits for Class A biosolids, even though the second-stage-digester temperatures were a few degrees below the temperature required by Alternative 1. Salmonella sp. densities remained below the Class A limit at all postdigestion sampling locations. Fecal-coliform densities were also below the Class A limit at postdigestion-sampling locations, except the truck-loading facility (phases I and II) and the farm for final use of the biosolids (phase II). Although federal regulations require one of the limits for either fecal coliforms or Salmonella sp. to be met, local regulations in Kern County, California, where the biosolids are land-applied, require compliance with both bacterial limits. Additional work identified dewatering, cooling of biosolids after the dewatering centrifuges, and contamination as possible factors in the rise in density of fecal coliforms. These results provided the basis for the full conversion of HTP to the Los Angeles continuous-batch, thermophilic-anaerobic-digestion process. During later phases of testing, this process was demonstrated to produce fully disinfected biosolids at the farm for land application.
Collapse
Affiliation(s)
- R Iranpour
- City of Los Angeles Bureau of Sanitation, CA, USA.
| | | | | | | | | | | | | |
Collapse
|
27
|
Schnürer A, Schnürer J. Fungal survival during anaerobic digestion of organic household waste. WASTE MANAGEMENT (NEW YORK, N.Y.) 2006; 26:1205-11. [PMID: 16293407 DOI: 10.1016/j.wasman.2005.09.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2004] [Revised: 06/30/2005] [Accepted: 09/15/2005] [Indexed: 05/05/2023]
Abstract
Anaerobic digestion of organic waste yields energy rich biogas and retains nutrients (N, P, K, S, etc.) in a stabilised residue. For the residue to be used as a soil fertiliser, it must be free from pollutants and harmful microorganisms. Fungal survival during sanitation and anaerobic treatment of source-separated organic household waste and during aerobic storage of the residue obtained was investigated. Decimal reduction times were determined for inoculated fungi (Aspergillus flavus and Aspergillus fumigatus, Penicillium roqueforti, Rhizomucor pusillus, Thermoascus crustaceus and Thermomyces lanuginosus). Several different fungal species were found after waste sanitation treatment (70 degrees C, 1 h), with Aspergillus species dominating in non-inoculated waste. Anaerobic waste degradation decreased the diversity of fungal species for processes run at both 37 and 55 degrees C, but not total fungal colony forming units. Fungi surviving the mesophilic anaerobic digestion were mainly thermotolerant Talaromyces and Paecilomyces species. T. crustaceus and T. lanuginosus were the only inoculated fungi to survive the thermophilic anaerobic degradation process. Aerobic storage of both types of anaerobic residues for one month significantly decreased fungal counts.
Collapse
Affiliation(s)
- Anna Schnürer
- Department of Microbiology, Swedish University of Agricultural Sciences, Box 7025, SE-750 07 Uppsala, Sweden.
| | | |
Collapse
|
28
|
Aitken MD, Sobsey MD, Shehee M, Blauth KE, Hill VR, Farrell JB, Nappier SP, Walters GW, Crunk PL, Van Abel N. Laboratory evaluation of thermophilic-anaerobic digestion to produce Class A biosolids. 2. Inactivation of pathogens and indicator organisms in a continuous-flow reactor followed by batch treatment. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2005; 77:3028-36. [PMID: 16381150 DOI: 10.2175/106143005x73910] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Thermophilic-anaerobic digestion in a single-stage, mixed, continuous-flow reactor is not approved in the United States as a process capable of producing Class A biosolids for land application. This study was designed to evaluate the inactivation of pathogens and indicator organisms in such a reactor followed by batch treatment in a smaller reactor. The combined process was evaluated at 53 degrees C with sludges from three different sources and at 51 and 55 degrees C with sludge from one of the sources. Feed sludge to the continuous-flow reactor was spiked with the pathogen surrogates Ascaris suum and vaccine-strain poliovirus. Feed and effluent were analyzed for these organisms and for indigenous Salmonella spp., fecal coliforms, Clostridium perfringens spores, and somatic and male-specific coliphages. No viable Ascaris eggs were observed in the effluent from the continuous reactor at 53 or 55 degrees C, with greater than 2-log removals across the digester in all cases. Approximately 2-log removal was observed at 51 degrees C, but all samples of effluent biosolids contained at least one viable Ascaris egg at 51 degrees C. No viable poliovirus was found in the digester effluent at any of the operating conditions, and viable Salmonella spp. were measured in the digester effluent in only one sample throughout the study. The ability of the continuous reactor to remove fecal coliforms to below the Class A monitoring limit depended on the concentration in the feed sludge. There was no significant removal of Clostridium perfringens across the continuous reactor under any condition, and there also was limited removal of somatic coliphages. The removal of male-specific coliphages across the continuous reactor appeared to be related to temperature. Overall, at least one of the Class A pathogen criteria or the fecal coliform limit was exceeded in at least one sample in the continuous-reactor effluent at each temperature. Over the range of temperatures evaluated, the maximum time required to meet the Class A criteria by batch treatment of the continuous-reactor effluent was 1 hour for Ascaris suum and Salmonella spp. and 2 hours for fecal coliforms.
Collapse
Affiliation(s)
- Michael D Aitken
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill 27599-7431, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Opinion of the Scientific Panel on biological hazards (BIOHAZ) on the biological safety of heat treatment of manure. EFSA J 2005. [DOI: 10.2903/j.efsa.2005.265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
30
|
Aitken MD, Sobsey MD, Blauth KE, Shehee M, Crunk PL, Walters GW. Inactivation of Ascaris suum and poliovirus in biosolids under thermophilic anaerobic digestion conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2005; 39:5804-9. [PMID: 16124318 DOI: 10.1021/es048004h] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
There is considerable interest in the United States in production of Class A (low pathogen content) biosolids from the treatment of municipal wastewater sludge. Current requirements imposed by the U.S. Environmental Protection Agency make it difficult for thermophilic anaerobic digestion, in its simplest process configurations, to achieve Class A status. In particular, the time-temperature requirements necessitate long batch treatment times at temperatures associated with thermophilic anaerobic digestion. The time-temperature requirements are meant to ensure extensive inactivation of helminth eggs and enteric viruses, considered to be the most heat-resistant of the relevant pathogen classes. However, data on inactivation kinetics of these pathogens at precisely controlled and well-characterized temperatures are scarce. We measured inactivation of vaccine-strain poliovirus and eggs from the helminth Ascaris suum at temperatures from 49 to 55 degrees C in a lab-scale batch reactor containing biosolids from a continuous-flow thermophilic anaerobic digester. Both microbes were inactivated rapidly, with Ascaris more resistant to inactivation than poliovirus, and the relationships between inactivation rate and temperature were steep. The Arrhenius correlation between inactivation rate and temperature over the range 49-53 degrees C is consistent with protein denaturation as the inactivation mechanism for both microbes. The least stringent of the EPA time-temperature equations for thermal processes requires batch treatment times more than 2 orders of magnitude greater than would be required for three-log reduction of Ascaris at the rates we measured, suggesting an overly conservative regulatory approach. Such a grossly conservative approach can hinder full-scale implementation of thermophilic anaerobic digestion.
Collapse
Affiliation(s)
- Michael D Aitken
- Department of Environmental Sciences and Engineering, School of Public Health, University of North Carolina, Chapel Hill, North Carolina 27599-7431, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Goens SD, Botero S, Zemla A, Zhou CE, Perdue ML. Bovine enterovirus 2: complete genomic sequence and molecular modelling of a reference strain and a wild-type isolate from endemically infected US cattle. J Gen Virol 2004; 85:3195-3203. [PMID: 15483232 DOI: 10.1099/vir.0.80159-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Bovine enteroviruses are members of the family Picornaviridae, genus Enterovirus. Whilst little is known about their pathogenic potential, they are apparently endemic in some cattle and cattle environments. Only one of the two current serotypes has been sequenced completely. In this report, the entire genome sequences of bovine enterovirus 2 (BEV-2) strain PS87 and a recent isolate from an endemically infected herd in Maryland, USA (Wye3A) are presented. The recent isolate clearly segregated phylogenetically with sequences representing the BEV-2 serotype, as did other isolates from the endemic herd. The Wye3A isolate shared 82 % nucleotide sequence identity with the PS87 strain and 68 % identity with a BEV-1 strain (VG5-27). Comparison of BEV-2 and BEV-1 deduced protein sequences revealed 72-73 % identity and showed that most differences were single amino acid changes or single deletions, with the exception of the VP1 protein, where both BEV-2 sequences were 7 aa shorter than that of BEV-1. Homology modelling of the capsid proteins of BEV-2 against protein database entries for picornaviruses indicated six significant differences among bovine enteroviruses and other members of the family Picornaviridae. Five of these were on the 'rim' of the proposed enterovirus receptor-binding site or 'canyon' (VP1) and one was near the base of the canyon (VP3). Two of these regions varied enough to distinguish BEV-2 from BEV-1 strains. This is the first report and analysis of full-length sequences for BEV-2. Continued analysis of these wild-type strains should yield useful information for genotyping enteroviruses and modelling enterovirus capsid structure.
Collapse
Affiliation(s)
- S D Goens
- Environmental Microbial Safety Laboratory, Animal and Natural Resources Institute, Beltsville Agriculture Research Center, Agricultural Research Service, United States Department of Agriculture, 10300 Baltimore Avenue, Building 173, BARC-East, Beltsville, MD 20705, USA
| | - S Botero
- Environmental Microbial Safety Laboratory, Animal and Natural Resources Institute, Beltsville Agriculture Research Center, Agricultural Research Service, United States Department of Agriculture, 10300 Baltimore Avenue, Building 173, BARC-East, Beltsville, MD 20705, USA
| | - A Zemla
- Bioinformatics, Chemical and Biological National Security Program, Computing Applications and Research Department, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550, USA
| | - C Ecale Zhou
- Bioinformatics, Chemical and Biological National Security Program, Computing Applications and Research Department, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550, USA
| | - M L Perdue
- Environmental Microbial Safety Laboratory, Animal and Natural Resources Institute, Beltsville Agriculture Research Center, Agricultural Research Service, United States Department of Agriculture, 10300 Baltimore Avenue, Building 173, BARC-East, Beltsville, MD 20705, USA
| |
Collapse
|
32
|
Ahring BK. Perspectives for anaerobic digestion. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2003; 81:1-30. [PMID: 12747559 DOI: 10.1007/3-540-45839-5_1] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The modern society generates large amounts of waste that represent a tremendous threat to the environment and human and animal health. To prevent and control this, a range of different waste treatment and disposal methods are used. The choice of method must always be based on maximum safety, minimum environmental impact and, as far as possible, on valorization of the waste and final recycling of the end products. One of the main trends of today's waste management policies is to reduce the stream of waste going to landfills and to recycle the organic material and the plant nutrients back to the soil. Anaerobic digestion (AD) is one way of achieving this goal and it will furthermore, reduce energy consumption or may even be net energy producing. This chapter aims at provide a basic understanding of the world in which anaerobic digestion is operating today. The newest process developments as well as future perspectives will be discussed.
Collapse
Affiliation(s)
- Birgitte K Ahring
- University of California, Los Angeles, School of Engineering and Applied Science, Civil and Environmental Engineering Dept., 5732 Boelter Hall, Box 951593, Los Angeles, California 90095-1593, USA.
| |
Collapse
|