1
|
van der Zanden SY, Qiao X, Neefjes J. New insights into the activities and toxicities of the old anticancer drug doxorubicin. FEBS J 2020; 288:6095-6111. [PMID: 33022843 PMCID: PMC8597086 DOI: 10.1111/febs.15583] [Citation(s) in RCA: 162] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/10/2020] [Accepted: 09/30/2020] [Indexed: 12/11/2022]
Abstract
The anthracycline drug doxorubicin is among the most used—and useful—chemotherapeutics. While doxorubicin is highly effective in the treatment of various hematopoietic malignancies and solid tumours, its application is limited by severe adverse effects, including irreversible cardiotoxicity, therapy‐related malignancies and gonadotoxicity. This continues to motivate investigation into the mechanisms of anthracycline activities and toxicities, with the aim to overcome the latter without sacrificing the former. It has long been appreciated that doxorubicin causes DNA double‐strand breaks due to poisoning topoisomerase II. More recently, it became clear that doxorubicin also leads to chromatin damage achieved through eviction of histones from select sites in the genome. Evaluation of these activities in various anthracycline analogues has revealed that chromatin damage makes a major contribution to the efficacy of anthracycline drugs. Furthermore, the DNA‐damaging effect conspires with chromatin damage to cause a number of adverse effects. Structure–activity relationships within the anthracycline family offer opportunities for chemical separation of these activities towards development of effective analogues with limited adverse effects. In this review, we elaborate on our current understanding of the different activities of doxorubicin and their contributions to drug efficacy and side effects. We then offer our perspective on how the activities of this old anticancer drug can be amended in new ways to benefit cancer patients, by providing effective treatment with improved quality of life.
Collapse
Affiliation(s)
- Sabina Y van der Zanden
- Department of Cell and Chemical Biology, ONCODE Institute, Leiden University Medical Centre LUMC, The Netherlands
| | - Xiaohang Qiao
- Division of Tumour Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Department of Head and Neck Oncology and Surgery, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jacques Neefjes
- Department of Cell and Chemical Biology, ONCODE Institute, Leiden University Medical Centre LUMC, The Netherlands
| |
Collapse
|
2
|
Abstract
The anthracycline doxorubicin (Doxo) and its analogs daunorubicin (Daun), epirubicin (Epi), and idarubicin (Ida) have been cornerstones of anticancer therapy for nearly five decades. However, their clinical application is limited by severe side effects, especially dose-dependent irreversible cardiotoxicity. Other detrimental side effects of anthracyclines include therapy-related malignancies and infertility. It is unclear whether these side effects are coupled to the chemotherapeutic efficacy. Doxo, Daun, Epi, and Ida execute two cellular activities: DNA damage, causing double-strand breaks (DSBs) following poisoning of topoisomerase II (Topo II), and chromatin damage, mediated through histone eviction at selected sites in the genome. Here we report that anthracycline-induced cardiotoxicity requires the combination of both cellular activities. Topo II poisons with either one of the activities fail to induce cardiotoxicity in mice and human cardiac microtissues, as observed for aclarubicin (Acla) and etoposide (Etop). Further, we show that Doxo can be detoxified by chemically separating these two activities. Anthracycline variants that induce chromatin damage without causing DSBs maintain similar anticancer potency in cell lines, mice, and human acute myeloid leukemia patients, implying that chromatin damage constitutes a major cytotoxic mechanism of anthracyclines. With these anthracyclines abstained from cardiotoxicity and therapy-related tumors, we thus uncoupled the side effects from anticancer efficacy. These results suggest that anthracycline variants acting primarily via chromatin damage may allow prolonged treatment of cancer patients and will improve the quality of life of cancer survivors.
Collapse
|
3
|
Ikeda Y, Park JH, Miyamoto T, Takamatsu N, Kato T, Iwasa A, Okabe S, Imai Y, Fujiwara K, Nakamura Y, Hasegawa K. T-LAK Cell-Originated Protein Kinase (TOPK) as a Prognostic Factor and a Potential Therapeutic Target in Ovarian Cancer. Clin Cancer Res 2016; 22:6110-6117. [PMID: 27334838 DOI: 10.1158/1078-0432.ccr-16-0207] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 05/27/2016] [Accepted: 06/05/2016] [Indexed: 11/16/2022]
Abstract
BACKGROUND We aimed to clarify the clinical significance of TOPK (T-lymphokine-activated killer cell-originated protein kinase) expression in ovarian cancer and evaluate the possible effect of TOPK inhibitors, OTS514 and OTS964, on ovarian cancer cells. METHODS TOPK expression was examined by immunohistochemistry using 163 samples with epithelial ovarian cancer (EOC). TOPK protein level and FOXM1 transcriptional level in ovarian cancer cell lines were examined by Western blot and RT-PCR, respectively. Half-maximum inhibitory concentration (IC50) values against TOPK inhibitors were examined by the MTT assay. Using the peritoneal dissemination model of ES-2 ovarian cancer cells, we examined the in vivo efficacy of OTS514. In addition, the cytotoxic effect of OTS514 and OTS964 on 31 patient-derived primary ovarian cancer cells was examined. RESULTS TOPK was expressed very highly in 84 (52%) of 163 EOC tissues, and high TOPK expression was significantly associated with poor progression-free survival and overall survival in early-stage cases of EOC (P = 0.008 and 0.006, respectively). Both OTS514 and OTS964 showed significant growth-inhibitory effect on ovarian cancer cell lines with IC50 values of 3.0 to 46 nmol/L and 14 to 110 nmol/L, respectively. TOPK protein and transcriptional levels of FOXM1 were reduced by TOPK inhibitor treatment. Oral administration of OTS514 significantly elongated overall survival in the ES-2 abdominal dissemination xenograft model, compared with vehicle control (P < 0.001). Two drugs showed strong growth-inhibitory effect on primary ovarian cancer cells regardless of tumor sites or histological subtypes. CONCLUSIONS Our results demonstrated the clinical significance of high TOPK expression and potential of TOPK inhibitors to treat ovarian cancer. Clin Cancer Res; 22(24); 6110-7. ©2016 AACR.
Collapse
Affiliation(s)
- Yuji Ikeda
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, Illinois.,Department of Gynecologic Oncology, Saitama Medical University International Medical Center, Hidaka, Saitama, Japan
| | - Jae-Hyun Park
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, Illinois
| | | | | | - Taigo Kato
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Akiko Iwasa
- Gynecologic Oncology Translational Research Unit, Project Research Division, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama, Japan
| | - Shuhei Okabe
- OncoTherapy Science Inc., Kawasaki, Kanagawa, Japan.,Gynecologic Oncology Translational Research Unit, Project Research Division, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama, Japan
| | - Yuichi Imai
- Department of Gynecologic Oncology, Saitama Medical University International Medical Center, Hidaka, Saitama, Japan.,Gynecologic Oncology Translational Research Unit, Project Research Division, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama, Japan
| | - Keiichi Fujiwara
- Department of Gynecologic Oncology, Saitama Medical University International Medical Center, Hidaka, Saitama, Japan.,Gynecologic Oncology Translational Research Unit, Project Research Division, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama, Japan
| | - Yusuke Nakamura
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, Illinois.
| | - Kosei Hasegawa
- Department of Gynecologic Oncology, Saitama Medical University International Medical Center, Hidaka, Saitama, Japan. .,Gynecologic Oncology Translational Research Unit, Project Research Division, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama, Japan
| |
Collapse
|
4
|
Matsuo Y, Park JH, Miyamoto T, Yamamoto S, Hisada S, Alachkar H, Nakamura Y. TOPK inhibitor induces complete tumor regression in xenograft models of human cancer through inhibition of cytokinesis. Sci Transl Med 2015; 6:259ra145. [PMID: 25338756 DOI: 10.1126/scitranslmed.3010277] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
TOPK (T-lymphokine-activated killer cell-originated protein kinase) is highly and frequently transactivated in various cancer tissues, including lung and triple-negative breast cancers, and plays an indispensable role in the mitosis of cancer cells. We report the development of a potent TOPK inhibitor, OTS964 {(R)-9-(4-(1-(dimethylamino)propan-2-yl)phenyl)-8-hydroxy-6-methylthieno[2,3-c]quinolin-4(5H)-one}, which inhibits TOPK kinase activity with high affinity and selectivity. Similar to the knockdown effect of TOPK small interfering RNAs (siRNAs), this inhibitor causes a cytokinesis defect and the subsequent apoptosis of cancer cells in vitro as well as in xenograft models of human lung cancer. Although administration of the free compound induced hematopoietic adverse reactions (leukocytopenia associated with thrombocytosis), the drug delivered in a liposomal formulation effectively caused complete regression of transplanted tumors without showing any adverse reactions in mice. Our results suggest that the inhibition of TOPK activity may be a viable therapeutic option for the treatment of various human cancers.
Collapse
Affiliation(s)
- Yo Matsuo
- OncoTherapy Science Inc., Kawasaki, Kanagawa 213-0012, Japan
| | - Jae-Hyun Park
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | | | - Shinji Yamamoto
- OncoTherapy Science Inc., Kawasaki, Kanagawa 213-0012, Japan
| | - Shoji Hisada
- OncoTherapy Science Inc., Kawasaki, Kanagawa 213-0012, Japan
| | - Houda Alachkar
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Yusuke Nakamura
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
6
|
Kang HS, Brady SF. Arimetamycin A: improving clinically relevant families of natural products through sequence-guided screening of soil metagenomes. Angew Chem Int Ed Engl 2013; 52:11063-7. [PMID: 24038656 DOI: 10.1002/anie.201305109] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Indexed: 12/30/2022]
Abstract
Sequence-tag-guided screening of soil environmental DNA libraries can be used to guide the discovery of new compounds with improved properties. In heterologous expression experiments the eDNA-derived arm cluster encodes arimetamycin A, an anthracycline that is more potent than clinically used natural anthracyclines and retains activity against multidrug-resistant (MDR) cancer cells.
Collapse
Affiliation(s)
- Hahk-Soo Kang
- Laboratory of Genetically Encoded Small Molecules, Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10065 (USA) http://lab.rockefeller.edu/brady/
| | | |
Collapse
|
8
|
Gate L, Couvreur P, Nguyen-Ba G, Tapiero H. N-methylation of anthracyclines modulates their cytotoxicity and pharmacokinetic in wild type and multidrug resistant cells. Biomed Pharmacother 2003; 57:301-8. [PMID: 14499178 DOI: 10.1016/s0753-3322(03)00037-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Anthracyclines are the most commonly used classes of anticancer agents in chemotherapy. Development of resistance to these molecules is one of the major reasons for treatment failure. The overexpression of the membrane transporter P-glycoprotein (P-gp) is among the principal mechanisms involved in this phenomenon. This pump, which is responsible for the multidrug resistance (MDR) phenotype, decreases the toxicity of a wide range of unrelated anticancer drugs by increasing their cellular efflux. Structure-activity relationship experiments have shown that the positively charged amino group of the anthracyclines could be responsible for their transport by P-gp. Here, we used three new anthracyclines that shared the same chromophore but differed by the degree of N-methylation of their sugar moiety. Oxaunomycin (OXN) possessed a non-methylated amino group, while LB-1 was monomethylated and beta-clamycin T (BCT) was dimethylated. In sensitive cells (FLC), reduced cytotoxicity was related to the level of N-methylation; whereas in resistant cells (DOX-RFLC(1) and DOX-RFLC(2)) overexpressing different levels of P-gp, increased N-methylation enhanced anthracycline cytotoxicity. Decreased resistance in DOX-RFLCs was associated with an increased drug accumulation due to a reduced cellular efflux. As expected, the MDR modulator verapamil decreased resistance to these anthracyclines by increasing the cellular accumulation. These results suggest that N-methylation of anthracyclines circumvents resistance by diminishing drug transport by P-gp in MDR-positive cells. These observations could be the consequence of the steric hindrance created by the methyl group(s) which may impair the interaction between the positively charged amino group and the active site of P-gp.
Collapse
Affiliation(s)
- L Gate
- UMR-CNRS 8612, Faculty of Pharmacy, University of Paris XI, 92290 Chatenay-Malabry cedex, France
| | | | | | | |
Collapse
|
10
|
Priebe W, Perez-Soler R. Design and tumor targeting of anthracyclines able to overcome multidrug resistance: a double-advantage approach. Pharmacol Ther 1993; 60:215-34. [PMID: 8022858 DOI: 10.1016/0163-7258(93)90007-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A novel, 'double-advantage approach' to developing more effective chemotherapies will be reviewed. This approach is based on a presumption that analogs designed on a sound hypothesis, and combined with a rationally selected drug delivery system, will optimize antitumor activity by creating drugs that are more active and that can be more specifically targeted to tumors. In the design of drugs superior to doxorubicin, we have focused on typical multidrug resistance and new anthracycline analogs, whose uptake is not affected by P-glycoprotein. Analysis of structural elements of anthracyclines affecting activity against multidrug resistant tumors and affinity for liposomes will be discussed. Annamycin, a lipophilic anthracycline analog, was selected for further preclinical development as a liposomal formulation and demonstrated, in the initial biological evaluation, high activity against tumors resistant to doxorubicin.
Collapse
Affiliation(s)
- W Priebe
- Department of Clinical Investigation, University of Texas, M.D. Anderson Cancer Center, Houston 77030
| | | |
Collapse
|