Dynarowicz-Latka P, Wnętrzak A, Chachaj-Brekiesz A. Advantages of the classical thermodynamic analysis of single-and multi-component Langmuir monolayers from molecules of biomedical importance-theory and applications.
J R Soc Interface 2024;
21:20230559. [PMID:
38196377 PMCID:
PMC10777166 DOI:
10.1098/rsif.2023.0559]
[Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 12/08/2023] [Indexed: 01/11/2024] Open
Abstract
The Langmuir monolayer technique has been successfully used for decades to model biological membranes and processes occurring at their interfaces. Classically, this method involves surface pressure measurements to study interactions within membrane components as well as between external bioactive molecules (e.g. drugs) and the membrane. In recent years, surface-sensitive techniques were developed to investigate monolayers in situ; however, the obtained results are in many cases insufficient for a full characterization of biomolecule-membrane interactions. As result, description of systems using parameters such as mixing or excess thermodynamic functions is still relevant, valuable and irreplaceable in biophysical research. This review article summarizes the theory of thermodynamics of single- and multi-component Langmuir monolayers. In addition, recent applications of this approach to characterize surface behaviour and interactions (e.g. orientation of bipolar molecules, drug-membrane affinity, lateral membrane heterogeneity) are presented.
Collapse