1
|
Liu S, Yu JM, Gan YC, Qiu XZ, Gao ZC, Wang H, Chen SX, Xiong Y, Liu GH, Lin SE, McCarthy A, John JV, Wei DX, Hou HH. Biomimetic natural biomaterials for tissue engineering and regenerative medicine: new biosynthesis methods, recent advances, and emerging applications. Mil Med Res 2023; 10:16. [PMID: 36978167 PMCID: PMC10047482 DOI: 10.1186/s40779-023-00448-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 02/23/2023] [Indexed: 03/30/2023] Open
Abstract
Biomimetic materials have emerged as attractive and competitive alternatives for tissue engineering (TE) and regenerative medicine. In contrast to conventional biomaterials or synthetic materials, biomimetic scaffolds based on natural biomaterial can offer cells a broad spectrum of biochemical and biophysical cues that mimic the in vivo extracellular matrix (ECM). Additionally, such materials have mechanical adaptability, microstructure interconnectivity, and inherent bioactivity, making them ideal for the design of living implants for specific applications in TE and regenerative medicine. This paper provides an overview for recent progress of biomimetic natural biomaterials (BNBMs), including advances in their preparation, functionality, potential applications and future challenges. We highlight recent advances in the fabrication of BNBMs and outline general strategies for functionalizing and tailoring the BNBMs with various biological and physicochemical characteristics of native ECM. Moreover, we offer an overview of recent key advances in the functionalization and applications of versatile BNBMs for TE applications. Finally, we conclude by offering our perspective on open challenges and future developments in this rapidly-evolving field.
Collapse
Affiliation(s)
- Shuai Liu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, The Fifth Affiliated Hospital, School of Basic Medical Science, Southern Medical University, Guangzhou, 510900, China
| | - Jiang-Ming Yu
- Department of Orthopedics, Tongren Hospital, Shanghai Jiao Tong University, Shanghai, 200336, China
| | - Yan-Chang Gan
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, The Fifth Affiliated Hospital, School of Basic Medical Science, Southern Medical University, Guangzhou, 510900, China
| | - Xiao-Zhong Qiu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, The Fifth Affiliated Hospital, School of Basic Medical Science, Southern Medical University, Guangzhou, 510900, China
| | - Zhe-Chen Gao
- Department of Orthopedics, Tongren Hospital, Shanghai Jiao Tong University, Shanghai, 200336, China
| | - Huan Wang
- The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033, Guangdong, China.
| | - Shi-Xuan Chen
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325011, Zhejiang, China.
| | - Yuan Xiong
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Guo-Hui Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Si-En Lin
- Department of Orthopaedics and Traumatology, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong SAR, 999077, China
| | - Alec McCarthy
- Department of Functional Materials, Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Johnson V John
- Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68130, USA
| | - Dai-Xu Wei
- Department of Orthopedics, Tongren Hospital, Shanghai Jiao Tong University, Shanghai, 200336, China.
- Zigong Affiliated Hospital of Southwest Medical University, Zigong Psychiatric Research Center, Zigong Institute of Brain Science, Zigong, 643002, Sichuan, China.
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710127, China.
| | - Hong-Hao Hou
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, The Fifth Affiliated Hospital, School of Basic Medical Science, Southern Medical University, Guangzhou, 510900, China.
| |
Collapse
|
2
|
Iyer J, Barbosa M, Saraf I, Pinto JF, Paudel A. Mechanoactivation as a Tool to Assess the Autoxidation Propensity of Amorphous Drugs. Mol Pharm 2023; 20:1112-1128. [PMID: 36651656 DOI: 10.1021/acs.molpharmaceut.2c00841] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Mechanoactivation has attracted considerable attention in the pharmaceutical sciences due to its ability to generate amorphous materials and solid-state synthetic products without the use of solvent. Although some studies have reported drug degradation during milling, no studies have systematically investigated the use of mechanoactivation in predicting drug degradation in the solid state. Thus, this work explores the autoxidation of drugs in the solid state by comilling amorphous mifepristone (MFP):polyvinylpyrrolidone vinyl acetate (PVPVA) and amorphous olanzapine (OLA):PVPVA. MFP was amorphized by ball milling and OLA by quench cooling techniques. Subsequently, comilling the amorphous drugs in the presence of a 10-fold weight ratio of PVPVA (the excipient containing reactive free radicals) was performed at several milling frequencies to identify the kinetics of mechano-autoxidation over milling durations. Overall, milling led to the degradation of up to 5% drug in the solid state. The autoxidation mechanism was confirmed by performing a stress study in the solution at 50 °C for 5 h, by using a 10 mM azo-bis(isobutyronitrile) (AIBN) as a stressing agent. By deconvoluting the effect of milling frequency and the energy on the extent and kinetics of milling-induced autoxidation of amorphous drugs, it was possible to fit an extended Arrhenius model that allowed extrapolation of mechanoactivated degradation rates (Km) to zero milling frequencies. Further, the autoxidation rates of drugs stored at high temperatures were observed to follow an Arrhenius behavior. A good degree of agreement was observed between the model predictions obtained by mechanoactivation (Km) to the reaction rates observed under accelerated temperatures. Additionally, the impact of adding an antioxidant (e.g., butylated hydroxytoluene) to the mixture during comilling was also examined. This study can be helpful in evaluating the stability of amorphous solids stored in accelerated (non-hermetic) conditions, in screening solid-state autoxidation propensity of drugs, and for the rational selection of antioxidants.
Collapse
Affiliation(s)
- Jayant Iyer
- Research Center Pharmaceutical Engineering GmbH (RCPE), Graz 8010, Austria
| | - Matilde Barbosa
- iMed.ULisboa, Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisboa P-1649-003, Portugal
| | - Isha Saraf
- Research Center Pharmaceutical Engineering GmbH (RCPE), Graz 8010, Austria
| | - João F Pinto
- iMed.ULisboa, Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisboa P-1649-003, Portugal
| | - Amrit Paudel
- Research Center Pharmaceutical Engineering GmbH (RCPE), Graz 8010, Austria.,Graz University of Technology, Institute of Process and Particle Engineering, Graz 8010, Austria
| |
Collapse
|
3
|
Ekim S, Kaya GE, Daştemir M, Yildirim E, Baytekin HT, Baytekin B. Organic Charge Transfer Cocrystals as Additives for Dissipation of Contact Charges on Polymers. ACS APPLIED MATERIALS & INTERFACES 2022; 14:56018-56026. [PMID: 36472348 PMCID: PMC9782351 DOI: 10.1021/acsami.2c13643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/13/2022] [Indexed: 06/17/2023]
Abstract
Common polymers can accumulate surface charges through contact, a phenomenon known since ancient times. This charge accumulation can have detrimental consequences in industry. It causes accidents and yields enormous economic losses. Many empirical methods have been developed to prevent the problems caused by charge accumulation. However, a general chemical approach is still missing in the literature since the charge accumulation and discharging mechanisms have not been completely clarified. The current practice to achieve charge mitigation is to increase materials conductivity by high doping of conductive additives. A recent study showed that using photoexcitation of some organic dyes, charge decay can be started remotely, and the minute amount of additive does not change the material's conductivity. Here, we show the contact charging and charge decay behavior of polydimethylsiloxane doped with a series of organic charge transfer cocrystals (CTC) of TCNQ acceptor and substituted pyrene donors (CTC-PDMS). The results show that the CTC-PDMS are antistatic, and the discharging propensity of the composites follows the calculated charge transfer degree of the complexes. On the other hand, the CTC-PDMS are still insulators, as shown by their high surface resistivities. Kelvin probe force microscopy images of the contact-charged and discharged samples show a quick potential decay in CTC domains upon illumination. Combined with the fast overall decay observed, the antistatic behavior in these insulators can be attributed to an electron transfer between the mechanoions in the polymer and the CTC frontier orbitals. We believe our results will help with the general understanding of the molecular mechanism of contact charging and discharging and help develop insulator antistatics.
Collapse
Affiliation(s)
- Sunay
Dilara Ekim
- UNAM
National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
| | - Görkem Eylül Kaya
- UNAM
National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
| | - Murat Daştemir
- Department
of Chemistry, Middle East Technical University, Ankara 06800, Turkey
| | - Erol Yildirim
- Department
of Chemistry, Middle East Technical University, Ankara 06800, Turkey
- Polymer
Science and Technology Program, Middle East
Technical University, Ankara 06800, Turkey
| | - H. Tarik Baytekin
- Department
of Chemistry, Middle East Technical University, Ankara 06800, Turkey
- Polymer
Science and Technology Program, Middle East
Technical University, Ankara 06800, Turkey
| | - Bilge Baytekin
- UNAM
National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
- Department
of Chemistry, Bilkent University, Ankara 06800, Turkey
| |
Collapse
|
4
|
Slabov V, Kopyl S, Soares Dos Santos MP, Kholkin AL. Natural and Eco-Friendly Materials for Triboelectric Energy Harvesting. NANO-MICRO LETTERS 2020; 12:42. [PMID: 34138259 PMCID: PMC7770886 DOI: 10.1007/s40820-020-0373-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 12/25/2019] [Indexed: 05/20/2023]
Abstract
Triboelectric nanogenerators (TENGs) are promising electric energy harvesting devices as they can produce renewable clean energy using mechanical excitations from the environment. Several designs of triboelectric energy harvesters relying on biocompatible and eco-friendly natural materials have been introduced in recent years. Their ability to provide customizable self-powering for a wide range of applications, including biomedical devices, pressure and chemical sensors, and battery charging appliances, has been demonstrated. This review summarizes major advances already achieved in the field of triboelectric energy harvesting using biocompatible and eco-friendly natural materials. A rigorous, comparative, and critical analysis of preparation and testing methods is also presented. Electric power up to 14 mW was already achieved for the dry leaf/polyvinylidene fluoride-based TENG devices. These findings highlight the potential of eco-friendly self-powering systems and demonstrate the unique properties of the plants to generate electric energy for multiple applications.
Collapse
Affiliation(s)
- Vladislav Slabov
- Department of Physics and CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal
- Centre for Mechanical Technology and Automation (TEMA), University of Aveiro, 3810-193, Aveiro, Portugal
| | - Svitlana Kopyl
- Department of Physics and CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Marco P Soares Dos Santos
- Centre for Mechanical Technology and Automation (TEMA), University of Aveiro, 3810-193, Aveiro, Portugal
- Department of Mechanical Engineering, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Andrei L Kholkin
- Department of Physics and CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal.
- School of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg, Russia, 620000.
- Laboratory of Functional Low-Dimensional Structures, National University of Science and Technology MISiS, Moscow, Russia, 119049.
| |
Collapse
|
5
|
Sakaguchi M, Makino M, Ohura T, Iwata T. The correlation between the ionic degree of covalent bond comprising polymer main chain and the ionic yield due to mechanical fracture. POLYMER 2014. [DOI: 10.1016/j.polymer.2014.02.056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
6
|
Prakash S, Pinti M, Bhushan B. Theory, fabrication and applications of microfluidic and nanofluidic biosensors. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2012; 370:2269-2303. [PMID: 22509059 DOI: 10.1098/rsta.2011.0498] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Biosensors are a broad array of devices that detect the type and amount of a biological species or biomolecule. Several different types of biosensors have been developed that rely on changes to mechanical, chemical or electrical properties of the transduction or sensing element to induce a measurable signal. Often, a biosensor will integrate several functions or unit operations such as sample extraction, manipulation and detection on a single platform. This review begins with an overview of the current state-of-the-art biosensor field. Next, the review delves into a special class of biosensors that rely on microfluidics and nanofluidics by presenting the underlying theory, fabrication and several examples and applications of microfluidic and nanofluidic sensors.
Collapse
Affiliation(s)
- Shaurya Prakash
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, 43210, USA.
| | | | | |
Collapse
|
7
|
Kondo SI, Sasai Y, Hosaka S, Ishikawa T, Kuzuya M. Kinetic analysis of the mechanolysis of polymethylmethacrylate in the course of vibratory ball milling at various mechanical energy. ACTA ACUST UNITED AC 2004. [DOI: 10.1002/pola.20245] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|