Jonsson G, Gorio A, Hallman H, Janigro D, Kojima H, Zanoni R. Effect of GM1 ganglioside on neonatally neurotoxin induced degeneration of serotonin neurons in the rat brain.
Brain Res 1984;
318:171-80. [PMID:
6093923 DOI:
10.1016/0165-3806(84)90023-3]
[Citation(s) in RCA: 46] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The effect of exogenous GM1 ganglioside on the 5,7-dihydroxytryptamine (5,7-HT; a selective serotonin neurotoxin) induced alteration of the postnatal development of central 5-hydroxytryptamine (5-HT; serotonin) neurons has been investigated using neuro-chemical and immunocytochemical techniques. Neonatal 5,7-HT (50 mg/kg s.c.) treatment is known to lead to a marked and a permanent degeneration of distant 5-HT nerve terminal projections (e.g. in cerebral cortex, hippocampus and spinal cord), while projections close to the 5-HT perikarya in the mesencephalon and pons-medulla increase their nerve density. These regional alterations are reflected by decreases and increases, respectively, of endogenous 5-HT, [3H]5-HT uptake in vitro and number of 5-HT nerve terminals demonstrated by immunocytochemistry. Treatment of newborn rats with GM1 (4 X 30 mg/kg s.c.; 24 h interval) had no significant effect on the postnatal development of 5-HT neurons. GM1 administration had furthermore no effect on the 5,7-HT induced alteration of the regional 5-HT levels and [3H]5-HT uptake in the cerebral cortex acutely, indicating that GM1 did not significantly interfere with the primary neurodegenerative actions of 5,7-HT. At the age of 1 month a clear counteracting effect of GM1 was observed, in particular of the 5,7-HT induced 5-HT denervations. The 5-HT levels in the frontal and occipital cortex were reduced to 25 and 20% of control after 5,7-HT alone, while these values were 70 and 40%, respectively, after 5,7-HT and GM1 treatment. A similar antagonizing effect of GM1 was found in the frontal cortex when measuring [3H]5-HT uptake. GM1 treatment also caused a minor reduction of the 5,7-HT induced increase of the 5-HT levels in striatum and mesencephalon. Quantitation of 5-HT nerve terminal density in sections processed for 5-HT immunocytochemistry using an automatic image analysis system showed markedly more nerve terminals in the frontal and occipital cortex after 5,7-HT + GM1 compared to 5,7-HT treatment alone. Minor counteracting effects of GM1 were noted in the hippocampus and spinal cord (thoracic-lumbar) as evaluated by chemical 5-HT assay, although substantial counteracting effects were observed locally in these areas by quantitative immunocytochemistry.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse