Abstract
Anaerobic ciliates are incapable of using oxidative phosphorylation in their energy metabolism and they are more or less sensitive to oxygen. All anaerobic ciliates possess mitochondria-like organelles (with a double outer membrane and often a few cristae) but these do not contain typical mitochondrial enzymes (e.g., cytochromes, cytochrome oxidase). In some species these organelles are capable of fermenting pyruvate into acetate and H2 and they are then referred to as hydrogenosomes. At least six orders of ciliates include anaerobic species. It is concluded that the evolution of anaerobic forms has taken place independently within different taxonomic groups and that hydrogenosomes are modified mitochondria. Many anaerobic ciliates harbour ecto- or endosymbiotic bacteria. Several ciliate species which produce hydrogen as a metabolic waste product harbour endosymbiotic methanogenic bacteria; in some cases this symbiosis represents a mutualistic relationship in which the host controls the life cycle of the symbionts and gains from their presence in terms of growth rate and growth efficiency. Many marine anaerobic ciliates harbour ectosymbiotic bacteria, but the nature of these bacteria and the significance of the association is not yet understood. The present paper reviews what is known about the biology of anaerobic ciliates with special emphasis on free-living forms, including a discussion of their habitats and their role in the microbial communities of anoxic environments.
Collapse