1
|
Zeng M, Sarker B, Howitz N, Shah I, Andrews LB. Synthetic Homoserine Lactone Sensors for Gram-Positive Bacillus subtilis Using LuxR-Type Regulators. ACS Synth Biol 2024; 13:282-299. [PMID: 38079538 PMCID: PMC10805106 DOI: 10.1021/acssynbio.3c00504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/11/2023] [Accepted: 10/18/2023] [Indexed: 01/23/2024]
Abstract
A universal biochemical signal for bacterial cell-cell communication could facilitate programming dynamic responses in diverse bacterial consortia. However, the classical quorum sensing paradigm is that Gram-negative and Gram-positive bacteria generally communicate via homoserine lactones (HSLs) or oligopeptide molecular signals, respectively, to elicit population responses. Here, we create synthetic HSL sensors for Gram-positive Bacillus subtilis 168 using allosteric LuxR-type regulators (RpaR, LuxR, RhlR, and CinR) and synthetic promoters. Promoters were combinatorially designed from different sequence elements (-35, -16, -10, and transcriptional start regions). We quantified the effects of these combinatorial promoters on sensor activity and determined how regulator expression affects its activation, achieving up to 293-fold activation. Using the statistical design of experiments, we identified significant effects of promoter regions and pairwise interactions on sensor activity, which helped to understand the sequence-function relationships for synthetic promoter design. We present the first known set of functional HSL sensors (≥20-fold dynamic range) in B. subtilis for four different HSL chemical signals: p-coumaroyl-HSL, 3-oxohexanoyl-HSL, n-butyryl-HSL, and n-(3-hydroxytetradecanoyl)-HSL. This set of synthetic HSL sensors for a Gram-positive bacterium can pave the way for designable interspecies communication within microbial consortia.
Collapse
Affiliation(s)
- Min Zeng
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| | - Biprodev Sarker
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| | - Nathaniel Howitz
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| | - Ishita Shah
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| | - Lauren B. Andrews
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
- Molecular
and Cellular Biology Graduate Program, University
of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
- Biotechnology
Training Program, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
2
|
Ghataora JS, Gebhard S, Reeksting BJ. Chimeric MerR-Family Regulators and Logic Elements for the Design of Metal Sensitive Genetic Circuits in Bacillus subtilis. ACS Synth Biol 2023; 12:735-749. [PMID: 36629785 PMCID: PMC10028694 DOI: 10.1021/acssynbio.2c00545] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Whole-cell biosensors are emerging as promising tools for monitoring environmental pollutants such as heavy metals. These sensors constitute a genetic circuit comprising a sensing module and an output module, such that a detectable signal is produced in the presence of the desired analyte. The MerR family of metal-responsive regulators offers great potential for the construction of metal sensing circuits, due to their high sensitivity, tight transcription control, and large diversity in metal-specificity. However, the sensing diversity is broadest in Gram-negative systems, while chassis organisms are often selected from Gram-positive species, particularly sporulating bacilli. This can be problematic, because Gram-negative biological parts, such as promoters, are frequently observed to be nonfunctional in Gram-positive hosts. Herein, we combined construction of synthetic genetic circuits and chimeric MerR regulators, supported by structure-guided design, to generate metal-sensitive biosensor modules that are functional in the biotechnological work-horse species Bacillus subtilis. These chimeras consist of a constant Gram-positive derived DNA-binding domain fused to variable metal binding domains of Gram-negative origins. To improve the specificity of the whole-cell biosensor, we developed a modular "AND gate" logic system based on the B. subtilis two-subunit σ-factor, SigO-RsoA, designed to maximize future use for synthetic biology applications in B. subtilis. This work provides insights into the use of modular regulators, such as the MerR family, in the design of synthetic circuits for the detection of heavy metals, with potentially wider applicability of the approach to other systems and genetic backgrounds.
Collapse
Affiliation(s)
- Jasdeep S Ghataora
- Life Sciences Department, Milner Centre for Evolution, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Susanne Gebhard
- Life Sciences Department, Milner Centre for Evolution, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Bianca J Reeksting
- Life Sciences Department, Milner Centre for Evolution, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| |
Collapse
|
3
|
Diversity of σ 66-Specific Promoters Contributes to Regulation of Developmental Gene Expression in Chlamydia trachomatis. J Bacteriol 2023; 205:e0031022. [PMID: 36598485 PMCID: PMC9879106 DOI: 10.1128/jb.00310-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Promoter recognition by the RNA polymerase (RNAP) holoenzyme is a key step in gene regulation. In Chlamydia trachomatis, a medically important obligate intracellular bacterium, σ66 allows the RNAP to initiate promoter-specific transcription throughout the chlamydial developmental cycle. Here, we investigated the intrinsic properties of σ66-specific promoters with emphasis on their role in the developmental gene expression of C. trachomatis. First, we examined whether promoters that contain a 5'-T(-15)G(-14)-3' (TG) motif upstream from the -10 element appear more often than others in genes that are preferentially expressed during the early, middle, or late stages of the C. trachomatis developmental cycle. We then determined the critical genetic elements that are required for transcription initiation in vitro. We also assessed the activity of promoters in the presence of Scc4, which can directly interact with σ66RNAP. Finally, we evaluated the promoter-specific dynamics during C. trachomatis infection using a reporter assay. These results reveal that the TG motif is an important determinant in certain early or late promoters. The TG promoters that have the -35 element are recognized by σ66RNAP and Scc4 differently from those lacking the -35 element. Based on these properties, the σ66-specific promoters can fall into three classes. Architectural diversity, behavioral plasticity, and the specific interplays between promoters and the σ66RNAP likely contribute to developmental gene transcription in C. trachomatis. IMPORTANCE Meticulous promoter elucidation is required to understand the foundations of transcription initiation. However, knowledge of promoter-specific transcription remains limited in C. trachomatis. This work underscores the structural and functional plasticity of σ66-specific promoters that are regulated by σ66RNAP, as well as their importance in the developmental gene regulation of C. trachomatis.
Collapse
|
4
|
Miguel-Romero L, Alqasmi M, Bacarizo J, Tan JA, Cogdell R, Chen J, Byron O, Christie GE, Marina A, Penadés J. Non-canonical Staphylococcus aureus pathogenicity island repression. Nucleic Acids Res 2022; 50:11109-11127. [PMID: 36200825 PMCID: PMC9638917 DOI: 10.1093/nar/gkac855] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 09/08/2022] [Accepted: 09/23/2022] [Indexed: 11/14/2022] Open
Abstract
Mobile genetic elements control their life cycles by the expression of a master repressor, whose function must be disabled to allow the spread of these elements in nature. Here, we describe an unprecedented repression-derepression mechanism involved in the transfer of Staphylococcus aureus pathogenicity islands (SaPIs). Contrary to the classical phage and SaPI repressors, which are dimers, the SaPI1 repressor StlSaPI1 presents a unique tetrameric conformation never seen before. Importantly, not just one but two tetramers are required for SaPI1 repression, which increases the novelty of the system. To derepress SaPI1, the phage-encoded protein Sri binds to and induces a conformational change in the DNA binding domains of StlSaPI1, preventing the binding of the repressor to its cognate StlSaPI1 sites. Finally, our findings demonstrate that this system is not exclusive to SaPI1 but widespread in nature. Overall, our results characterize a novel repression-induction system involved in the transfer of MGE-encoded virulence factors in nature.
Collapse
Affiliation(s)
- Laura Miguel-Romero
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, SW7 2AZ, UK
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, G12 8TA, UK
| | - Mohammed Alqasmi
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, G12 8TA, UK
- College of Applied Medical Sciences, Shaqra University, Shaqra City 15572, Saudi Arabia
| | - Julio Bacarizo
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, SW7 2AZ, UK
- Departamento de Ciencias Biomédicas, Universidad CEU Cardenal Herrera, 46113 Moncada, Spain
| | - Jason A Tan
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | | - John Chen
- Infectious Diseases Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore
| | - Olwyn Byron
- School of Life Sciences, University of Glasgow, Glasgow, G12 8QQ,UK
| | - Gail E Christie
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Alberto Marina
- Instituto de Biomedicina de Valencia (IBV), CSIC and CIBER de Enfermedades Raras (CIBERER), Valencia, Spain
| | - José R Penadés
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, SW7 2AZ, UK
| |
Collapse
|
5
|
Importance of RpoD- and Non-RpoD-Dependent Expression of Horizontally Acquired Genes in Cupriavidus metallidurans. Microbiol Spectr 2022; 10:e0012122. [PMID: 35311568 PMCID: PMC9045368 DOI: 10.1128/spectrum.00121-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genome of the metal-resistant, hydrogen-oxidizing bacterium Cupriavidus metallidurans contains a large number of horizontally acquired plasmids and genomic islands that were integrated into its chromosome or chromid. For the C. metallidurans CH34 wild-type strain growing under nonchallenging conditions, 5,763 transcriptional starting sequences (TSSs) were determined. Using a custom-built motif discovery software based on hidden Markov models, patterns upstream of the TSSs were identified. The pattern TTGACA, −35.6 ± 1.6 bp upstream of the TSSs, in combination with a TATAAT sequence 15.8 ± 1.4 bp upstream occurred frequently, especially upstream of the TSSs for 48 housekeeping genes, and these were assigned to promoters used by RNA polymerase containing the main housekeeping sigma factor RpoD. From patterns upstream of the housekeeping genes, a score for RpoD-dependent promoters in C. metallidurans was derived and applied to all 5,763 TSSs. Among these, 2,572 TSSs could be associated with RpoD with high probability, 373 with low probability, and 2,818 with no probability. In a detailed analysis of horizontally acquired genes involved in metal resistance and not involved in this process, the TSSs responsible for the expression of these genes under nonchallenging conditions were assigned to RpoD- or non-RpoD-dependent promoters. RpoD-dependent promoters occurred frequently in horizontally acquired metal resistance and other determinants, which should allow their initial expression in a new host. However, other sigma factors and sense/antisense effects also contribute—maybe to mold in subsequent adaptation steps the assimilated gene into the regulatory network of the cell. IMPORTANCE In their natural environment, bacteria are constantly acquiring genes by horizontal gene transfer. To be of any benefit, these genes should be expressed. We show here that the main housekeeping sigma factor RpoD plays an important role in the expression of horizontally acquired genes in the metal-resistant hydrogen-oxidizing bacterium C. metallidurans. By conservation of the RpoD recognition consensus sequence, a newly arriving gene has a high probability to be expressed in the new host cell. In addition to integrons and genes travelling together with that for their sigma factor, conservation of the RpoD consensus sequence may be an important contributor to the overall evolutionary success of horizontal gene transfer in bacteria. Using C. metallidurans as an example, this publication sheds some light on the fate and function of horizontally acquired genes in bacteria.
Collapse
|
6
|
Forrest D, Warman EA, Erkelens AM, Dame RT, Grainger DC. Xenogeneic silencing strategies in bacteria are dictated by RNA polymerase promiscuity. Nat Commun 2022; 13:1149. [PMID: 35241653 PMCID: PMC8894471 DOI: 10.1038/s41467-022-28747-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 02/07/2022] [Indexed: 12/13/2022] Open
Abstract
Horizontal gene transfer facilitates dissemination of favourable traits among bacteria. However, foreign DNA can also reduce host fitness: incoming sequences with a higher AT content than the host genome can misdirect transcription. Xenogeneic silencing proteins counteract this by modulating RNA polymerase binding. In this work, we compare xenogeneic silencing strategies of two distantly related model organisms: Escherichia coli and Bacillus subtilis. In E. coli, silencing is mediated by the H-NS protein that binds extensively across horizontally acquired genes. This prevents spurious non-coding transcription, mostly intragenic in origin. By contrast, binding of the B. subtilis Rok protein is more targeted and mostly silences expression of functional mRNAs. The difference reflects contrasting transcriptional promiscuity in E. coli and B. subtilis, largely attributable to housekeeping RNA polymerase σ factors. Thus, whilst RNA polymerase specificity is key to the xenogeneic silencing strategy of B. subtilis, transcriptional promiscuity must be overcome to silence horizontally acquired DNA in E. coli. Bacteria use specific silencing proteins to prevent spurious transcription of horizontally acquired DNA. Here, Forrest et al. describe differences in silencing strategies between E. coli and Bacillus subtilis, driven by the respective specificities of the silencing protein and the RNA polymerase in each organism.
Collapse
Affiliation(s)
- David Forrest
- School of Biosciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | - Emily A Warman
- School of Biosciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | - Amanda M Erkelens
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands
| | - Remus T Dame
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands.,Centre for Microbial Cell Biology, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands
| | - David C Grainger
- School of Biosciences, University of Birmingham, Edgbaston, B15 2TT, UK.
| |
Collapse
|
7
|
The transcription factor CpcR determines cell fate by modulating the initiation of sporulation in Bacillus thuringiensis. Appl Environ Microbiol 2022; 88:e0237421. [PMID: 35108078 DOI: 10.1128/aem.02374-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus thuringiensis is a bacterium capable of differentiating into a spore, a dormant and highly resistant cellular form. During the sporulation process, this bacterium produces insecticidal toxins in the form of a crystal inclusion, usually in the sporulating cell. We previously reported that the B. thuringiensis LM1212 strain can differentiate into two distinct subpopulations of spore formers and crystal producers, and that this division of labour phenotype provides bacterium with a fitness advantage in competition with a typical B. thuringiensis strain. The transcription factor CpcR was characterized as the regulator responsible for this phenotype. Here, we examined how CpcR interacts with sporulation network to control the cell differentiation. We found sporulation process was inhibited prior to polar septum formation, and that Spo0A activity was impaired, in the presence of cpcR in LM1212 strain. Using bioinformatics and genetic tools, we identified a gene positively controlled by CpcR encoding a putative phosphatase of Spo0E family known to specifically dephosphorylate Spo0A-P. We showed that this protein (called Spo0E1) is a negative regulator of sporulation and that variations in spo0E1 expression can modulate the production of spores. Using fluorescent reporters to follow gene expression at the single-cell level, we correlated expression of cpcR and sporulation genes to the formation of the two differentiated subpopulations. IMPORTANCE Formation of spores is a paradigm for study of cell differentiation in prokaryotes. Sporulation initiation is governed by a gradual increase in the level and activity of the master regulator Spo0A. Spo0A is usually indirectly phosphorylated by a multicomponent phosphorelay and modulation of this phosphorelay system is a critical aspect of Bacillus physiology. Though we know this phosphorelay system is usually affected by two negative regulatory mechanisms: rap genes and spo0E family genes, the regulatory mechanisms controlling the transcription of these genes are poorly understood. Here, we reported the transcription factor CpcR positively regulates a spo0E family gene and variations in spo0E expression can modulate the production of spores in B. thuringiensis. This work emphasizes the diversity in modes of sporulation and illustrate the diversity in the strategies employed by bacteria to control this differentiation pathway and ensure their survival.
Collapse
|
8
|
The bacterial promoter spacer modulates promoter strength and timing by length, TG-motifs and DNA supercoiling sensitivity. Sci Rep 2021; 11:24399. [PMID: 34937877 PMCID: PMC8695583 DOI: 10.1038/s41598-021-03817-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/09/2021] [Indexed: 01/25/2023] Open
Abstract
Transcription, the first step to gene expression, is a central coordination process in all living matter. Besides a plethora of regulatory mechanisms, the promoter architecture sets the foundation of expression strength, timing and the potential for further regulatory modulation. In this study, we investigate the effects of promoter spacer length and sequence composition on strength and supercoiling sensitivity in bacteria. Combining transcriptomics data analysis and standardized synthetic promoter libraries, we exclude effects of specific promoter sequence contexts. Analysis of promoter activity shows a strong variance with spacer length and spacer sequence composition. A detailed study of the spacer sequence composition under selective conditions reveals an extension to the -10 region that enhances RNAP binding but damps promoter activity. Using physiological changes in DNA supercoiling levels, we link promoter supercoiling sensitivity to overall spacer GC-content. Time-resolved promoter activity screens, only possible with a novel mild treatment approach, reveal strong promoter timing potentials solely based on DNA supercoiling sensitivity in the absence of regulatory sites or alternative sigma factors.
Collapse
|
9
|
Earle SG, Lobanovska M, Lavender H, Tang C, Exley RM, Ramos-Sevillano E, Browning DF, Kostiou V, Harrison OB, Bratcher HB, Varani G, Tang CM, Wilson DJ, Maiden MCJ. Genome-wide association studies reveal the role of polymorphisms affecting factor H binding protein expression in host invasion by Neisseria meningitidis. PLoS Pathog 2021; 17:e1009992. [PMID: 34662348 PMCID: PMC8553145 DOI: 10.1371/journal.ppat.1009992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 10/28/2021] [Accepted: 09/29/2021] [Indexed: 11/18/2022] Open
Abstract
Many invasive bacterial diseases are caused by organisms that are ordinarily harmless components of the human microbiome. Effective interventions against these microbes require an understanding of the processes whereby symbiotic or commensal relationships transition into pathology. Here, we describe bacterial genome-wide association studies (GWAS) of Neisseria meningitidis, a common commensal of the human respiratory tract that is nevertheless a leading cause of meningitis and sepsis. An initial GWAS discovered bacterial genetic variants, including single nucleotide polymorphisms (SNPs), associated with invasive meningococcal disease (IMD) versus carriage in several loci across the meningococcal genome, encoding antigens and other extracellular components, confirming the polygenic nature of the invasive phenotype. In particular, there was a significant peak of association around the fHbp locus, encoding factor H binding protein (fHbp), which promotes bacterial immune evasion of human complement by recruiting complement factor H (CFH) to the meningococcal surface. The association around fHbp with IMD was confirmed by a validation GWAS, and we found that the SNPs identified in the validation affected the 5' region of fHbp mRNA, altering secondary RNA structures, thereby increasing fHbp expression and enhancing bacterial escape from complement-mediated killing. This finding is consistent with the known link between complement deficiencies and CFH variation with human susceptibility to IMD. These observations demonstrate the importance of human and bacterial genetic variation across the fHbp:CFH interface in determining IMD susceptibility, the transition from carriage to disease.
Collapse
Affiliation(s)
- Sarah G. Earle
- Big Data Institute, Nuffield Department of Population Health, University of Oxford, Li Ka Shing Centre for Health Information and Discovery, Oxford, United Kingdom
| | - Mariya Lobanovska
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Hayley Lavender
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Changyan Tang
- Department of Chemistry, University of Washington, Seattle, Washington United States of America
| | - Rachel M. Exley
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | | | - Douglas F. Browning
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Vasiliki Kostiou
- Nuffield Department of Clinical Medicine, Experimental Medicine Division, John Radcliffe Hospital, Oxford, United Kingdom
| | | | | | - Gabriele Varani
- Department of Chemistry, University of Washington, Seattle, Washington United States of America
- * E-mail: (GV); (CMT); (DJW); (MCJM)
| | - Christoph M. Tang
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
- * E-mail: (GV); (CMT); (DJW); (MCJM)
| | - Daniel J. Wilson
- Big Data Institute, Nuffield Department of Population Health, University of Oxford, Li Ka Shing Centre for Health Information and Discovery, Oxford, United Kingdom
- Department for Continuing Education, University of Oxford, Oxford, United Kingdom
- * E-mail: (GV); (CMT); (DJW); (MCJM)
| | - Martin C. J. Maiden
- Department of Zoology, University of Oxford, Oxford, United Kingdom
- * E-mail: (GV); (CMT); (DJW); (MCJM)
| |
Collapse
|
10
|
Park J, Wang HH. Systematic dissection of σ 70 sequence diversity and function in bacteria. Cell Rep 2021; 36:109590. [PMID: 34433066 PMCID: PMC8716302 DOI: 10.1016/j.celrep.2021.109590] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 04/19/2021] [Accepted: 08/02/2021] [Indexed: 10/29/2022] Open
Abstract
Primary σ70 factors are key conserved bacterial regulatory proteins that interact with regulatory DNA to control gene expression. It is, however, poorly understood whether σ70 sequence diversity in different bacteria reflects functional differences. Here, we employ comparative and functional genomics to explore the sequence and function relationship of primary σ70. Using multiplex automated genome engineering and deep sequencing (MAGE-seq), we generate a saturation mutagenesis library and high-resolution fitness map of E. coli σ70 in domains 2-4. Mapping natural σ70 sequence diversity to the E. coli σ70 fitness landscape reveals significant predicted fitness deficits across σ70 orthologs. Interestingly, these predicted deficits are larger than observed fitness changes for 15 σ70 orthologs introduced into E. coli. Finally, we use a multiplexed transcriptional reporter assay and RNA sequencing (RNA-seq) to explore functional differences of several σ70 orthologs. This work provides an in-depth analysis of σ70 sequence and function to improve efforts to understand the evolution and engineering potential of this global regulator.
Collapse
Affiliation(s)
- Jimin Park
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA; Integrated Program in Cellular, Molecular and Biomedical Studies, Columbia University Irving Medical Center, New York, NY, USA.
| | - Harris H Wang
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA; Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
11
|
Rodriguez Ayala F, Bartolini M, Grau R. The Stress-Responsive Alternative Sigma Factor SigB of Bacillus subtilis and Its Relatives: An Old Friend With New Functions. Front Microbiol 2020; 11:1761. [PMID: 33042030 PMCID: PMC7522486 DOI: 10.3389/fmicb.2020.01761] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 07/06/2020] [Indexed: 12/13/2022] Open
Abstract
Alternative sigma factors have led the core RNA polymerase (RNAP) to recognize different sets of promoters to those recognized by the housekeeping sigma A-directed RNAP. This change in RNAP promoter selectivity allows a rapid and flexible reformulation of the genetic program to face environmental and metabolic stimuli that could compromise bacterial fitness. The model bacterium Bacillus subtilis constitutes a matchless living system in the study of the role of alternative sigma factors in gene regulation and physiology. SigB from B. subtilis was the first alternative sigma factor described in bacteria. Studies of SigB during the last 40 years have shown that it controls a genetic universe of more than 150 genes playing crucial roles in stress response, adaption, and survival. Activation of SigB relies on three separate pathways that specifically respond to energy, environmental, and low temperature stresses. SigB homologs, present in other Gram-positive bacteria, also play important roles in virulence against mammals. Interestingly, during recent years, other unexpected B. subtilis responses were found to be controlled by SigB. In particular, SigB controls the efficiencies of spore and biofilm formation, two important features that play critical roles in adaptation and survival in planktonic and sessile B. subtilis communities. In B. subtilis, SigB induces the expression of the Spo0E aspartyl-phosphatase, which is responsible for the blockage of sporulation initiation. The upregulated activity of Spo0E connects the two predominant adaptive pathways (i.e., sporulation and stress response) present in B. subtilis. In addition, the RsbP serine-phosphatase, belonging to the energy stress arm of the SigB regulatory cascade, controls the expression of the key transcription factor SinR to decide whether cells residing in the biofilm remain in and maintain biofilm growth or scape to colonize new niches through biofilm dispersal. SigB also intervenes in the recognition of and response to surrounding microorganisms, a new SigB role that could have an agronomic impact. SigB is induced when B. subtilis is confronted with phytopathogenic fungi (e.g., Fusarium verticillioides) and halts fungal growth to the benefit of plant growth. In this article, we update and review literature on the different regulatory networks that control the activation of SigB and the new roles that have been described the recent years.
Collapse
Affiliation(s)
- Facundo Rodriguez Ayala
- Departamento de Micro y Nanotecnología, Instituto de Nanociencia y Nanotecnología - Comisión Nacional de Energía Atómica (CNEA), Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Marco Bartolini
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Roberto Grau
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
12
|
Vahed M, Ishihara JI, Takahashi H. DIpartite: A tool for detecting bipartite motifs by considering base interdependencies. PLoS One 2019; 14:e0220207. [PMID: 31469855 PMCID: PMC6716629 DOI: 10.1371/journal.pone.0220207] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/10/2019] [Indexed: 12/22/2022] Open
Abstract
It is extremely important to identify transcription factor binding sites (TFBSs). Some TFBSs are proposed to be bipartite motifs known as two-block motifs separated by gap sequences with variable lengths. While position weight matrix (PWM) is commonly used for the representation and prediction of TFBSs, dinucleotide weight matrix (DWM) enables expression of the interdependencies of neighboring bases. By incorporating DWM into the detection of bipartite motifs, we have developed a novel tool for ab initio motif detection, DIpartite (bipartite motif detection tool based on dinucleotide weight matrix) using a Gibbs sampling strategy and the minimization of Shannon’s entropy. DIpartite predicts the bipartite motifs by considering the interdependencies of neighboring positions, that is, DWM. We compared DIpartite with other available alternatives by using test datasets, namely, of CRP in E. coli, sigma factors in B. subtilis, and promoter sequences in humans. We have developed DIpartite for the detection of TFBSs, particularly bipartite motifs. DIpartite enables ab initio prediction of conserved motifs based on not only PWM, but also DWM. We evaluated the performance of DIpartite by comparing it with freely available tools, such as MEME, BioProspector, BiPad, and AMD. Taken the obtained findings together, DIpartite performs equivalently to or better than these other tools, especially for detecting bipartite motifs with variable gaps. DIpartite requires users to specify the motif lengths, gap length, and PWM or DWM. DIpartite is available for use at https://github.com/Mohammad-Vahed/DIpartite.
Collapse
Affiliation(s)
- Mohammad Vahed
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | | | - Hiroki Takahashi
- Medical Mycology Research Center, Chiba University, Chiba, Japan
- Molecular Chirality Research Center, Chiba University, Chiba, Japan
- * E-mail:
| |
Collapse
|
13
|
A Xylose-Inducible Expression System and a CRISPR Interference Plasmid for Targeted Knockdown of Gene Expression in Clostridioides difficile. J Bacteriol 2019; 201:JB.00711-18. [PMID: 30745377 DOI: 10.1128/jb.00711-18] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 02/03/2019] [Indexed: 12/31/2022] Open
Abstract
Here we introduce plasmids for xylose-regulated expression and repression of genes in Clostridioides difficile The xylose-inducible expression vector allows for ∼100-fold induction of an mCherryOpt reporter gene. Induction is titratable and uniform from cell to cell. The gene repression plasmid is a CRISPR interference (CRISPRi) system based on a nuclease-defective, codon-optimized allele of the Streptococcus pyogenes Cas9 protein (dCas9) that is targeted to a gene of interest by a constitutively expressed single guide RNA (sgRNA). Expression of dCas9 is induced by xylose, allowing investigators to control the timing and extent of gene silencing, as demonstrated here by dose-dependent repression of a chromosomal gene for a red fluorescent protein (maximum repression, ∼100-fold). To validate the utility of CRISPRi for deciphering gene function in C. difficile, we knocked down the expression of three genes involved in the biogenesis of the cell envelope: the cell division gene ftsZ, the S-layer protein gene slpA, and the peptidoglycan synthase gene pbp-0712 CRISPRi confirmed known or expected phenotypes associated with the loss of FtsZ and SlpA and revealed that the previously uncharacterized peptidoglycan synthase PBP-0712 is needed for proper elongation, cell division, and protection against lysis.IMPORTANCE Clostridioides difficile has become the leading cause of hospital-acquired diarrhea in developed countries. A better understanding of the basic biology of this devastating pathogen might lead to novel approaches for preventing or treating C. difficile infections. Here we introduce new plasmid vectors that allow for titratable induction (P xyl ) or knockdown (CRISPRi) of gene expression. The CRISPRi plasmid allows for easy depletion of target proteins in C. difficile Besides bypassing the lengthy process of mutant construction, CRISPRi can be used to study the function of essential genes, which are particularly important targets for antibiotic development.
Collapse
|
14
|
The Revisited Genome of Bacillus subtilis Bacteriophage SPP1. Viruses 2018; 10:v10120705. [PMID: 30544981 PMCID: PMC6316719 DOI: 10.3390/v10120705] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/06/2018] [Accepted: 12/06/2018] [Indexed: 02/05/2023] Open
Abstract
Bacillus subtilis bacteriophage SPP1 is a lytic siphovirus first described 50 years ago [1]. Its complete DNA sequence was reported in 1997 [2]. Here we present an updated annotation of the 44,016 bp SPP1 genome and its correlation to different steps of the viral multiplication process. Five early polycistronic transcriptional units encode phage DNA replication proteins and lysis functions together with less characterized, mostly non-essential, functions. Late transcription drives synthesis of proteins necessary for SPP1 viral particles assembly and for cell lysis, together with a short set of proteins of unknown function. The extensive genetic, biochemical and structural biology studies on the molecular mechanisms of SPP1 DNA replication and phage particle assembly rendered it a model system for tailed phages research. We propose SPP1 as the reference species for a new SPP1-like viruses genus of the Siphoviridae family.
Collapse
|
15
|
Sauer C, Ver Loren van Themaat E, Boender LGM, Groothuis D, Cruz R, Hamoen LW, Harwood CR, van Rij T. Exploring the Nonconserved Sequence Space of Synthetic Expression Modules in Bacillus subtilis. ACS Synth Biol 2018; 7:1773-1784. [PMID: 29939720 DOI: 10.1021/acssynbio.8b00110] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Increasing protein expression levels is a key step in the commercial production of enzymes. Predicting promoter activity and translation initiation efficiency based solely on consensus sequences have so far met with mixed results. Here, we addressed this challenge using a "brute-force" approach by designing and synthesizing a large combinatorial library comprising ∼12 000 unique synthetic expression modules (SEMs) for Bacillus subtilis. Using GFP fluorescence as a reporter of gene expression, we obtained a dynamic expression range that spanned 5 orders of magnitude, as well as a maximal 13-fold increase in expression compared with that of the already strong veg expression module. Analyses of the synthetic modules indicated that sequences at the 5'-end of the mRNA were the most important contributing factor to the differences in expression levels, presumably by preventing formation of strong secondary mRNA structures that affect translation initiation. When the gfp coding region was replaced by the coding region of the xynA gene, encoding the industrially relevant B. subtilis xylanase enzyme, only a 3-fold improvement in xylanase production was observed. Moreover, the correlation between GFP and xylanase expression levels was weak. This suggests that the differences in expression levels between the gfp and xynA constructs were due to differences in 5'-end mRNA folding and consequential differences in the rates of translation initiation. Our data show that the use of large libraries of SEMs, in combination with high-throughput technologies, is a powerful approach to improve the production of a specific protein, but that the outcome cannot necessarily be extrapolated to other proteins.
Collapse
Affiliation(s)
- Christopher Sauer
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
- DSM Biotechnology Center, P.O. Box 1, 2600 MA Delft, The Netherlands
| | | | | | - Daphne Groothuis
- DSM Biotechnology Center, P.O. Box 1, 2600 MA Delft, The Netherlands
| | - Rita Cruz
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
- DSM Biotechnology Center, P.O. Box 1, 2600 MA Delft, The Netherlands
| | - Leendert W. Hamoen
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Colin R. Harwood
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Tjeerd van Rij
- DSM Biotechnology Center, P.O. Box 1, 2600 MA Delft, The Netherlands
| |
Collapse
|
16
|
Hook-Barnard IG, Hinton DM. Transcription Initiation by Mix and Match Elements: Flexibility for Polymerase Binding to Bacterial Promoters. GENE REGULATION AND SYSTEMS BIOLOGY 2017. [DOI: 10.1177/117762500700100020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Bacterial RNA polymerase is composed of a core of subunits (β β′, α1, α2, ω), which have RNA synthesizing activity, and a specificity factor (σ), which identifies the start of transcription by recognizing and binding to sequence elements within promoter DNA. Four core promoter consensus sequences, the –10 element, the extended –10 (TGn) element, the –35 element, and the UP elements, have been known for many years; the importance of a nontemplate G at position -5 has been recognized more recently. However, the functions of these elements are not the same. The AT-rich UP elements, the –35 elements (–35TTGACA–30), and the extended –10 (15TGn–13) are recognized as double-stranded binding elements, whereas the –5 nontemplate G is recognized in the context of single-stranded DNA at the transcription bubble. Furthermore, the –10 element (–12TATAAT–7) is recognized as both double-stranded DNA for the T:A bp at position –12 and as nontemplate, single-stranded DNA from positions –11 to –7. The single-stranded sequences at positions –11 to –7 as well as the –5 contribute to later steps in transcription initiation that involve isomerization of polymerase and separation of the promoter DNA around the transcription start site. Recent work has demonstrated that the double-stranded elements may be used in various combinations to yield an effective promoter. Thus, while some minimal number of contacts is required for promoter function, polymerase allows the elements to be mixed and matched. Interestingly, which particular elements are used does not appear to fundamentally alter the transcription bubble generated in the stable complex. In this review, we discuss the multiple steps involved in forming a transcriptionally competent polymerase/promoter complex, and we examine what is known about polymerase recognition of core promoter elements. We suggest that considering promoter elements according to their involvement in early (polymerase binding) or later (polymerase isomerization) steps in transcription initiation rather than simply from their match to conventional promoter consensus sequences is a more instructive form of promoter classification.
Collapse
Affiliation(s)
- India G. Hook-Barnard
- Gene Expression and Regulation Section, Laboratory of Molecular and Cellular Biology, National Institute of Diabetes Digestive and Kidney Diseases, National Institutes of Health, Bldg. 8 Room 2A-13, Bethesda, MD 20892-0830
| | - Deborah M. Hinton
- Gene Expression and Regulation Section, Laboratory of Molecular and Cellular Biology, National Institute of Diabetes Digestive and Kidney Diseases, National Institutes of Health, Bldg. 8 Room 2A-13, Bethesda, MD 20892-0830
| |
Collapse
|
17
|
Diomandé SE, Doublet B, Vasaï F, Guinebretière MH, Broussolle V, Brillard J. Expression of the genes encoding the CasK/R two-component system and the DesA desaturase during Bacillus cereus cold adaptation. FEMS Microbiol Lett 2016; 363:fnw174. [PMID: 27435329 DOI: 10.1093/femsle/fnw174] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2016] [Indexed: 11/13/2022] Open
Abstract
Two-component systems (TCS) allow a cell to elaborate a variety of adaptive responses to environment changes. The recently discovered CasK/R TCS plays a role in the optimal unsaturation of fatty acids necessary for cold adaptation of the foodborne-pathogen Bacillus cereus Here, we showed that the promoter activity of the operon encoding this TCS was repressed during growth at low temperature in the stationary phase in the parental strain when compared to the casK/R mutant, suggesting that CasR negatively regulates the activity of its own promoter in these conditions. The promoter activity of the desA gene encoding the Δ5 fatty acid desaturase, providing unsaturated fatty acids (UFAs) required for low temperature adaptation, was repressed in the casK/R mutant grown at 12°C versus 37°C. This result suggests that CasK/R activates desA expression during B. cereus growth at low temperature, allowing an optimal unsaturation of the fatty acids. In contrast, desA expression was repressed during the lag phase at low temperature in presence of UFAs, in a CasK/R-independent manner. Our findings confirm that the involvement of this major TCS in B. cereus cold adaptation is linked to the upregulation of a fatty acid desaturase.
Collapse
Affiliation(s)
| | | | | | | | | | - Julien Brillard
- SQPOV, INRA, Univ. Avignon, 84000 Avignon, France DGIMI, INRA, Univ. Montpellier, 34095 Montpellier, France
| |
Collapse
|
18
|
Gélis-Jeanvoine S, Canette A, Gohar M, Caradec T, Lemy C, Gominet M, Jacques P, Lereclus D, Slamti L. Genetic and functional analyses of krs, a locus encoding kurstakin, a lipopeptide produced by Bacillus thuringiensis. Res Microbiol 2016; 168:356-368. [PMID: 27353188 DOI: 10.1016/j.resmic.2016.06.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 05/23/2016] [Accepted: 06/06/2016] [Indexed: 11/17/2022]
Abstract
Bacteria of the Bacillus genus are able to synthesize several families of lipopeptides. These small molecules are the product of non-ribosomal peptide synthetases. In 2000, it was found that Bacillus thuringiensis, an entomopathogenic bacterium of the Bacillus cereus group, produced a previously unknown lipopeptide: kurstakin. Genomic analyses reveal that the krs locus, encoding the kurstakin synthetases, is specific to the B. cereus group, but is unevenly distributed within this group. Previous work showed that krs transcription requires the necrotrophism quorum-sensor NprR. Here, we demonstrated that the genes of the krs locus form an operon and we defined its transcription start site. Following krs transcription at the population and single-cell levels in multiple culture conditions, we depicted a condition-dependent transcription pattern, indicating that production of kurstakin is subject to environmental regulation. Consistent with this idea, we found krs transcription to be regulated by another master regulator, Spo0A, suggesting that krs expression is fine-tuned by integrating multiple signals. We also reported an unknown DNA palindrome in the krs promoter region that modulates krs expression. Due to their surfactant properties, lipopeptides could play several physiological roles. We showed that the krs locus was required for proper biofilm structuration.
Collapse
Affiliation(s)
| | - Alexis Canette
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France.
| | - Michel Gohar
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France.
| | - Thibault Caradec
- University of Lille, EA 7394, ICV-Institut Charles Viollette, ProBioGEM Team, Polytech'Lille, Avenue Langevin, 59655 Villeneuve d'Ascq, France.
| | - Christelle Lemy
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France.
| | - Myriam Gominet
- Institut Pasteur, CNRS URA 2172, Unité de Biologie des Bactéries Pathogènes à Gram positif, 75015 Paris, France.
| | - Philippe Jacques
- University of Lille, EA 7394, ICV-Institut Charles Viollette, ProBioGEM Team, Polytech'Lille, Avenue Langevin, 59655 Villeneuve d'Ascq, France.
| | - Didier Lereclus
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France.
| | - Leyla Slamti
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France.
| |
Collapse
|
19
|
Murayama S, Ishikawa S, Chumsakul O, Ogasawara N, Oshima T. The Role of α-CTD in the Genome-Wide Transcriptional Regulation of the Bacillus subtilis Cells. PLoS One 2015; 10:e0131588. [PMID: 26154296 PMCID: PMC4495994 DOI: 10.1371/journal.pone.0131588] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 06/02/2015] [Indexed: 11/22/2022] Open
Abstract
The amino acid sequence of the RNA polymerase (RNAP) α-subunit is well conserved throughout the Eubacteria. Its C-terminal domain (α-CTD) is important for the transcriptional regulation of specific promoters in both Escherichia coli and Bacillus subtilis, through interactions with transcription factors and/or a DNA element called the "UP element". However, there is only limited information regarding the α-CTD regulated genes in B. subtilis and the importance of this subunit in the transcriptional regulation of B. subtilis. Here, we established strains and the growth conditions in which the α-subunit of RNAP was replaced with a C-terminally truncated version. Transcriptomic and ChAP-chip analyses revealed that α-CTD deficiency reduced the transcription and RNAP binding of genes related to the utilization of secondary carbon sources, transition state responses, and ribosome synthesis. In E. coli, it is known that α-CTD also contributes to the expression of genes related to the utilization of secondary carbon sources and ribosome synthesis. Our results suggest that the biological importance of α-CTD is conserved in B. subtilis and E. coli, but that its specific roles have diversified between these two bacteria.
Collapse
Affiliation(s)
- Satohiko Murayama
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916–5, Takayama, Ikoma, Nara 630–0192, Japan
| | - Shu Ishikawa
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916–5, Takayama, Ikoma, Nara 630–0192, Japan
| | - Onuma Chumsakul
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916–5, Takayama, Ikoma, Nara 630–0192, Japan
| | - Naotake Ogasawara
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916–5, Takayama, Ikoma, Nara 630–0192, Japan
| | - Taku Oshima
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916–5, Takayama, Ikoma, Nara 630–0192, Japan
| |
Collapse
|
20
|
Jakobs M, Meinhardt F. What renders Bacilli genetically competent? A gaze beyond the model organism. Appl Microbiol Biotechnol 2014; 99:1557-70. [DOI: 10.1007/s00253-014-6316-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 12/08/2014] [Accepted: 12/09/2014] [Indexed: 12/20/2022]
|
21
|
Differential role of base pairs on gal promoters strength. J Mol Biol 2014; 427:792-806. [PMID: 25543084 DOI: 10.1016/j.jmb.2014.12.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 12/16/2014] [Accepted: 12/18/2015] [Indexed: 11/23/2022]
Abstract
Sequence alignments of promoters in prokaryotes postulated that the frequency of occurrence of a base pair at a given position of promoter elements reflects its contribution to intrinsic promoter strength. We directly assessed the contribution of the four base pairs in each position in the intrinsic promoter strength by keeping the context constant in Escherichia coli cAMP-CRP (cAMP receptor protein) regulated gal promoters by in vitro transcription assays. First, we show that base pair frequency within known consensus elements correlates well with promoter strength. Second, we observe some substitutions upstream of the ex-10 TG motif that are important for promoter function. Although the galP1 and P2 promoters overlap, only three positions where substitutions inactivated both promoters were found. We propose that RNA polymerase binds to the -12T base pair as part of double-stranded DNA while opening base pairs from -11A to +3 to form the single-stranded transcription bubble DNA during isomerization. The cAMP-CRP complex rescued some deleterious substitutions in the promoter region. The base pair roles and their flexibilities reported here for E. coli gal promoters may help construction of synthetic promoters in gene circuitry experiments in which overlapping promoters with differential controls may be warranted.
Collapse
|
22
|
Langlois C, Ramboarina S, Cukkemane A, Auzat I, Chagot B, Gilquin B, Ignatiou A, Petitpas I, Kasotakis E, Paternostre M, White HE, Orlova EV, Baldus M, Tavares P, Zinn-Justin S. Bacteriophage SPP1 tail tube protein self-assembles into β-structure-rich tubes. J Biol Chem 2014; 290:3836-49. [PMID: 25525268 DOI: 10.1074/jbc.m114.613166] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The majority of known bacteriophages have long tails that serve for bacterial target recognition and viral DNA delivery into the host. These structures form a tube from the viral capsid to the bacterial cell. The tube is formed primarily by a helical array of tail tube protein (TTP) subunits. In phages with a contractile tail, the TTP tube is surrounded by a sheath structure. Here, we report the first evidence that a phage TTP, gp17.1 of siphophage SPP1, self-assembles into long tubes in the absence of other viral proteins. gp17.1 does not exhibit a stable globular structure when monomeric in solution, even if it was confidently predicted to adopt the β-sandwich fold of phage λ TTP. However, Fourier transform infrared and nuclear magnetic resonance spectroscopy analyses showed that its β-sheet content increases significantly during tube assembly, suggesting that gp17.1 acquires a stable β-sandwich fold only after self-assembly. EM analyses revealed that the tube is formed by hexameric rings stacked helicoidally with the same organization and helical parameters found for the tail of SPP1 virions. These parameters were used to build a pseudo-atomic model of the TTP tube. The large loop spanning residues 40-56 is located on the inner surface of the tube, at the interface between adjacent monomers and hexamers. In line with our structural predictions, deletion of this loop hinders gp17.1 tube assembly in vitro and interferes with SPP1 tail assembly during phage particle morphogenesis in bacteria.
Collapse
Affiliation(s)
- Chantal Langlois
- From the Laboratoire de Biologie Structurale et Radiobiologie, UMR CNRS 8221 and CEA IBITECS, Commissariat à l'Energie Atomique, Saclay 91191 Gif-sur-Yvette Cedex, France
| | - Stéphanie Ramboarina
- From the Laboratoire de Biologie Structurale et Radiobiologie, UMR CNRS 8221 and CEA IBITECS, Commissariat à l'Energie Atomique, Saclay 91191 Gif-sur-Yvette Cedex, France
| | - Abhishek Cukkemane
- the NMR Spectroscopy Group, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands, the Microbiology Department, Tuljaram Chaturchand College, Baramati-413102, India
| | - Isabelle Auzat
- the Unité de Virologie Moléculaire et Structurale, CNRS UPR3296, Centre de Recherche de Gif, Bâtiment 14B, CNRS, 91198 Gif-sur-Yvette, France, and
| | - Benjamin Chagot
- From the Laboratoire de Biologie Structurale et Radiobiologie, UMR CNRS 8221 and CEA IBITECS, Commissariat à l'Energie Atomique, Saclay 91191 Gif-sur-Yvette Cedex, France
| | - Bernard Gilquin
- From the Laboratoire de Biologie Structurale et Radiobiologie, UMR CNRS 8221 and CEA IBITECS, Commissariat à l'Energie Atomique, Saclay 91191 Gif-sur-Yvette Cedex, France
| | - Athanasios Ignatiou
- the Institute of Structural and Molecular Biology, Birkbeck College, London WC1E 7HX, United Kingdom
| | - Isabelle Petitpas
- the Unité de Virologie Moléculaire et Structurale, CNRS UPR3296, Centre de Recherche de Gif, Bâtiment 14B, CNRS, 91198 Gif-sur-Yvette, France, and
| | - Emmanouil Kasotakis
- From the Laboratoire de Biologie Structurale et Radiobiologie, UMR CNRS 8221 and CEA IBITECS, Commissariat à l'Energie Atomique, Saclay 91191 Gif-sur-Yvette Cedex, France
| | - Maïté Paternostre
- From the Laboratoire de Biologie Structurale et Radiobiologie, UMR CNRS 8221 and CEA IBITECS, Commissariat à l'Energie Atomique, Saclay 91191 Gif-sur-Yvette Cedex, France
| | - Helen E White
- the Institute of Structural and Molecular Biology, Birkbeck College, London WC1E 7HX, United Kingdom
| | - Elena V Orlova
- the Institute of Structural and Molecular Biology, Birkbeck College, London WC1E 7HX, United Kingdom
| | - Marc Baldus
- the NMR Spectroscopy Group, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Paulo Tavares
- the Unité de Virologie Moléculaire et Structurale, CNRS UPR3296, Centre de Recherche de Gif, Bâtiment 14B, CNRS, 91198 Gif-sur-Yvette, France, and
| | - Sophie Zinn-Justin
- From the Laboratoire de Biologie Structurale et Radiobiologie, UMR CNRS 8221 and CEA IBITECS, Commissariat à l'Energie Atomique, Saclay 91191 Gif-sur-Yvette Cedex, France,
| |
Collapse
|
23
|
Division of labour and terminal differentiation in a novel Bacillus thuringiensis strain. ISME JOURNAL 2014; 9:286-96. [PMID: 25083932 DOI: 10.1038/ismej.2014.122] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Revised: 05/12/2014] [Accepted: 06/11/2014] [Indexed: 11/08/2022]
Abstract
A major challenge in bacterial developmental biology has been to understand the mechanisms underlying cell fate decisions. Some differentiated cell types display cooperative behaviour. Cooperation is one of the greatest mysteries of evolutionary biology and microbes have been considered as an excellent system for experimentally testing evolution theories. Bacillus thuringiensis (Bt) is a spore-forming bacterium, which is genetically closely related to B. anthracis, the agent of anthrax, and to B. cereus, an opportunistic human pathogen. The defining feature that distinguishes Bt from its relatives is its ability to produce crystal inclusions in the sporulating cells. These toxins are solubilized after ingestion and are cooperative public goods in insect hosts. In this study, we describe a Bt strain LM1212 that presents the unique ability to terminally differentiate into crystal producers and spore formers. Transcriptional analysis based on lacZ and gfp reporter genes suggested that this phenotype is the consequence of a new type of cell differentiation associated with a novel regulation mode of cry gene expression. The differentiating crystal-producer phenotype has higher spore productivity than a typical Bt strain and is better able to compete with Cry toxin null 'cheaters'. Potentially, this division of labour provides additional fitness benefits in terms of spore viability or durability of Cry toxin.
Collapse
|
24
|
Shulami S, Shenker O, Langut Y, Lavid N, Gat O, Zaide G, Zehavi A, Sonenshein AL, Shoham Y. Multiple regulatory mechanisms control the expression of the Geobacillus stearothermophilus gene for extracellular xylanase. J Biol Chem 2014; 289:25957-75. [PMID: 25070894 DOI: 10.1074/jbc.m114.592873] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Geobacillus stearothermophilus T-6 produces a single extracellular xylanase (Xyn10A) capable of producing short, decorated xylo-oligosaccharides from the naturally branched polysaccharide, xylan. Gel retardation assays indicated that the master negative regulator, XylR, binds specifically to xylR operators in the promoters of xylose and xylan-utilization genes. This binding is efficiently prevented in vitro by xylose, the most likely molecular inducer. Expression of the extracellular xylanase is repressed in medium containing either glucose or casamino acids, suggesting that carbon catabolite repression plays a role in regulating xynA. The global transcriptional regulator CodY was shown to bind specifically to the xynA promoter region in vitro, suggesting that CodY is a repressor of xynA. The xynA gene is located next to an uncharacterized gene, xynX, that has similarity to the NIF3 (Ngg1p interacting factor 3)-like protein family. XynX binds specifically to a 72-bp fragment in the promoter region of xynA, and the expression of xynA in a xynX null mutant appeared to be higher, indicating that XynX regulates xynA. The specific activity of the extracellular xylanase increases over 50-fold during early exponential growth, suggesting cell density regulation (quorum sensing). Addition of conditioned medium to fresh and low cell density cultures resulted in high expression of xynA, indicating that a diffusible extracellular xynA density factor is present in the medium. The xynA density factor is heat-stable, sensitive to proteases, and was partially purified using reverse phase liquid chromatography. Taken together, these results suggest that xynA is regulated by quorum-sensing at low cell densities.
Collapse
Affiliation(s)
- Smadar Shulami
- From the Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel and
| | - Ofer Shenker
- From the Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel and
| | - Yael Langut
- From the Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel and
| | - Noa Lavid
- From the Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel and
| | - Orit Gat
- From the Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel and
| | - Galia Zaide
- From the Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel and
| | - Arie Zehavi
- From the Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel and
| | - Abraham L Sonenshein
- the Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Yuval Shoham
- From the Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel and
| |
Collapse
|
25
|
Auzat I, Petitpas I, Lurz R, Weise F, Tavares P. A touch of glue to complete bacteriophage assembly: the tail-to-head joining protein (THJP) family. Mol Microbiol 2014; 91:1164-78. [DOI: 10.1111/mmi.12526] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2014] [Indexed: 12/21/2022]
Affiliation(s)
- Isabelle Auzat
- Laboratoire de Virologie Moléculaire et Structurale; Centre de Recherche de Gif; CNRS UPR 3296 and IFR115; 91198 Gif-sur-Yvette France
| | - Isabelle Petitpas
- Laboratoire de Virologie Moléculaire et Structurale; Centre de Recherche de Gif; CNRS UPR 3296 and IFR115; 91198 Gif-sur-Yvette France
| | - Rudi Lurz
- Max Planck Institute for Molecular Genetics; Ihnestraße 63-73 D-14195 Berlin Germany
| | - Frank Weise
- Max Planck Institute for Molecular Genetics; Ihnestraße 63-73 D-14195 Berlin Germany
| | - Paulo Tavares
- Laboratoire de Virologie Moléculaire et Structurale; Centre de Recherche de Gif; CNRS UPR 3296 and IFR115; 91198 Gif-sur-Yvette France
| |
Collapse
|
26
|
Loenen WAM, Dryden DTF, Raleigh EA, Wilson GG, Murray NE. Highlights of the DNA cutters: a short history of the restriction enzymes. Nucleic Acids Res 2014; 42:3-19. [PMID: 24141096 PMCID: PMC3874209 DOI: 10.1093/nar/gkt990] [Citation(s) in RCA: 220] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 09/24/2013] [Accepted: 10/02/2013] [Indexed: 11/16/2022] Open
Abstract
In the early 1950's, 'host-controlled variation in bacterial viruses' was reported as a non-hereditary phenomenon: one cycle of viral growth on certain bacterial hosts affected the ability of progeny virus to grow on other hosts by either restricting or enlarging their host range. Unlike mutation, this change was reversible, and one cycle of growth in the previous host returned the virus to its original form. These simple observations heralded the discovery of the endonuclease and methyltransferase activities of what are now termed Type I, II, III and IV DNA restriction-modification systems. The Type II restriction enzymes (e.g. EcoRI) gave rise to recombinant DNA technology that has transformed molecular biology and medicine. This review traces the discovery of restriction enzymes and their continuing impact on molecular biology and medicine.
Collapse
Affiliation(s)
- Wil A. M. Loenen
- Leiden University Medical Center, Leiden, the Netherlands, EaStChemSchool of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, Scotland, UK and New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA
| | - David T. F. Dryden
- Leiden University Medical Center, Leiden, the Netherlands, EaStChemSchool of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, Scotland, UK and New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA
| | - Elisabeth A. Raleigh
- Leiden University Medical Center, Leiden, the Netherlands, EaStChemSchool of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, Scotland, UK and New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA
| | - Geoffrey G. Wilson
- Leiden University Medical Center, Leiden, the Netherlands, EaStChemSchool of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, Scotland, UK and New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA
| | | |
Collapse
|
27
|
Cabrera-Ostertag IJ, Cavanagh AT, Wassarman KM. Initiating nucleotide identity determines efficiency of RNA synthesis from 6S RNA templates in Bacillus subtilis but not Escherichia coli. Nucleic Acids Res 2013; 41:7501-11. [PMID: 23761441 PMCID: PMC3753640 DOI: 10.1093/nar/gkt517] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The 6S RNA is a non-coding small RNA that binds within the active site of housekeeping forms of RNA polymerases (e.g. Eσ70 in Escherichia coli, EσA in Bacillus subtilis) and regulates transcription. Efficient release of RNA polymerase from 6S RNA regulation during outgrowth from stationary phase is dependent on use of 6S RNA as a template to generate a product RNA (pRNA). Interestingly, B. subtilis has two 6S RNAs, 6S-1 and 6S-2, but only 6S-1 RNA appears to be used efficiently as a template for pRNA synthesis during outgrowth. Here, we demonstrate that the identity of the initiating nucleotide is particularly important for the B. subtilis RNA polymerase to use RNA templates. Specifically, initiation with guanosine triphosphate (GTP) is required for efficient pRNA synthesis, providing mechanistic insight into why 6S-2 RNA does not support robust pRNA synthesis as it initiates with adenosine triphosphate (ATP). Intriguingly, E. coli RNA polymerase does not have a strong preference for initiating nucleotide identity. These observations highlight an important difference in biochemical properties of B. subtilis and E. coli RNA polymerases, specifically in their ability to use RNA templates efficiently, which also may reflect the differences in GTP and ATP metabolism in these two organisms.
Collapse
|
28
|
de Oliveira RR, Nicholson WL. The LysR-type transcriptional regulator (LTTR) AlsR indirectly regulates expression of the Bacillus subtilis bdhA gene encoding 2,3-butanediol dehydrogenase. Appl Microbiol Biotechnol 2013; 97:7307-16. [PMID: 23576037 DOI: 10.1007/s00253-013-4871-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 03/19/2013] [Indexed: 11/26/2022]
Abstract
Bacillus subtilis ferments pyruvate to 2,3-butanediol via α-acetolactate synthase, α-acetolactate decarboxylase, and butanediol dehydrogenase (BDH), encoded by the alsSD operon and the unlinked monocistronic bdhA gene, respectively. Upstream and divergent from alsSD is the alsR gene that encodes AlsR, a member of the LysR-type transcriptional regulator family. AlsR directly stimulates alsSD transcription by binding to characteristic sites preceding the alsS promoter, but its effect on bdhA expression was unknown. The effect of AlsR on bdhA expression was assessed in a wild-type strain and a congenic strain carrying an alsR::spc knockout mutation by measuring: (a) expression of a transcriptional bdhA-lacZ fusion; (b) bdhA mRNA steady-state levels by quantitative reverse transcriptase PCR; and (c) expression of BDH enzymatic activity. Activation of bdhA expression occurred in early stationary phase, and expression was lowered, but not abolished, in the alsR::spc mutant. Mapping the transcriptional start site of bdhA by primer extension revealed a 268-nucleotide 5'-untranslated region preceding the bdhA initiation methionine codon. Transcription initiation was not reduced in the alsR::spc mutant, and by electrophoretic mobility shift assay, purified AlsR protein did not bind to the bdhA promoter region, suggesting that bdhA expression is indirectly under AlsR transcriptional control.
Collapse
Affiliation(s)
- Rafael R de Oliveira
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA
| | | |
Collapse
|
29
|
Schrecke K, Jordan S, Mascher T. Stoichiometry and perturbation studies of the LiaFSR system ofBacillus subtilis. Mol Microbiol 2013; 87:769-88. [DOI: 10.1111/mmi.12130] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2012] [Indexed: 01/18/2023]
Affiliation(s)
- Karen Schrecke
- Department of Biology I; Ludwig-Maximilians-University Munich; Munich; Germany
| | - Sina Jordan
- Department of Biology I; Ludwig-Maximilians-University Munich; Munich; Germany
| | - Thorsten Mascher
- Department of Biology I; Ludwig-Maximilians-University Munich; Munich; Germany
| |
Collapse
|
30
|
Membrane topology of the Bacillus anthracis GerH germinant receptor proteins. J Bacteriol 2011; 194:1369-77. [PMID: 22178966 DOI: 10.1128/jb.06538-11] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Bacillus anthracis spores are the etiologic agent of anthrax. Nutrient germinant receptors (nGRs) packaged within the inner membrane of the spore sense the presence of specific stimuli in the environment and trigger the process of germination, quickly returning the bacterium to the metabolically active, vegetative bacillus. This ability to sense the host environment and initiate germination is a required step in the infectious cycle. The nGRs are comprised of three subunits: the A-, B-, and C-type proteins. To date there are limited structural data for the A- and B-type nGR subunits. Here the transmembrane topologies of the B. anthracis GerH(A), GerH(B), and GerH(C) proteins are presented. C-terminal green fluorescent protein (GFP) fusions to various lengths of the GerH proteins were overexpressed in vegetative bacteria, and the subcellular locations of these GFP fusion sites were analyzed by flow cytometry and protease sensitivity. GFP fusion to full-length GerH(C) confirmed that the C terminus of this protein is extracellular, as predicted. GerH(A) and GerH(B) were both predicted to be integral membrane proteins by topology modeling. Analysis of C-terminal GFP fusions to full-length GerH(B) and nine truncated GerH(B) proteins supports either an 8- or 10-transmembrane-domain topology. For GerH(A), C-terminal GFP fusions to full-length GerH(A) and six truncated GerH(A) proteins were consistent with a four-transmembrane-domain topology. Understanding the membrane topology of these proteins is an important step in determining potential ligand binding and protein-protein interaction domains, as well as providing new information for interpreting previous genetic work.
Collapse
|
31
|
Redefining Escherichia coli σ(70) promoter elements: -15 motif as a complement of the -10 motif. J Bacteriol 2011; 193:6305-14. [PMID: 21908667 DOI: 10.1128/jb.05947-11] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Classical elements of σ(70) bacterial promoters include the -35 element ((-35)TTGACA(-30)), the -10 element ((-12)TATAAT(-7)), and the extended -10 element ((-15)TG(-14)). Although the -35 element, the extended -10 element, and the upstream-most base in the -10 element ((-12)T) interact with σ(70) in double-stranded DNA (dsDNA) form, the downstream bases in the -10 motif ((-11)ATAAT(-7)) are responsible for σ(70)-single-stranded DNA (ssDNA) interactions. In order to directly reflect this correspondence, an extension of the extended -10 element to a so-called -15 element ((-15)TGnT(-12)) has been recently proposed. I investigated here the sequence specificity of the proposed -15 element and its relationship to other promoter elements. I found a previously undetected significant conservation of (-13)G and a high degeneracy at (-15)T. I therefore defined the -15 element as a degenerate motif, which, together with the conserved stretch of sequence between -15 and -12, allows treating this element analogously to -35 and -10 elements. Furthermore, the strength of the -15 element inversely correlates with the strengths of the -35 element and -10 element, whereas no such complementation between other promoter elements was found. Despite the direct involvement of -15 element in σ(70)-dsDNA interactions, I found a significantly stronger tendency of this element to complement weak -10 elements that are involved in σ(70)-ssDNA interactions. This finding is in contrast to the established view, according to which the -15 element provides a sufficient number of σ(70)-dsDNA interactions, and suggests that the main parameter determining a functional promoter is the overall promoter strength.
Collapse
|
32
|
Identification of the P3 promoter and distinct roles of the two promoters of the SaeRS two-component system in Staphylococcus aureus. J Bacteriol 2011; 193:4672-84. [PMID: 21764914 DOI: 10.1128/jb.00353-11] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In Staphylococcus aureus, the SaeRS two-component system (TCS) encoded by the saePQRS operon controls expression of major virulence factors, such as coagulase and alpha-hemolysin. The saePQRS operon has two promoters: P1 and P3. The P1 promoter, a strong promoter, is autoinduced and can transcribe all four genes. Compared with P1, P3 shows fairly low but constitutive promoter activity, and it transcribes only saeR and saeS, the two genes encoding response regulator SaeR and sensor kinase SaeS. However, the role of each promoter in sae signaling has not been rigorously defined. In this study, we found that the genuine transcription start site (TSS) of P3 is located 78 nucleotides downstream of the previously reported TSS. Subsequently, the P3 promoter sequence was identified and validated by mutagenesis analyses. Deletion of the saePQ region including the P1 promoter did not significantly alter the expression patterns of coagulase and alpha-hemolysin, two well-known sae target genes. Due to its L18P substitution in a transmembrane domain, SaeS in strain Newman has a constitutive kinase activity. Interestingly, the mutation also rendered the protein unstable, but the protein stability was restored by SaeQ, suggesting a possible SaeQ-SaeS interaction. Ironically, the same mutation seems to increase mRNA stability. SaeR appears to be stabilized by SaeS, possibly by a protein-protein interaction. Chromosomal mutation of P1 did not affect the expression pattern of coagulase and alpha-hemolysin. Based on these results, we conclude that transcription of saeRS from P3 is sufficient for target gene activation and that P1 is not involved in the activation.
Collapse
|
33
|
Assembly mechanism is the key determinant of the dosage sensitivity of a phage structural protein. Proc Natl Acad Sci U S A 2011; 108:10168-73. [PMID: 21646545 DOI: 10.1073/pnas.1100759108] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Altering the expression level of proteins that are subunits of complexes has been proposed to be particularly detrimental because the resulting stoichiometric imbalance among components would lead to misassembly of the complex. Here we show that assembly of the phage HK97 connector complex is severely inhibited by the overexpression of one of its component proteins, gp6. However, this effect is a result of the unusual mechanism by which the oligomerization and assembly of gp6 are controlled. Alteration of this mechanism by single amino acid substitutions leads to a reversal of the response to gp6 overexpression. Surprisingly, the binding partner of gp6 within the phage particle is expressed at a 500-fold higher concentration despite their identical stoichiometry within the complex. Our data emphasize that a generalized prediction of the effects of changes in the expression level of protein complex subunits is very difficult because these effects are dependent upon assembly mechanism.
Collapse
|
34
|
Abstract
Geobacillus stearothermophilus T-6 is a thermophilic soil bacterium that has a 38-kb gene cluster for the utilization of arabinan, a branched polysaccharide that is part of the plant cell wall. The bacterium encodes a unique three-component regulatory system (araPST) that includes a sugar-binding lipoprotein (AraP), a histidine sensor kinase (AraS), and a response regulator (AraT) and lies adjacent to an ATP-binding cassette (ABC) arabinose transport system (araEGH). The lipoprotein (AraP) specifically bound arabinose, and gel mobility shift experiments showed that the response regulator, AraT, binds to a 139-bp fragment corresponding to the araE promoter region. Taken together, the results showed that the araPST system appeared to sense extracellular arabinose and to activate a specific ABC transporter for arabinose (AraEGH). The promoter regions of the arabinan utilization genes contain a 14-bp inverted repeat motif resembling an operator site for the arabinose repressor, AraR. AraR was found to bind specifically to these sequences, and binding was efficiently prevented in the presence of arabinose, suggesting that arabinose is the molecular inducer of the arabinan utilization system. The expression of the arabinan utilization genes was reduced in the presence of glucose, indicating that regulation is also mediated via a catabolic repression mechanism. The cluster also encodes a second putative ABC sugar transporter (AbnEFJ) whose sugar-binding lipoprotein (AbnE) was shown to interact specifically with linear and branched arabino-oligosaccharides. The final degradation of the arabino-oligosaccharides is likely carried out by intracellular enzymes, including two α-l-arabinofuranosidases (AbfA and AbfB), a β-l-arabinopyranosidase (Abp), and an arabinanase (AbnB), all of which are encoded in the 38-kb cluster.
Collapse
|
35
|
Abstract
Over the course of more than a century of laboratory experimentation, Bacillus subtilis has become "domesticated," losing its ability to carry out many behaviors characteristic of its wild ancestors. One such characteristic is the ability to form architecturally complex communities, referred to as biofilms. Previous work has shown that the laboratory strain 168 forms markedly attenuated biofilms compared with the wild strain NCIB3610 (3610), even after repair of a mutation in sfp (a gene involved in surfactin production) previously known to impair biofilm formation. Here, we show that in addition to the sfp mutation, mutations in epsC, swrA, and degQ are necessary and sufficient to explain the inability of the laboratory strain to produce robust biofilms. Finally, we show that the architecture of the biofilm is markedly influenced by a large plasmid present in 3610 but not 168 and that the effect of the plasmid can be attributed to a gene we designate rapP. When rapP is introduced into 168 together with wild-type alleles of sfp, epsC, swrA, and degQ, the resulting repaired laboratory strain forms biofilms that are as robust as and essentially indistinguishable in architecture from those of the wild strain, 3610. Thus, domestication of B. subtilis involved the accumulation of four mutations and the loss of a plasmid-borne gene.
Collapse
|
36
|
Abstract
Using an oligonucleotide microarray, we searched for previously unrecognized transcription units in intergenic regions in the genome of Bacillus subtilis, with an emphasis on identifying small genes activated during spore formation. Nineteen transcription units were identified, 11 of which were shown to depend on one or more sporulation-regulatory proteins for their expression. A high proportion of the transcription units contained small, functional open reading frames (ORFs). One such newly identified ORF is a member of a family of six structurally similar genes that are transcribed under the control of sporulation transcription factor σ(E) or σ(K). A multiple mutant lacking all six genes was found to sporulate with slightly higher efficiency than the wild type, suggesting that under standard laboratory conditions the expression of these genes imposes a small cost on the production of heat-resistant spores. Finally, three of the transcription units specified small, noncoding RNAs; one of these was under the control of the sporulation transcription factor σ(E), and another was under the control of the motility sigma factor σ(D).
Collapse
|
37
|
Abstract
The mannose operon of Bacillus subtilis consists of three genes, manP, manA, and yjdF, which are responsible for the transport and utilization of mannose. Upstream and in the same orientation as the mannose operon a regulatory gene, manR, codes for a transcription activator of the mannose operon, as shown in this study. Both mannose operon transcription and manR transcription are inducible by mannose. The presence of mannose resulted in a 4- to 7-fold increase in expression of lacZ from the manP promoter (P(manP)) and in a 3-fold increase in expression of lacZ from the manR promoter (P(manR)). The transcription start sites of manPA-yjdF and manR were determined to be a single A residue and a single G residue, respectively, preceded by -10 and -35 boxes resembling a vegetative sigma(A) promoter structure. Through deletion analysis the target sequences of ManR upstream of P(manP) and P(manR) were identified between bp -80 and -35 with respect to the transcriptional start site of both promoters. Deletion of manP (mannose transporter) resulted in constitutive expression from both the P(manP) and P(manR) promoters, indicating that the phosphotransferase system (PTS) component EII(Man) has a negative effect on regulation of the mannose operon and manR. Moreover, both P(manP) and P(manR) are subject to carbon catabolite repression (CCR). By constructing protein sequence alignments a DNA binding motif at the N-terminal end, two PTS regulation domains (PRDs), and an EIIA- and EIIB-like domain were identified in the ManR sequence, indicating that ManR is a PRD-containing transcription activator. Like findings for other PRD regulators, the phosphoenolpyruvate (PEP)-dependent phosphorylation by the histidine protein HPr via His15 plays an essential role in transcriptional activation of P(manP) and P(manR). Phosphorylation of Ser46 of HPr or of the homologous Crh protein by HPr kinase and formation of a repressor complex with CcpA are parts of the B. subtilis CCR system. Only in the double mutant with an HPr Ser46Ala mutation and a crh knockout mutation was CCR strongly reduced. In contrast, P(manR) and P(manP) were not inducible in a ccpA deletion mutant.
Collapse
|
38
|
Castilla-Llorente V, Salas M, Meijer WJJ. Different responses to Spo0A-mediated suppression of the related Bacillus subtilis phages Nf and phi29. Environ Microbiol 2009; 11:1137-49. [PMID: 19207565 DOI: 10.1111/j.1462-2920.2008.01845.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The phi29 family of phages is divided in three groups. Members of groups 1 and 2 infect the spore-forming bacterium Bacillus subtilis. Previous studies showed that group 1 phage phi29 adapts its infection strategy to the physiological state of the host. Thus, the lytic cycle of phi29 is suppressed when cells are infected during the early stages of sporulation and the infecting genome becomes trapped into the spore. A major element of this adaptive strategy is a very sensitive response to the host-encoded Spo0A protein, the key regulator for sporulation activation, which is directly responsible for suppression of phi29 development. Here we analysed if this adaptation is conserved in phage Nf belonging to group 2. The results obtained show that although Nf also possesses the alternative infection strategy, it is clearly less sensitive to Spo0A-mediated suppression than phi29. Sequence determination of the Nf genome revealed striking differences in the number of Spo0A binding site sequences. The results provide evidence that the life style of two highly related phages is distinctly tuned by differences in binding sites for a host-encoded regulatory protein, being a good example of how viruses have evolved to optimally exploit features of their host.
Collapse
Affiliation(s)
- Virginia Castilla-Llorente
- Instituto de Biología Molecular Eladio Viñuela, CSIC, Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Universidad Autónoma, Canto Blanco, Madrid, Spain
| | | | | |
Collapse
|
39
|
Biswas I, Jha JK, Fromm N. Shuttle expression plasmids for genetic studies in Streptococcus mutans. MICROBIOLOGY-SGM 2008; 154:2275-2282. [PMID: 18667560 DOI: 10.1099/mic.0.2008/019265-0] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A set of shuttle plasmids containing four different constitutive promoters was generated to facilitate overexpression of foreign and native genes in streptococci, such as Streptococcus mutans. The four promoters that were chosen were: P(ami), P(spac), P(23) and P(veg). These promoters are active in many Gram-positive bacteria, and allow various levels of gene expression depending on the host bacterium. Shuttle plasmids were constructed based on two types of broad-host-range replication origins: a rolling-circle replicon (pSH71) and a theta replicon (pAMbeta1). Shuttle plasmids derived from the pAMbeta1 replicon were generated to avoid the structural and segregational stability problems associated with rolling-circle replication, since these problems may be encountered during large gene cloning. In a complementation assay, we used one such plasmid to express a gene in trans to show the utility of these plasmids. In addition, a series of plasmids was generated for the expression of recombinant proteins with an N-terminal 6xHis tag or a C-terminal Strep-tag fusion, and, using a gene derived from S. mutans, we showed a high level of recombinant protein expression in S. mutans and Streptococcus pyogenes. Since these plasmids contain broad-host-range replication origins, and because the selected promoters are functional in many bacteria, they can be used for gene expression studies, such as complementation and recombinant protein expression.
Collapse
Affiliation(s)
- Indranil Biswas
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Jyoti K Jha
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Nicholas Fromm
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| |
Collapse
|
40
|
Cloning and characterization of the DNA region responsible for Megacin A-216 production in Bacillus megaterium 216. J Bacteriol 2008; 190:6448-57. [PMID: 18689470 DOI: 10.1128/jb.00557-08] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Upon induction, Bacillus megaterium 216 produces the bacteriocin megacin A-216, which leads to lysis of the producer cell and kills B. megaterium and a few other bacterial species. The DNA region responsible for megacinogeny was cloned in B. megaterium. The nucleotide sequence of a 5,494-bp-long subfragment was determined, and the function of the genes on this fragment was studied by generating deletions and analyzing their effects on MegA phenotypes. An open reading frame (ORF) encoding a 293-amino-acid protein was identified as the gene (megA) coding for megacin A-216. BLAST searches detected sequence similarity between megacin A-216 and proteins with phospholipase A2 activity. Purified biologically active megacin A-216 preparations contained three proteins. Mass spectrometry analysis showed that the largest protein is the full-length translation product of the megA gene, whereas the two shorter proteins are fragments of the long protein created by cleavage between Gln-185 and Val-186. The molecular masses of the three polypeptides are 32,855, 21,018, and 11,855 Da, respectively. Comparison of different megacin preparations suggests that the intact chain as well as the two combined fragments can form biologically active megacin. An ORF located next to the megA gene and encoding a 91-amino-acid protein was shown to be responsible for the relative immunity displayed by the producer strain against megacin A-216. Besides the megA gene, at least two other genes, including a gene encoding a 188-amino-acid protein sharing high sequence similarity with RNA polymerase sigma factors, were shown to be required for induction of megacin A-216 expression.
Collapse
|
41
|
Chu F, Kearns DB, McLoon A, Chai Y, Kolter R, Losick R. A novel regulatory protein governing biofilm formation in Bacillus subtilis. Mol Microbiol 2008; 68:1117-27. [PMID: 18430133 DOI: 10.1111/j.1365-2958.2008.06201.x] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Production of an extracellular matrix is a hallmark of biofilm formation. In the spore-forming bacterium Bacillus subtilis, the matrix consists of an exopolysaccharide, which is specified by the epsA-O operon, and a secreted protein TasA, which is encoded by the yqxM-sipW-tasA operon. Past and present evidence establish that the epsA-O and yqxM-sipW-tasA operons are controlled by the repressor proteins SinR and AbrB. Here, we report the identification of a novel regulatory protein Slr that promotes transcription of the yqxM-sipW-tasA operon but is not needed for expression of the epsA-O operon. We further show that the gene for Slr is itself under the negative control of SinR and AbrB. These findings reveal that matrix production is governed by an intricate network involving the interplay of negatively and positively acting regulatory proteins.
Collapse
Affiliation(s)
- Frances Chu
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | | | | | | | | | | |
Collapse
|
42
|
Jung YC, Mizuki E, Akao T, Côté JC. Isolation and characterization of a novel Bacillus thuringiensis strain expressing a novel crystal protein with cytocidal activity against human cancer cells. J Appl Microbiol 2008; 103:65-79. [PMID: 17584453 DOI: 10.1111/j.1365-2672.2006.03260.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
AIMS To characterize a novel, unusual, Bacillus thuringiensis strain, to clone its Cry gene and determine the spectrum of action of the encoded Cry protein. METHODS AND RESULTS The B. thuringiensis strain, referred to as M15, was isolated from dead two-spotted spider mites (Tetranychus urticae Koch; Arthropoda: Arachnida: Tetranychidae). It is an autoagglutination-positive strain and is therefore non-serotypeable. A sporulated culture produces a roughly spherical parasporal inclusion body, the crystal, tightly coupled to the spore. Although the crystal appears to be composed of at least two major polypeptides of 86 and 79 kDa as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, Southern hybridization indicates that the corresponding crystal protein gene is likely present in only one copy. The crystal protein gene was cloned and, based on nucleotide sequence homology with an orthologous cry31Aa1 gene, assigned the name cry31Aa2. Although initially isolated from spider mites, B. thuringiensis M15 is non-toxic to spider mites and it does not produce the wide spectrum beta-exotoxin. Assays on mammalian cells, however, reveal that Cry31Aa2, when cleaved with trypsin, is cytocidal to some human cancer cells but not to normal human cells. No cytocidal activity was induced after protease treatment of Cry31Aa2 with either chymotrypsin or proteinase K. Trypsin, chymotrypsin and proteinase K cleavage sites were determined. CONCLUSIONS The B. thuringiensis strain M15 exhibits specific cytocidal activities against some human cancer cells. SIGNIFICANCE AND IMPACT OF THE STUDY This study raises questions as to the actual role of this bacterial strain and its crystal protein in the environment. It may be possible to further develop the Cry31Aa2 protein to target specific human cancer cells.
Collapse
Affiliation(s)
- Y-C Jung
- Agriculture and Agri-Food Canada, Research Centre, Saint-Jean-sur-Richelieu, QC, Canada
| | | | | | | |
Collapse
|
43
|
Mapping the transcription start points of the Staphylococcus aureus eap, emp, and vwb promoters reveals a conserved octanucleotide sequence that is essential for expression of these genes. J Bacteriol 2007; 190:447-51. [PMID: 17965149 DOI: 10.1128/jb.01174-07] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mapping the transcription start points of the eap, emp, and vwb promoters revealed a conserved octanucleotide sequence (COS). Deleting this sequence abolished the expression of eap, emp, and vwb. However, electrophoretic mobility shift assays gave no evidence that this sequence was a binding site for SarA or SaeR, known regulators of eap and emp.
Collapse
|
44
|
Ko JH, Altman S. OLE RNA, an RNA motif that is highly conserved in several extremophilic bacteria, is a substrate for and can be regulated by RNase P RNA. Proc Natl Acad Sci U S A 2007; 104:7815-20. [PMID: 17470803 PMCID: PMC1876530 DOI: 10.1073/pnas.0701715104] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
OLE (ornate, large, and extremophilic) RNA is a noncoding RNA that is found in several extremophilic bacteria, including Bacillus halodurans. The function of OLE RNA has not been clarified. In this study, we found that RNase P cleaves OLE RNA and that the cleavage leads to a small reduction of expression of a downstream gene determined by analyses in vitro and in vivo. Under RNase P-deficient conditions, the amount of OLE RNA increased. Our results imply that RNase P could play a role in the regulation of gene expression in relation to conserved RNA motifs like OLE RNA as well as in riboswitches and operons.
Collapse
Affiliation(s)
- Jae-hyeong Ko
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520
| | - Sidney Altman
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520
- *To whom correspondence may be addressed. E-mail:
| |
Collapse
|
45
|
Shulami S, Zaide G, Zolotnitsky G, Langut Y, Feld G, Sonenshein AL, Shoham Y. A two-component system regulates the expression of an ABC transporter for xylo-oligosaccharides in Geobacillus stearothermophilus. Appl Environ Microbiol 2006; 73:874-84. [PMID: 17142383 PMCID: PMC1800775 DOI: 10.1128/aem.02367-06] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Geobacillus stearothermophilus T-6 utilizes an extensive and highly regulated hemicellulolytic system. The genes comprising the xylanolytic system are clustered in a 39.7-kb chromosomal segment. This segment contains a 6-kb transcriptional unit (xynDCEFG) coding for a potential two-component system (xynDC) and an ATP-binding cassette (ABC) transport system (xynEFG). The xynD promoter region contains a 16-bp inverted repeat resembling the operator site for the xylose repressor, XylR. XylR was found to bind specifically to this sequence, and binding was efficiently prevented in vitro in the presence of xylose. The ABC transport system was shown to comprise an operon of three genes (xynEFG) that is transcribed from its own promoter. The nonphosphorylated fused response regulator, His6-XynC, bound to a 220-bp fragment corresponding to the xynE operator. DNase I footprinting analysis showed four protected zones that cover the -53 and the +34 regions and revealed direct repeat sequences of a GAAA-like motif. In vitro transcriptional assays and quantitative reverse transcription-PCR demonstrated that xynE transcription is activated 140-fold in the presence of 1.5 microM XynC. The His6-tagged sugar-binding lipoprotein (XynE) of the ABC transporter interacted with different xylosaccharides, as demonstrated by isothermal titration calorimetry. The change in the heat capacity of binding (DeltaCp) for XynE with xylotriose suggests a stacking interaction in the binding site that can be provided by a single Trp residue and a sugar moiety. Taken together, our data show that XynEFG constitutes an ABC transport system for xylo-oligosaccharides and that its transcription is negatively regulated by XylR and activated by the response regulator XynC, which is part of a two-component sensing system.
Collapse
Affiliation(s)
- Smadar Shulami
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | | | | | | | | | | | | |
Collapse
|
46
|
Maqbool QUA, Johri S, Rasool S, Riyaz-ul-Hassan S, Verma V, Nargotra A, Koul S, Qazi GN. Molecular cloning of carboxylesterase gene and biochemical characterization of encoded protein from Bacillus subtilis (RRL BB1). J Biotechnol 2006; 125:1-10. [PMID: 16621096 DOI: 10.1016/j.jbiotec.2006.02.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2005] [Revised: 02/03/2006] [Accepted: 02/17/2006] [Indexed: 10/24/2022]
Abstract
An isolated strain of Bacillus subtilis identified by 16S rDNA sequence analysis produces an enantioselective ester hydrolase. Whole cells of B. subtilis (RRL BB1) and enzyme derived from it was capable of enantioselective hydrolysis of several racemates including drug intermediates with moderate to high enantioselectivity as already reported by us. In this communication, we describe cloning of the gene encoding the enantioselective esterase designated as estBB1. The primary structure of the enzyme determined from the nucleotide sequence indicated that esterase estBB1 has Mw approximately 52kDa and pI approximately 5.2 and belongs to the family of type B carboxylesterases with 50-60% similarity at amino acid level. Alignment studies of sequences of the estBB1 and Pnb esterase 56C8 from B. subtilis showed that estBB1 has an alpha/beta hydrolase fold with catalytic triad formed by Ser190, Glu305 and His394 at active site and Ser190 is located in the conserved motif -G-X-S-X-G-.
Collapse
Affiliation(s)
- Qurrat-ul-Ain Maqbool
- Biotechnology Division, Regional Research Laboratory, Canal Road, Jammu Tawi-180001, India
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Chu F, Kearns DB, Branda SS, Kolter R, Losick R. Targets of the master regulator of biofilm formation in Bacillus subtilis. Mol Microbiol 2006; 59:1216-28. [PMID: 16430695 DOI: 10.1111/j.1365-2958.2005.05019.x] [Citation(s) in RCA: 216] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Wild strains of the spore-forming bacterium Bacillus subtilis are capable of forming architecturally complex communities of cells. The formation of these biofilms is mediated in part by the 15-gene exopolysaccharide operon, epsA-O, which is under the direct negative control of the SinR repressor. We report the identification of an additional operon, yqxM-sipW-tasA, that is required for biofilm formation and is under the direct negative control of SinR. We now show that all three members of the operon are required for the formation of robust biofilms and that SinR is a potent repressor of the operon that acts by binding to multiple sites in the promoter region. Genome-wide analysis of SinR-controlled transcription indicates that the epsA-O and yqxM-sipW-tasA operons constitute many of the most strongly controlled genes in the SinR regulon. These findings reinforce the view that SinR is a master regulator for biofilm formation and further suggest that a principal biological function of SinR is to govern the assembly of complex multicellular communities.
Collapse
Affiliation(s)
- Frances Chu
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | | | | | | | | |
Collapse
|
48
|
Chen G, Kumar A, Wyman TH, Moran CP. Spo0A-dependent activation of an extended -10 region promoter in Bacillus subtilis. J Bacteriol 2006; 188:1411-8. [PMID: 16452424 PMCID: PMC1367231 DOI: 10.1128/jb.188.4.1411-1418.2006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
At the onset of endospore formation in Bacillus subtilis the DNA-binding protein Spo0A directly activates transcription from promoters of about 40 genes. One of these promoters, Pskf, controls expression of an operon encoding a killing factor that acts on sibling cells. AbrB-mediated repression of Pskf provides one level of security ensuring that this promoter is not activated prematurely. However, Spo0A also appears to activate the promoter directly, since Spo0A is required for Pskf activity in a DeltaabrB strain. Here we investigate the mechanism of Pskf activation. DNase I footprinting was used to determine the locations at which Spo0A bound to the promoter, and mutations in these sites were found to significantly reduce promoter activity. The sequence near the -10 region of the promoter was found to be similar to those of extended -10 region promoters, which contain a TRTGn motif. Mutational analysis showed that this extended -10 region, as well as other base pairs in the -10 region, is required for Spo0A-dependent activation of the promoter. We found that a substitution of the consensus base pair for the nonconsensus base pair at position -9 of Pskf produced a promoter that was active constitutively in both deltaabrB and deltaspo0A deltaabrB strains. Therefore, the base pair at position -9 of Pskf makes its activity dependent on Spo0A binding, and the extended -10 region motif of the promoter contributes to its high level of activity.
Collapse
Affiliation(s)
- Guangnan Chen
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | |
Collapse
|
49
|
Jeong DW, Choi YC, Lee JM, Kim JH, Lee JH, Kim KH, Lee HJ. Isolation and characterization of promoters from Lactococcus lactis ssp. cremoris LM0230. Food Microbiol 2006; 23:82-9. [PMID: 16942990 DOI: 10.1016/j.fm.2005.01.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2004] [Revised: 01/05/2005] [Accepted: 01/05/2005] [Indexed: 11/18/2022]
Abstract
DNA fragments showing promoter activity were obtained from the chromosomal DNA of Lactococcus lactis ssp. cremoris LM0230 by using a promoter-screening vector pBV5030, which contains a promoterless chloramphenicol acetyltransferase gene. Ten fragments were identified based on their ability to confer resistance against chloramphenicol in Escherichia coli. DNA sequencing revealed that all the fragments had a consensus region recognized by the sigma factor and only the nucleotide sequence of fragment 15C had the identical consensus region with the promoter P2 from L. lactis ssp. lactis MG1614. To compare their promoter strengths, an E. coli-lactococcal shuttle vector pWL1 containing a luciferase gene as the reporter gene was constructed based on lactococcal plasmid pMG36e. The putative promoter regions of 10 fragments exhibiting promoter activity were characterized in E. coli and L. lactis by measuring the luciferase activity, among which the putative promoter P6C exhibited the highest promoter activity both in E. coli JM109 and L. lactis ssp. cremoris MG1363. The luciferase system endowed significantly different expression levels enough to compare promoter strengths in E. coli and lactococcal host. The transcription-initiation sites of P6C and P13C were mapped by primer extension, which showed that they corresponded to a purine residue. The characterized promoters could be useful for the industrial production of heterologous proteins in L. lactis in case the proteins require a high safety level.
Collapse
Affiliation(s)
- Do-Won Jeong
- School of Agricultural Biotechnology and Center for Agricultural Biomaterials, Seoul National University, Seoul 151-742, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
50
|
Trotter M, McAuliffe O, Callanan M, Edwards R, Fitzgerald GF, Coffey A, Ross RP. Genome analysis of the obligately lytic bacteriophage 4268 of Lactococcus lactis provides insight into its adaptable nature. Gene 2006; 366:189-99. [PMID: 16325353 DOI: 10.1016/j.gene.2005.09.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2005] [Revised: 09/14/2005] [Accepted: 09/21/2005] [Indexed: 11/30/2022]
Abstract
Analysis of the complete nucleotide sequence of the lactococcal phage 4268, which is lytic for the cheese starter Lactococcus lactis DPC4268, is presented. Phage 4268 has a linear genome of 36,596 bp, which is modularly organised and encompasses 49 open reading frames. Putative functions were assigned to approximately 45% of the predicted products of these open reading frames based on sequence similarity with known proteins, N-terminal sequence analysis and identification of conserved domains. Significantly, a segment of the genome has homology to the recently sequenced lysogenic module in lactococcal phage phi31 that contains a lytic switch but no phage integrase or attachment site. This suggests that it is derived from a prophage. A phage 4268-encoded and a host-encoded methylase were found to be highly similar, having only two nucleotide mismatches, suggesting that the phage acquired the methylase gene to protect it from a host endonuclease. Comparative genomic analysis revealed significant homology between phage 4268 and the lactococcal phage BK5-T. The comparative analysis also supported the classification of phage 4268 and other BK5-T-related phage as separate from the proposed P335 species of lactococcal phage.
Collapse
Affiliation(s)
- Maeve Trotter
- Department of Microbiology, University College Cork, Ireland
| | | | | | | | | | | | | |
Collapse
|