1
|
Panday A, Inda ME, Bagam P, Sahoo MK, Osorio D, Batra S. Transcription Factor NF-κB: An Update on Intervention Strategies. Arch Immunol Ther Exp (Warsz) 2016; 64:463-483. [PMID: 27236331 DOI: 10.1007/s00005-016-0405-y] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 04/14/2016] [Indexed: 12/25/2022]
Abstract
The nuclear factor (NF)-κB family of transcription factors are ubiquitous and pleiotropic molecules that regulate the expression of more than 150 genes involved in a broad range of processes including inflammation, immunity, cell proliferation, differentiation, and survival. The chronic activation or dysregulation of NF-κB signaling is the central cause of pathogenesis in many disease conditions and, therefore, NF-κB is a major focus of therapeutic intervention. Because of this, understanding the relationship between NF-κB and the induction of various downstream signaling molecules is imperative. In this review, we provide an updated synopsis of the role of NF-κB in DNA repair and in various ailments including cardiovascular diseases, HIV infection, asthma, herpes simplex virus infection, chronic obstructive pulmonary disease, and cancer. Furthermore, we also discuss the specific targets for selective inhibitors and future therapeutic strategies.
Collapse
Affiliation(s)
- Arvind Panday
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA.,Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Maria Eugenia Inda
- Departamento de Microbiología, CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional Rosario, Suipacha 531, Santa Fe, Argentina
| | - Prathyusha Bagam
- Laboratory of Pulmonary Immunotoxicology, Environmental Toxicology PhD Program, 207 Health Research Center, Southern University and A&M College, Baton Rouge, LA, 70813, USA
| | - Malaya K Sahoo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94304, USA
| | - Diana Osorio
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Sanjay Batra
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA. .,Laboratory of Pulmonary Immunotoxicology, Environmental Toxicology PhD Program, 207 Health Research Center, Southern University and A&M College, Baton Rouge, LA, 70813, USA.
| |
Collapse
|
2
|
Jackson SS, Miyamoto S. Dissecting NF-κB signaling induced by genotoxic agents via genetic complementation of NEMO-deficient 1.3E2 cells. Methods Mol Biol 2015; 1280:197-215. [PMID: 25736750 DOI: 10.1007/978-1-4939-2422-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
The transcription factor NF-κB regulates expression of a diverse set of genes to modulate multiple biological and pathological processes. Among these, NF-κB activation in response to genotoxic agents has received considerable attention due to its role in regulating cancer cell resistance to chemo- and radiation therapy. Furthermore, induction of this pathway by endogenous damage is further implicated in normal developmental processes, such as B cell development, and premature aging, among others. This pathway also serves as a signaling model in which nuclear initiated signals (DNA damage) are communicated to a cytoplasmic target (IκB kinase and NF-κB). Several of the critical molecular events of this nuclear to cytoplasmic NF-κB signaling cascade were discovered, in part, by genetic complementation analyses of the NEMO-deficient 1.3E2 mouse pre-B cell line. This chapter describes methods used to generate and analyze such reconstitution cell systems and certain caveats that are critical for proper interpretation of NEMO mutant defects.
Collapse
Affiliation(s)
- Shawn S Jackson
- Medical Scientist Training Program, Cellular and Molecular Biology Program, McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, 53705, USA
| | | |
Collapse
|
3
|
McCool KW, Miyamoto S. DNA damage-dependent NF-κB activation: NEMO turns nuclear signaling inside out. Immunol Rev 2012; 246:311-26. [PMID: 22435563 DOI: 10.1111/j.1600-065x.2012.01101.x] [Citation(s) in RCA: 182] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The dimeric transcription factor nuclear factor κB (NF-κB) functions broadly in coordinating cellular responses during inflammation and immune reactions, and its importance in the pathogenesis of cancer is increasingly recognized. Many of the signal transduction pathways that trigger activation of cytoplasmic NF-κB in response to a broad array of immune and inflammatory stimuli have been elaborated in great detail. NF-κB can also be activated by DNA damage, though relatively less is known about the signal transduction mechanisms that link DNA damage in the nucleus with activation of NF-κB in the cytoplasm. Here, we focus on the conserved signaling pathway that has emerged that promotes NF-κB activation following DNA damage. Post-translational modification of NF-κB essential modulator (NEMO) plays a central role in linking the cellular DNA damage response to NF-κB via the ataxia telangiectasia mutated (ATM) kinase. Accumulating evidence suggests that DNA damage-dependent NF-κB activation may play significant biological roles, particularly during lymphocyte differentiation and progression of human malignancies.
Collapse
Affiliation(s)
- Kevin W McCool
- Medical Scientist Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | | |
Collapse
|
4
|
Krappmann D, Patke A, Heissmeyer V, Scheidereit C. B-cell receptor- and phorbol ester-induced NF-kappaB and c-Jun N-terminal kinase activation in B cells requires novel protein kinase C's. Mol Cell Biol 2001; 21:6640-50. [PMID: 11533251 PMCID: PMC99809 DOI: 10.1128/mcb.21.19.6640-6650.2001] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antigen receptor signaling is known to activate NF-kappaB in lymphocytes. While T-cell-receptor-induced NF-kappaB activation critically depends on novel protein kinase C theta (PKCtheta), the role of novel PKCs in B-cell stimulation has not been elucidated. In primary murine splenic B cells, we found high expression of the novel PKCs delta and epsilon but only weak expression of the theta isoform. Rottlerin blocks phorbol ester (phorbol myristate acetate [PMA])- or B-cell receptor (BCR)-mediated NF-kappaB and c-Jun N-terminal kinase (JNK) activation in primary B and T cells to a similar extent, suggesting that novel PKCs are positive regulators of signaling in hematopoietic cells. Mouse 70Z/3 pre-B cells have been widely used as a model for NF-kappaB activation in B cells. Similar to the situation in splenic B cells, rottlerin inhibits BCR and PMA stimulation of NF-kappaB in 70Z/3 cells. A derivative of 70Z/3 cells, 1.3E2 cells, are defective in NF-kappaB activation due to the lack of the IkappaB kinase (IKKgamma) protein. Ectopic expression of IKKgamma can rescue NF-kappaB activation in response to lipopolysaccharides (LPS) and interleukin-1beta (IL-1beta), but not to PMA. In addition, PMA-induced activation of the mitogen-activated protein kinase JNK is blocked in 1.3E2 cells, suggesting that an upstream component common to both pathways is either missing or mutated. Analysis of various PKC isoforms revealed that exclusively PKCtheta was absent in 1.3E2 cells while it was expressed in 70Z/3 cells. Stable expression of either novel PKCtheta or -delta but not classical PKCbetaII in 1.3E2 IKKgamma-expressing cells rescues PMA activation of NF-kappaB and JNK signaling, demonstrating a critical role of novel PKCs for B-cell activation.
Collapse
Affiliation(s)
- D Krappmann
- Max-Delbrück-Centrum for Molecular Medicine, 13125 Berlin, Germany.
| | | | | | | |
Collapse
|
5
|
Heissmeyer V, Krappmann D, Hatada EN, Scheidereit C. Shared pathways of IkappaB kinase-induced SCF(betaTrCP)-mediated ubiquitination and degradation for the NF-kappaB precursor p105 and IkappaBalpha. Mol Cell Biol 2001; 21:1024-35. [PMID: 11158290 PMCID: PMC99557 DOI: 10.1128/mcb.21.4.1024-1035.2001] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
p105 (NFKB1) acts in a dual way as a cytoplasmic IkappaB molecule and as the source of the NF-kappaB p50 subunit upon processing. p105 can form various heterodimers with other NF-kappaB subunits, including its own processing product, p50, and these complexes are signal responsive. Signaling through the IkappaB kinase (IKK) complex invokes p105 degradation and p50 homodimer formation, involving p105 phosphorylation at a C-terminal destruction box. We show here that IKKbeta phosphorylation of p105 is direct and does not require kinases downstream of IKK. p105 contains an IKK docking site located in a death domain, which is separate from the substrate site. The substrate residues were identified as serines 923 and 927, the latter of which was previously assumed to be a threonine. S927 is part of a conserved DSGPsi motif and is functionally most critical. The region containing both serines is homologous to the N-terminal destruction box of IkappaBalpha, -beta, and -epsilon. Upon phosphorylation by IKK, p105 attracts the SCF E3 ubiquitin ligase substrate recognition molecules betaTrCP1 and betaTrCP2, resulting in polyubiquitination and complete degradation by the proteasome. However, processing of p105 is independent of IKK signaling. In line with this and as a physiologically relevant model, lipopolysaccharide (LPS) induced degradation of endogenous p105 and p50 homodimer formation, but not processing in pre-B cells. In mutant pre-B cells lacking IKKgamma, processing was unaffected, but LPS-induced p105 degradation was abolished. Thus, a functional endogenous IKK complex is required for signal-induced p105 degradation but not for processing.
Collapse
Affiliation(s)
- V Heissmeyer
- Max-Delbrück-Center for Molecular Medicine, 13122 Berlin, Germany
| | | | | | | |
Collapse
|
6
|
Krappmann D, Hatada EN, Tegethoff S, Li J, Klippel A, Giese K, Baeuerle PA, Scheidereit C. The I kappa B kinase (IKK) complex is tripartite and contains IKK gamma but not IKAP as a regular component. J Biol Chem 2000; 275:29779-87. [PMID: 10893415 DOI: 10.1074/jbc.m003902200] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A critical step in the activation of NF-kappa B is the phosphorylation of I kappa Bs by the I kappa B kinase (IKK) complex. IKK alpha and IKK beta are the two catalytic subunits of the IKK complex and two additional molecules, IKK gamma/NEMO and IKAP, have been described as further integral members. We have analyzed the function of both proteins for IKK complex composition and NF-kappa B signaling. IKAP and IKK gamma belong to distinct cellular complexes. Quantitative association of IKK gamma was observed with IKK alpha and IKK beta. In contrast IKAP was complexed with several distinct polypeptides. Overexpression of either IKK gamma or IKAP blocked tumor necrosis factor alpha induction of an NF-kappa B-dependent reporter construct, but IKAP in addition affected several NF-kappa B-independent promoters. Whereas specific down-regulation of IKK gamma protein levels by antisense oligonucleotides significantly reduced cytokine-mediated activation of the IKK complex and subsequent NF-kappa B activation, a similar reduction of IKAP protein levels had no effect on NF-kappa B signaling. Using solely IKK alpha, IKK beta, and IKK gamma, we could reconstitute a complex whose apparent molecular weight is comparable to that of the endogenous IKK complex. We conclude that while IKK gamma is a stoichiometric component of the IKK complex, obligatory for NF-kappa B signaling, IKAP is not associated with IKKs and plays no specific role in cytokine-induced NF-kappa B activation.
Collapse
Affiliation(s)
- D Krappmann
- Max-Delbrück-Centrum for Molecular Medicine, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Pan Z, Sampath D, Jackson G, Werrbach-Perez K, Perez-Polo R. Nerve growth factor and oxidative stress in the nervous system. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1997; 429:173-93. [PMID: 9413574 DOI: 10.1007/978-1-4757-9551-6_13] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Z Pan
- Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch at Galveston 77555-0652, USA
| | | | | | | | | |
Collapse
|
8
|
Courtois G, Whiteside ST, Sibley CH, Israel A. Characterization of a mutant cell line that does not activate NF-kappaB in response to multiple stimuli. Mol Cell Biol 1997; 17:1441-9. [PMID: 9032271 PMCID: PMC231869 DOI: 10.1128/mcb.17.3.1441] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Numerous genes required during the immune or inflammation response as well as the adhesion process are regulated by nuclear factor kappaB (NF-kappaB). Associated with its inhibitor, I kappaB, NF-kappaB resides as an inactive form in the cytoplasm. Upon stimulation by various agents, I kappaB is proteolyzed and NF-kappaB translocates to the nucleus, where it activates its target genes. The transduction pathways that lead to I kappaB inactivation remain poorly understood. In this study, we have characterized a cellular mutant, the 70/Z3-derived 1.3E2 murine pre-B cell line, that does not activate NF-kappaB in response to several stimuli. We demonstrate that upon stimulation by lipopolysaccharide, Taxol, phorbol myristate acetate, interleukin-1, or double-stranded RNA, I kappaB alpha is not degraded, as a result of an absence of induced phosphorylation on serines 32 and 36. Neither a mutation in I kappaB alpha nor a mutation in p50 or relA, the two major subunits of NF-kappaB in this cell line, accounts for this phosphorylation defect. As well as culminating in the inducible phosphorylation of I kappaB alpha on serines 32 and 36, all the stimuli that are inactive on 1.3E2 cells exhibit a sensitivity to the antioxidant pyrrolidine dithiocarbamate (PDTC). In contrast, stimuli such as hyperosmotic shock or phosphatase inhibitors, which use PDTC-insensitive pathways, induce I kappaB alpha degradation in 1.3E2. Analysis of the redox status of 1.3E2 does not reveal any difference from wild-type 70Z/3. We also report that the human T-cell leukemia virus type 1 (HTLV-1)-derived Tax trans-activator induces NF-kappaB activity in 1.3E2, suggesting that this viral protein does not operate via the defective pathway. Finally, we show that two other I kappaB molecules, I kappaB beta and the recently identified I kappaB epsilon, are not degraded in the 1.3E2 cell line following stimulation. Our results demonstrate that 1.3E2 is a cellular transduction mutant exhibiting a defect in a step that is required by several different stimuli to activate NF-kappaB. In addition, this analysis suggests a common step in the signaling pathways that trigger I kappaB alpha, I kappaB beta, and I kappaB epsilon degradation.
Collapse
Affiliation(s)
- G Courtois
- Unité de Biologie Moléculaire de l'Expression Génique, UMR 321 CNRS,Institut Pasteur, Paris, France
| | | | | | | |
Collapse
|
9
|
Pan Z, Perez-Polo R. Increased uptake of L-cysteine and L-cystine by nerve growth factor in rat pheochromocytoma cells. Brain Res 1996; 740:21-6. [PMID: 8973794 DOI: 10.1016/s0006-8993(96)00844-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Nerve growth factor is a neurotrophic factor which promotes cell survival and differentiation in the central and peripheral nervous system. The rat pheochromocytoma (PC12) cell has been frequently used to study the actions of nerve growth factor (NGF). Our previous studies demonstrate that pretreatment with NGF for 24 h protects PC12 cells from oxidative stress by increasing glutathione (GSH) concentrations and the activity of gamma-glutamylcysteine synthetase, which is a rate-limiting enzyme in GSH synthesis. The synthesis of intracellular GSH is dependent on the availability of the precursor amino acid, L-cysteine. Cells take up L-cystine from the extracellular fluid and convert it to L-cysteine intracellularly. L-Cysteine is then released from cells to maintain extracellular L-cysteine. Here we report that NGF increased the uptake of L-cysteine or L-cystine. The increased concentrations of L-cysteine or L-cystine by NGF was responsible for the enhanced intracellular GSH concentrations. The increased GSH and L-cysteine concentrations by NGF also served as intracellular antioxidants. The protection of PC12 cells by NGF from oxidative stress was due to the stimulated increased levels of intracellular glutathione and L-cysteine or L-cystine.
Collapse
Affiliation(s)
- Z Pan
- Department of Human Biological Chemistry and Genetics University of Texas Medical Branch at Galveston 77555-6052, USA
| | | |
Collapse
|
10
|
Gupta D, Kirkland TN, Viriyakosol S, Dziarski R. CD14 is a cell-activating receptor for bacterial peptidoglycan. J Biol Chem 1996; 271:23310-6. [PMID: 8798531 DOI: 10.1074/jbc.271.38.23310] [Citation(s) in RCA: 169] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The hypothesis that CD14 (an endotoxin receptor present on macrophages and neutrophils) acts as a cell-activating receptor for bacterial peptidoglycan was tested using mouse 70Z/3 cells transfected with human CD14. 70Z/3 cells transfected with an empty vector were unresponsive to insoluble and soluble peptidoglycan, as well as to low concentrations of endotoxin. 70Z/3-CD14 cells were responsive to both insoluble and soluble peptidoglycan, as well as to low concentrations of endotoxin, as measured by the expression of surface IgM, activation of NF-kappaB, and degradation of IkappaB-alpha. Peptidoglycan also induced activation of NF-kappaB and degradation of IkappaB-alpha in macrophage RAW264.7 cells. These peptidoglycan-induced effects (in contrast to endotoxin-induced effects) were not inhibited by polymyxin B. Both peptidoglycan- and endotoxin-induced activation of NF-kappaB were inhibited by anti-CD14 mAb. The N-terminal 151 amino acids of CD14 were sufficient for acquisition of full responsiveness to both peptidoglycan and endotoxin, but CD14 deletion mutants lacking four small regions within the N-terminal 65 amino acids showed differentially diminished responses to peptidoglycan and endotoxin. These results identify CD14 as the functional receptor for peptidoglycan and demonstrate that similar, but not identical sequences in the N-terminal 65-amino acid region of CD14 are critical for the NF-kappaB and IgM responses to both peptidoglycan and endotoxin.
Collapse
Affiliation(s)
- D Gupta
- Northwest Center for Medical Education, Indiana University School of Medicine, Gary, Indiana 46408, USA
| | | | | | | |
Collapse
|
11
|
Cohen LY, Courtois G, Parant MA. Differentiation of murine pre-B cell line by an adjuvant muramyl peptide via NF-kappa B activation. Immunobiology 1995; 193:363-77. [PMID: 8522354 DOI: 10.1016/s0171-2985(11)80424-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Muramyl dipeptide (MDP) induces NF-kappa B activation in the murine pre-B cell line 70Z/3, increases the expression of surface immunoglobulins, and potentiates the response to other inducers such as LPS or IL-1. In the present study we investigated whether NF-kappa B activation was related to the MDP-stimulated immunoglobulin expression. In a gel shift assay our results confirmed that MDP but not MDP(D,D), an adjuvant-inactive stereoisomer, could induce a kappa B-binding activity in 70Z/3 cells. The LPS or IL-1 induced NF-kappa B binding activity was increased in the presence of MDP but not of MDP(D,D). A mutant of the cell line called 1.3E2, defective in NF-kappa B activations by LPS, did not respond to MDP. The enhanced surface immunoglobulin expression induced in the wild type 70Z/3 cells by MDP alone or combined to LPS, IL-1 or IFN gamma was not obtained in this variant. The ability of various treatments to activate the kappa gene enhancer was quantitatively evaluated in cells transfected with a kappa-enhancer-luciferase expression plasmid. Treatment of transfected 70Z/3 cells with MDP resulted in a dose-dependent enhancement of luciferase activity, an additive effect to that induced by LPS or IL-1. Treatment of the defective variant transfected with the same construct did not result in luciferase expression after stimulation with the various agents. The transient transfection assays were used to compare the effectiveness of some MDP analogs. Two adjuvant-active compounds unable to enhance kappa light chain expression did not increase the basal response in the transfected 70Z/3 cells, indicating that NF-kappa B activation was not related to the adjuvant potency of MDP but correlated with the kappa induction.
Collapse
Affiliation(s)
- L Y Cohen
- Laboratory for Immunological Pharmacology, Pasteur Institute, Paris, France
| | | | | |
Collapse
|
12
|
LeGrand CB, Thieringer R. CD14-dependent induction of protein tyrosine phosphorylation by lipopolysaccharide in murine B-lymphoma cells. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1223:36-46. [PMID: 7520284 DOI: 10.1016/0167-4889(94)90071-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Incubation of the mouse B-lymphoma cell line 70Z/3 with bacterial lipopolysaccharide (LPS) results in the secretion of immunoglobulin M (IgM) to the cell surface. We now demonstrate that LPS rapidly induces the tyrosine phosphorylation of a 41 kDa protein in 70Z/3 cells transfected with CD14, a glycosyl phosphatidylinositol-anchored membrane receptor for complexes of LPS and LPS binding protein. There was no indication of LPS-mediated tyrosine phosphorylation in untransfected 70Z/3 cells, which do not express CD14. The 41 kDa tyrosine phosphoprotein was specifically induced by LPS, since it was not observed after incubation with another activator of IgM expression, interferon-gamma. Induction of this 41 kDa phosphoprotein was not observed when the transfected cells were treated with LPS in the absence of serum. Phosphorylation was also blocked by preincubation of the cells with an antibody to CD14. Furthermore, lipid A from Rhodobacter sphaeroides inhibited LPS-mediated tyrosine phosphorylation and surface IgM expression. Expression of CD14 in the LPS-unresponsive mutant 70Z/3 cell line 1.3E2 did not result in the secretion of IgM, although tyrosine phosphorylation was increased after incubation with LPS, suggesting that the mutation in these cells is downstream of the membrane LPS receptor.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antigens, CD/pharmacology
- Antigens, CD/physiology
- Antigens, Differentiation, Myelomonocytic/genetics
- Antigens, Differentiation, Myelomonocytic/pharmacology
- Antigens, Differentiation, Myelomonocytic/physiology
- Immunoglobulin M/analysis
- Lipid A/pharmacology
- Lipopolysaccharide Receptors
- Lipopolysaccharides/antagonists & inhibitors
- Lipopolysaccharides/pharmacology
- Lymphoma, B-Cell/enzymology
- Lymphoma, B-Cell/genetics
- Mice
- Phosphorylation
- Phosphotyrosine
- Protein-Tyrosine Kinases/metabolism
- Receptors, Immunologic/genetics
- Receptors, Immunologic/physiology
- Transfection
- Tumor Cells, Cultured
- Tyrosine/analogs & derivatives
- Tyrosine/analysis
Collapse
Affiliation(s)
- C B LeGrand
- Department of Biochemistry, Merck Research Laboratories, Rahway, NJ 07065
| | | |
Collapse
|
13
|
Rhodes LD, Paull AT, Sibley CH. Two different IFN-gamma nonresponsive variants derived from the B-cell lymphoma 70Z/3. Immunogenetics 1994; 40:199-209. [PMID: 8039828 DOI: 10.1007/bf00167080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The kappa immunoglobulin (Igk) light chain locus is transcriptionally silent in the mouse B-cell lymphoma 70Z/3. However, exposure to lipopolysaccharide (LPS) or interferon-gamma (IFN) causes a marked increase in Igk transcription. By immunoselection, we isolated two variants that are nonresponsive to IFN. One variant, AT7.2, has retained its response to LPS (IFN-LPS+), whereas the other, AT3.3, is also nonresponsive to LPS (IFN-LPS-). Stable transfection of an intact Igk gene does not rescue the phenotype of either variant. Both variants have intact Igk genes and neither is deficient in the binding or uptake of IFN. Nuclear extracts from LPS-treated wild-type 70Z/3 cells show strong increases in three transcription factors: OTF-2, NF-kappa B, and kBF-A. Remarkably, when the IFN-LPS- variant is treated with LPS, all three transcription factors are still observed in the nuclear extracts. Treatment of wild-type cells with either LPS or IFN also causes a decrease in nuclear complexes that bind to two other regions of the Igk intron enhancer, the octenh and the E kappa MHCIC regions. Both of these changes are also observed after LPS or IFN treatment of the IFN-LPS- variant. Thus, this variant transduces the IFN and LPS signals at least into the nuclear compartment, but still fails to activate Igk transcription. In contrast, the IFN-LPS+ variant decreases neither the octenh nor the E kappa MHCIC binding complexes in response to IFN. This variant may be defective in transducing the IFN signal to the nucleus. These variants will be useful in studying the activation of Igk transcription and the IFN signaling pathway in B cells.
Collapse
Affiliation(s)
- L D Rhodes
- Department of Biological Structure, University of Washington, Seattle 98195
| | | | | |
Collapse
|
14
|
Müller JM, Ziegler-Heitbrock HW, Baeuerle PA. Nuclear factor kappa B, a mediator of lipopolysaccharide effects. Immunobiology 1993; 187:233-56. [PMID: 8330898 DOI: 10.1016/s0171-2985(11)80342-6] [Citation(s) in RCA: 381] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Exposure of certain cell types to bacterial lipopolysaccharide (LPS) leads to activation of nuclear factor kappa B (NF-kappa B), an inducible transcription factor. One of NF-kappa B's unique properties is its posttranslational activation via release of an inhibitory subunit, called inhibitor of NF-kappa B (I kappa B), from a sequestered cytoplasmic form. This event is also triggered under various other conditions of biomedical importance. Other bacterial toxins, tumor necrosis factor-alpha (TNF), interleukin-1 (IL-1), T cell mitogens, UV light, gamma rays and oxidative stress were reported to induce NF-kappa B. The activated form of NF-kappa B, which is rapidly taken up into nuclei, initiates transcription from immediate early genes in a wide variety of cell types. Most of the target genes for NF-kappa B are of relevance for the immune response and can be grouped into those encoding cytokines, cell surface receptors, acute phase proteins and viral genomes, such as that of human immunodeficiency virus type 1 (HIV-1). We will discuss recent experimental evidences suggesting that LPS might share a pathway of NF-kappa B activation with other inducers of the factor. This common pathway may involve reactive oxygen intermediates (ROI) as messenger molecules.
Collapse
Affiliation(s)
- J M Müller
- Laboratory for Molecular Biology, Gene Center, Martinsried, Germany
| | | | | |
Collapse
|
15
|
Grilli M, Chiu JJ, Lenardo MJ. NF-kappa B and Rel: participants in a multiform transcriptional regulatory system. INTERNATIONAL REVIEW OF CYTOLOGY 1993; 143:1-62. [PMID: 8449662 DOI: 10.1016/s0074-7696(08)61873-2] [Citation(s) in RCA: 775] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- M Grilli
- Laboratory of Immunology, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | | | | |
Collapse
|
16
|
Rooney JW, Dubois PM, Sibley CH. Cross-linking of surface IgM activates NF-kappa B in B lymphocyte. Eur J Immunol 1991; 21:2993-8. [PMID: 1748149 DOI: 10.1002/eji.1830211214] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In B lymphocytes, cross-linking of surface IgM activates changes in both the cell cycle and differentiation. In normal B cells and B cell tumors, many stimuli induce the activation of NF-kappa B and its translocation from the cytoplasm to the nucleus. In this study we sought to determine if cross-linking of surface IgM led to the activation of NF-kappa B. Our results show that activation of B cells by cross-linking anti-IgM antibodies activated NF-kappa B in the murine B lymphoid cell lines 70Z/3 and M12, and in the dense fraction of splenic cells. The activation of NF-kappa B required optimal doses of anti-IgM antibodies and took 5 to 10 min to reach maximal levels. Cross-linking of IgM has also been shown to activate protein kinases including protein kinase C (PKC). To test whether PKC activation was required for NF-kappa B translocation, we treated 70Z/3 cells for 18 h with phorbol 12-myristate 13-acetate, a procedure which depletes these cells of functional PKC. This treatment did not abrogate the nuclear translocation of NF-kappa B following anti-IgM cross-linking. These results indicate that the nuclear translocation of NF-kappa B is rapidly induced by surface IgM cross-linking and that this activation appears to use a pathway which does not require PKC.
Collapse
Affiliation(s)
- J W Rooney
- Department of Genetics (SK-50), University of Washington, Seattle 98195
| | | | | |
Collapse
|
17
|
Anderson MT, Wims LA, Morrison SL. The plasmacytoma J558L lacks constitutively active NF-kappa B and is deficient in early response gene activation. Nucleic Acids Res 1991; 19:7235-41. [PMID: 1766879 PMCID: PMC332591 DOI: 10.1093/nar/19.25.7235] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In mature B cells the nuclear factor NF-kappa B which binds within the kappa enhancer is constitutively present in the nucleus. However, the lambda light chain producing myeloma J558L has been found to lack constitutively functional NF-kappa B. Deoxycholate released functional NF-kappa B from cytoplasmic extracts and functional NF-kappa B was present in J558L following cycloheximide but not phorbol ester treatment. J558L was also unable to respond to phorbol ester stimulation with synthesis of mRNA from the early response gene TIS11. J558L differs from S107, another myeloma which was found to be deficient in the synthesis of NF-kappa B but not in the activation of TIS11. Somatic cell hybrids were used to further define the defect in J558L; hybrids were made with the myelomas S107 and S194 and the pre-B cell line 70Z/3. In general, complementation of the defect in J558L was observed; however there was not a direct correlation between the levels of TIS11 mRNA and NF-kappa B expression in the somatic cell hybrids, suggesting that the pathways of activation of these genes, while possibly sharing common elements, are not identical. The defect in J558L was surprising given that it has frequently been used for the expression of transfected light chain genes.
Collapse
Affiliation(s)
- M T Anderson
- Department of Microbiology, Columbia University, New York, NY
| | | | | |
Collapse
|